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Self-organized emergence of multilayer structure and chimera states in dynamical networks with
adaptive couplings
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We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera
states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of
subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which
are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the
subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state,
and these states can coexist on different scales of subnetwork sizes.
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I. INTRODUCTION

Synchronous behavior in networks of coupled oscilla-
tory systems is a universal phenomenon observed in many
natural and engineering applications. Along with complete
synchronization, the formation of more complex synchro-
nization patterns has attracted increasing interest recently. In
particular, such patterns include cluster synchronization, when
the network splits into two or more groups of synchronized
elements [1], and a special type of spatial coexistence of
coherent (synchronized) and incoherent (desynchronized)
patterns known as chimera states [2–6]. Examples of different
types of synchronization patterns may be found in a wide range
of systems, including optoelectronic networks [7], networks
of chemical oscillators [8,9], neural networks [10–13], and
ecological and climate systems [14]. Numerous theoretical
works have shown that the underlying connection topology of a
network has a crucial effect on the process of synchronization.
A diversity of synchronous patterns have been shown to
arise in systems with fixed complex topology, including
modular organization [15–17] and nonlocal and hierarchical
interaction [18,19]. In addition, the formation of clustered
states is an important collective effect emerging in adaptive
networks [20,21], in which the coupling strength and the
topology of connection evolve over time, depending on the
states of interacting oscillators.

Some previous works [22,23] have discussed hierarchical
organization of the synchronization behavior in complex
networks with static couplings. Such a scenario involves the
formation of local synchronization clusters in areas with a
high density of connections between elements and the gradual
evolution of the clusters due to the synchronization of elements
from their neighborhood.

In this paper, we present a scenario for the formation of
cluster and chimera states, which is realized in networks with
adaptive couplings. According to this scenario, in the course
of the temporal evolution, subnetworks (or layers [24,25])
emerge, which are ordered in a hierarchical way. Each sub-
network may exhibit different coexisting dynamics, including
two-cluster, periodic traveling wave, or incoherent states. The
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formation of these synchronous groups is accompanied by a
corresponding transformation of the properties of the network
connection structure.

II. THE MODEL

The most successful approach to study various aspects of
synchronization phenomena in complex networks of coupled
oscillators is given by the paradigmatic Kuramoto model [26].
Since its original formulation, this model has been extensively
studied in many different versions [27,28], taking into account
the influence of various factors on the collective behavior of
coupled oscillator networks for a wide range of applications.
We consider a network of N globally coupled identical
phase oscillators described by the following Kuramoto-type
equations:

dφi

dt
= ω + 1

N

N∑
j=1

κij�(φi − φj ), (1)

where φi represents the phase of the ith oscillator (i =
1, . . . ,N), and ω is the natural frequency, which we set ω =
1. The function �(φ) characterizes the interaction between
the oscillators and κij denotes the coupling strength of the
connection from the j th to the ith oscillator. We consider a
simple model �(φ) = − sin(φ + α), where parameter α can
be regarded as the phase lag in the coupling.

The evolution of the coupling strength κij from the j th to
the ith oscillator is controlled by the following equation:

dκij

dt
= ε[�(φi − φj ) − κij ], (2)

where �(φ) is the adaptation function, which determines the
dynamics of the coupling strength as a function of the relative
phase differences of interacting oscillators. We choose it in the
form �(φ) = − sin(φ + β), where the parameter β controls
the properties of the adaptation function. The dynamics of
the coupling is slower than the phase dynamics, and this is
reflected by a small parameter ε � 1.

Thus, the adaptive network considered here is described by

dφi

dt
= 1 − 1

N

N∑
j=1

κij sin(φi − φj + α),

dκij

dt
= −ε[sin(φi − φj + β) + κij ]. (3)
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The state of the network (3) is studied as a function of control
parameters α and β. Initial conditions are chosen randomly,
with uniform distributions of the phase φi in the interval [0,2π ]
and coupling strengths κij in [−1,1]. The choice of such a
range of initial conditions for the coupling strength is deter-
mined by the presence of the attracting region G in phase space,

G = {φi,κij : φi ∈ S1,|κij | � 1, i,j = 1, . . . ,N}.

III. EMERGENCE OF MULTILAYERED STRUCTURES
AND CHIMERA STATES

We have found several scenarios of self-organization of the
adaptive network, depending on the properties of the adapta-
tion function. Regardless of the specific characteristics of the
final states of the network, the mechanisms of their formation
have a common feature, namely, a sequential hierarchical
formation of new densely connected subnetworks, accompa-
nied by a corresponding emergence of either synchronized,
cluster, traveling wave, or incoherent dynamics within each
subnetwork. These subnetworks arise on different time scales,
and their size decreases at each subsequent stage of the network
evolution. Note that the existence of some of these cluster
states, but neither the hierarchical sequential mechanism nor
the emergence of chimeras, were reported in [29].

To illustrate such a hierarchical synchronization,
Fig. 1 displays a series of snapshots of the coupling
matrix κij calculated at different stages of the formation
of the synchronization pattern. In order to identify the
synchronization patterns and the coupling structure, the
following ordering procedure of the oscillator indices was
performed: After skipping a sufficiently long transient time,
the average frequencies of each oscillator were calculated,
and the oscillators were ordered according to increasing
frequencies. However, the oscillators belonging to the same
cluster possess also the same average frequency. Hence, in
this case, the indices within one cluster are ordered according
to increasing value of the oscillators’ instantaneous phase.

Starting from a random initial state [Fig. 1(a)], there appears
a group of elements which are quickly synchronized (here
two cluster). The initially emerging group is characterized
by strong interelement couplings within the group [Fig. 1(b)]
against the background of relatively weak interaction with
the rest of the network elements. Further, in the remaining
incoherent part of the network, a second synchronous group
[Fig. 1(c)] is formed, which is also characterized by a strong
interaction between the elements within the group. At the
same time, this process is accompanied by the suppression
of couplings between the elements of different groups formed
at different stages of the evolution of the network. Similar
processes continue in the incoherent part of the network until
the network reaches the final state [Figs. 1(e) and 1(f)], which
has a multilayered structure; see also the space-time plot
[Fig. 1(g)] and the average frequency profile [Fig. 1(h)].

According to a second scenario of the network evolution,
the formation of synchronous groups terminates at some
stage, and the remaining oscillators stay unsynchronized; see
Fig. 2. In particular, Fig. 2(e) indicates that the relative phase
differences between oscillators within the coherent groups
are unchanged with time, which indicates coherent traveling

FIG. 1. Hierarchical cluster formation in the evolution of the
network structure. (a)–(f) Coupling matrix κij at different stages of
emergence of synchronization patterns: (a) t = 0, (b) t = 200, (c)
t = 350, (d) t = 500, (e) and (f) t = 10 000; (g) dynamics of phases
φi(t) in the final state; (h) average frequencies of oscillators; (i) phase
snapshot of the oscillators at t = 10 010. Parameter values: ε = 0.01,
α = 0.3π , β = −0.53π , N = 500.

waves, while those in the incoherent part of the network change
irregularly. The formation of such chimera states [Figs. 2(f)
and 2(g)] is also accompanied by similar structural changes:
the coupling strength between the elements of the different
groups is decreased while the coupling within the group
remains strong.

It should be noted that in adaptive networks, unlike complex
networks with static connections, considered in [18], the
set of oscillators forming synchronous groups or a chimera
state essentially depends on the initial conditions. For fixed
parameter values, the network demonstrates a large number of
chimera states that have different sizes of the synchronous
part of the network, different numbers of synchronous
groups, and different sets of elements that form synchronous
groups.

The emerging groups may exhibit different properties of
synchronous behavior depending on the characteristics of the
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FIG. 2. Hierarchical formation of a chimera state. (a)–(d) Cou-
pling matrix κij at different stages of emergence of a chimera state:
(a) t = 0, (b) t = 350, (c) t = 1500, (d) t = 10 000; (e) dynamics of
phases φi(t) in the final state; (f) average frequencies of oscillators;
(g) phase snapshot of the oscillators at t = 10 050, indicating traveling
waves within the two coherent clusters. Parameter values: ε = 0.01,
α = 0.3π , β = 0.3π , N = 500.

adaptation function. Figure 3 shows a diagram illustrating the
properties of synchronous groups as a function of parameters
α and β. This diagram is obtained as a result of an ensemble
averaging of 20 different sets of initial conditions. For each
initial condition, we construct two-parameter diagrams of
a number of characteristics, such as time-averaged order

FIG. 3. Diagram of dynamical states in the (β,α) parameter
plane. Regions with different properties of synchronous behavior of
emerging groups are indicated by color. Dotted lines separate regions
with different numbers M of synchronous groups. Chimera states are
cross hatched. The ensemble average of 20 sets of initial conditions
is used.

parameters,

〈Rk〉 = 1

�t

∫ T +�t

T

1

N

∣∣∣∣
N∑

j=1

e−ikφj

∣∣∣∣dt, k = 1,2.

In addition, we analyzed the domains of synchronized oscil-
lators of the network using information about the degree of
synchrony between any two oscillators i and j defined as
follows:

Rij =
∣∣∣∣ 1

�t

∫ T +�t

T

ei[φi (t)−φj (t)]dt

∣∣∣∣.
The calculation of these characteristics was carried out over
a large time window �t skipping a transient time interval
T . Depending on the parameters, each synchronous group
can represent two antiphase clusters or demonstrate coherent
behavior, maintaining a fixed phase relationship between
oscillators within the group, i.e., �φij (t) ≡ φi(t) − φj (t) =
const. At the same time, complex network states consisting of
M synchronous groups (M > 1) can include groups with only
one type of synchronous behavior, as well as combinations of
these types. We also note that the properties of synchronous
part in chimera states are determined by the color of the
corresponding region in Fig. 3. The first type of the group
synchronous behavior is observed in the region β ∈ (−π,0),
where in-phase and antiphase synchronization modes exist
simultaneously for the model of two coupled oscillators
considered in [30]. This behavior is also realized at the
level of a large network. Depending on initial conditions,
the oscillators within the cluster are in-phase synchronized,
and the antiphase synchronization is established between the
oscillators of different clusters. Depending on the properties
of the adaptation function, the network states are characterized
by different number and size of the emerging phase clusters.
In particular, multicluster states (M > 1) are realized in the
vicinity of β = −π/2, when the adaptation function �(�φ) =
cos(�φ) can be considered as a Hebbian-like rule. In this case,
the interaction between the oscillators within such antiphase
clusters is characterized by the maximum values κij ≈ ±1.
Consequently, it becomes possible to form isolated groups of
oscillators with strong couplings against the background of a
relatively weak interaction of the rest of the network elements.

Figure 1 illustrates the formation of multicluster state,
when the network splits into four pairs of antiphase clusters
[Figs. 1(g) and 1(i)]. Oscillators belonging to different pairs of
synchronous clusters have distinct frequencies, whose magni-
tudes �i(t) = dφi/dt oscillate around some mean values 〈�i〉
[Fig. 1(h)]. The phase differences of oscillators belonging to
the same synchronized groups determine the corresponding
connectivity within the groups. The coupling between oscil-
lators within each group takes the values κij = − sin β for
in-phase synchronization and κij = sin β for oscillators in
antiphase. At the same time, the coupling strength between
oscillators of different synchronized groups oscillates in time
around the zero mean value, and the amplitude of these
modulations depends on the frequency difference of the
interacting oscillators. It should be noted that the formation
of multicluster states is accompanied by the emergence of
a modular structure of connections, when the network splits
into several weakly coupled groups (layers) of oscillators as
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shown in Figs. 1(e) and 1(f). The configuration of the layers
repeats the structure of the corresponding pairs of antiphase
clusters formed in the network. Moving the parameter β to
the boundaries of the interval (−π,0) results in a decrease of
interaction strength between oscillators of antiphase clusters.
As a result, either one pair of antiphase clusters (M = 1) or a
chimera state are formed, as shown in Fig. 3.

The second type of synchronous behavior within the group
is observed in the region around β = 0. In this case, oscillators
within each group demonstrate coherent behavior, maintaining
a fixed phase relationship between the oscillators. For β = 0
the adaptive function has the form �(�φ) = − sin(�φ),
which was referred to as spiking-time-dependent-plasticity
(STDP) or causal rule in a number of previous papers [31,32].
The sign of the adaptive function depends on the temporal
order of the oscillators. It means that the coupling strength
has opposite sign for the oscillators with phase differences
�φ = ±�φ0. The number of emerging coherent groups with
a fixed phase relationship also depends on the properties of
the adaptation function. Thus the number of such coherent
groups increases as the form of the adaptive function becomes
similar to a Hebbian-like (β = −π/2) or anti-Hebbian-like
(β = π/2) rule. Along with the increase of the number of
coherent groups, such a change of the adaptation function
can also lead to the formation of chimera states (Fig. 3). In
Fig. 2 we present an example of a chimera state, when two
coherent groups are organized in the synchronous part of the
network. Each group is characterized by its own frequency
[Fig. 2(f)], which takes some fixed value [�i(t) = const]
in the final state. At the same time, the frequencies of the
oscillators of the incoherent part of the network vary over
time, and their average values are distributed in some interval.
The emergence of such states is also accompanied by a
corresponding modification of the network connectivities. In
particular, the coupling coefficients between oscillators within
coherent groups take a fixed values [Fig. 2(d)] depending
on the phase difference between corresponding oscillators
κij = − sin(�φij + β), where �φij = φi(t) − φj (t) = const.
Assuming that the frequencies of the oscillators are fixed, the
evolution of the coupling coefficient between two oscillators i

and j belonging to different coherent groups follows from the
second equation of Eqs. (3):

κij (t) = ε√
ε2 + ��2

ij

sin(��ij t − χij + ξ ), (4)

where ��ij = �i − �j , cos χij = ε/
√

ε2 + ��2
ij , and ξ =

φi(0) − φj (0) + β. According to Eq. (4), the amplitude of the
oscillations of the coupling coefficients κij characterizing the
interaction between different groups decreases with increasing
frequency difference ��ij of the interacting oscillators. This
dependence explains the process of formation of the network
states characterized by the presence of several groups of
synchronized elements. The possibility of coexistence of these

groups is also determined by the weak interaction between
them due to a relatively large frequency difference between
the oscillators of the emerging groups. The frequency of group
M can be found using the ansatz φi(t) − φj (t) = const within
the group and assuming that the coupling between different
groups is negligible:

�i(t) = 1 + NM

2N
cos(α − β)

− 1

2N

∑
j∈NM

cos

(
4π

NM

(i − j ) + α + β

)
, (5)

where i ∈ NM , {NM} is a set of oscillators forming the
group M and NM is the number of oscillators in group M .
In particular, for the case shown in Fig. 2, this expression
gives the numbers �M1 ≈ 1.197 658, �M2 ≈ 1.126 705 in
good agreement with the numerical values. The emergence
of synchronous groups with sizes ordered in a hierarchical
way provides a significant difference in the frequencies of the
oscillators of different groups and, in accordance with Eq. (4)
leads to the decoupling of the groups.

IV. CONCLUSION

In conclusion, we have investigated the organization
of synchronous behavior in networks of phase oscillators
with adaptive coupling. We have found the emergence of
hierarchical synchronization patterns including multicluster
and chimera states. This process represents a sequential
formation of a few groups of synchronized oscillators, ordered
in a hierarchy. Depending on the properties of the adaptation
function the self-organized groups may exhibit different
local synchronous behavior. In the final state, the network
can consist of a finite number of groups of synchronized
oscillators (multicluster states), split into several coherent
groups with a fixed phase relationship within the groups, and
also demonstrate a variety of chimera states. The emergence
of these states is accompanied by a transformation of the
network connectivities, when the globally coupled network
splits into a number of weakly interacting subnetworks.
The subnetworks with fixed phase relation exhibit, in fact, a
generalized ring coupling structure, which is symmetric with
respect to index shift of the oscillators within the subnetwork.
Such a self-organized emergence of the symmetry is another
interesting phenomenon, which should be studied in the future.
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