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We revisit the numerical calculation of generalized Lyapunov exponents, L(q), in deterministic dynamical
systems. The standard method consists of adding noise to the dynamics in order to use importance sampling
algorithms. Then L(q) is obtained by taking the limit noise-amplitude → 0 after the calculation. We focus
on a particular method that involves periodic cloning and pruning of a set of trajectories. However, instead of
considering a noisy dynamics, we implement an imperfect (noisy) cloning. This alternative method is compared
with the standard one and, when possible, with analytical results. As a workbench we use the asymmetric tent
map, the standard map, and a system of coupled symplectic maps. The general conclusion of this study is that the
imperfect-cloning method performs as well as the standard one, with the advantage of preserving the deterministic
dynamics.
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I. INTRODUCTION

The (maximal) Lyapunov exponent λ measures the sensi-
tivity to infinitesimal perturbations in dynamical systems. Its
definition involves the infinite-time limit [1,2]

λ = lim
t→∞

1

t
ln

|δx(t)|
|δx0| . (1)

Here δx represents the distance vector between two infinites-
imally close orbits (tangent vector). If λ > 0 the perturbation
grows exponentially fast and the system is chaotic and
unpredictable. The Lyapunov exponent does not depend on
the initial condition x0, provided x0 lies within a connected
region of phase space.

However, if propagation over finite times is considered,
e.g., for the sake of numerical calculations, then the finite-time
Lyapunov exponent λ(t) fluctuates with initial conditions. In
this case a thorough assessment of predictability requires the
consideration of the full distribution of λ(t), i.e., P (λ(t)).
In order to characterize finite-time fluctuations, one can
compute different moments |δx(t)|q and introduce the so-
called (maximal) generalized Lyapunov exponents of order
q [3–6]:

L(q) = lim
t→∞

1

qt
ln

〈 |δx(t)|q
|δx0|q

〉
, (2)

where brackets indicate average over initial conditions (ac-
cording to the invariant measure). The usual Lyapunov
exponent can be obtained as [1,7]

λ = lim
q→0

L(q). (3)
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The connection between L(q) and P (λ(t)) can be easily seen.
In fact, we have

〈 |δx(t)|q
|δx0|q

〉
=

∫
dλ(t) P (λ(t)) eqtλ(t) (4)

[see Eq. (2)].
Generalized Lyapunov exponents appear in many prob-

lems, e.g., characterization of intermittency [3,4,8], Ander-
son localization [9–12], transport, mixing, and reaction of
constituents in complex fluid flows [13–15], etc. We can
think of intermittency as a nonuniform distribution in time of
“chaotic behavior” [4], which can be described by P (λ(t)), or,
equivalently, by L(q). The transfer-matrix method establishes
a link between temporal intermittency and the properties
of spatial decay of the wave function in one-dimensional
disordered systems (Anderson localization). The family of
localization lengths ξq , introduced in [9], and related to the
decay of correlation functions of different order, correspond
to generalized Lyapunov exponents in the transfer matrix lan-
guage. Concerning complex fluids, the generalized Lyapunov
exponents associated with the stretching have been found
to control the decay rate of purely advected passive scalars
[16,17].

When q is large enough, the average in (2) is dominated
by rare events, i.e., trajectories having finite-time Lyapunov
exponents far away from the average value. So, in general,
standard sampling methods produce wrong results. These
numerical difficulties involved in the calculation of L(q) are
well known [1,6,13,18,19]. The way out is using Monte Carlo
importance sampling methods [20].

Recently Vanneste proposed and tested one such method
for random maps. This is a Monte Carlo algorithm involving
periodic cloning and pruning steps that select those trajectories
which most contribute to L(q) [13]. This algorithm is a
variant of that developed by Tailleur and Kurchan for selecting
trajectories with unusual λ [19] (see also [21,22]). These
algorithms can be traced back to the go-with-the-winners
methods discussed by Grassberger [23].
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In the case of weak intermittency and/or small q, one can
use the expansion in the cumulants of the distribution of λ(t)
[6,18]:

L(q) ∼
∑
n�1

(qt)n−1

n!
κn(t), (5)

where κn are the nth-order cumulants of P (λ(t)). In numerical
calculations one usually considers the first few cumulants.
Both propagation time and number of trajectories must be
large enough for the required cumulants set to a well-defined
value [18].

The importance sampling methods mentioned above either
consider a noisy system [13] or add noise to an otherwise
deterministic dynamics [19]. In the present paper we focus on
the numerical calculation of L(q) for deterministic dynamical
systems. However, instead of considering a noisy dynamics,
we implement an imperfect (noisy) cloning [1,21]. This
alternative method is compared with the standard one and,
when possible, with analytical results. As a workbench we
used the asymmetric tent map [6], the standard map [2], and
a system of coupled symplectic maps [24–27]. The general
conclusion of this study is that the imperfect-cloning method
performs as well as the standard one, with the advantage of
preserving the dynamics.

The rest of the paper is organized as follows. In Sec. II we
describe the numerical methods. Then we proceed with the
applications to our three model systems (Secs. III–V). Finally,
in Sec. VI we discuss our results.

II. NUMERICAL METHODS

The Benettin method for calculating the usual Lyapunov
exponent λ [Eq. (1)] relies on the propagation of K pairs
of trajectories, and approximating tangent vectors by finite
distance vectors between trajectories. Let us call the total
propagation time N (we are dealing with maps, then time
is discrete). As these vectors must remain small for the linear
approximation to be valid, they are periodically renormalized
[28]. Thus, after a time N , one has K finite-time Lyapunov
exponents, i.e., a distribution P (λ(N )). By averaging over this
distribution, one obtains the estimate for λ.

As suggested by Eq. (2), Bennetin’s method can also be used
for computing |δx(N )|q , and, after averaging, etc., one would
have an estimate for L(q). However, this simple averaging
can lead to wrong results, especially in the case of large q

and/or strong intermittency. This method will be referred to
as brute-force Monte Carlo sampling [13] and its result as
LBF(q).

One possible way of improving brute-force sampling is
to use the cumulant expansion (5) [18,29]. For instance,
truncation at second order (Gaussian approximation) gives

LG(q) ≡ κ1 + qN

2
κ2, (6)

where κ1 ≡ λ and κ2 are, respectively, the average and the
variance of P (λ(N )) [1,7,27,30]. In chaotic systems, the
calculation of the second cumulant κ2 offers no problem:
it stabilizes relatively fast at a definite value (plus small
fluctuations). On the contrary, higher cumulants, e.g., κ3 and
κ4, being very sensitive to the tails of P (λ(N )), are much

trickier [18,29]. However, if phase space is mixed, even the
calculation of the variance κ2 may be problematic (see Secs. IV
and V).

A. Importance sampling

We begin by describing succinctly Vanneste’s importance
sampling algorithm to calculate L(q) [13], focusing only on
those aspects that are relevant for the present paper.

The algorithm starts using the Bennetin method, i.e., we
launch K pairs of close trajectories, initial conditions chosen
at random, and distances fixed to a common value, i.e.,
|δxk(0)| = d0 � 1, for 1 � k � K . We let the trajectories
evolve according to the map dynamics, and follow in time
the distances δxk(n) up to a given time �res. Assume that
each pair of trajectories is labeled by their distance δxk . Now
resample according to

δxk = δxJ , (7)

where J is a random variable taking values in {1, . . . ,K} with
probability

P (J = j ) = αj

β
. (8)

Here we have defined
αk = |δxk|q (9)

and

β =
K∑

k=1

|δxk|q . (10)

It is possible to use other resampling schemes [1,19,21,23].
Whether these alternatives are helpful will depend on the
problem at hand [23]. Thus, in addition to Vanneste’s scheme,
we chose to also try the cloning and pruning strategy used by
Tailleur in [21]. According to this strategy at each resampling
step, each δxk is replaced by τ clones, where τ is a random
integer defined by

τ =
⌊
K

αj

β
+ ε

⌋
, (11)

ε being a random number uniformly distributed in [0,1]. If
τ = 0, then the pair of trajectories characterized by δxk is
killed. If τ > 1, then τ − 1 clones are created. After this
replication phase the number of trajectories may have changed.
Let us call the difference �K . If �K > 0 or �K < 0, then
�K trajectories are, respectively, killed or cloned randomly.
Thus, we keep the number of trajectories fixed (=K) [21].

So, pairs of trajectories are cloned or pruned according
to the schemes described above. After this resampling step,
distance vectors are normalized to equal moduli, and evolution
resumes. In a noisy dynamics, the clones do spread, and
after each time interval �res a new resampling is made. The
algorithm continues alternating between free propagation and
resampling until time N . Each resampling step produces a sum
β (10). Finally, the generalized exponent L(q) is calculated
from all the β’s [13]:

L(q) = 1

qM
log

1

KM
β1β2 · · · βM, (12)

where M is the number of resampling steps.
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FIG. 1. Tent map: generalized exponents L(q) (q = 4,6,8) versus
propagation time n. Dashed lines correspond to theoretical values. We
show the results of both importance sampling algorithms described
in Sec. II A: Tailleur’s (hollow symbols) and Vanneste’s (full, smaller
symbols). Cloning noise was set to η = 10−5. The number of samples
is K = 1000.

When the dynamics is deterministic, the natural trick is
to add some noise to the equations of motion (say, of ampli-
tude η), use the algorithm described above to calculate L(q,η),
and then make η → 0 [19]. There is, however, the simpler
alternative of preserving the determinism of the dynamics but
introducing noise immediately after the resampling step. The
result of this process is that clones are no more identical. We
will call this modification of the algorithm imperfect cloning.
We implement imperfect cloning by just adding some noise to
all the trajectories, i.e.,

xk = xk + ξk, (13)

where ξk are independent random variables uniformly dis-
tributed in [−η,η] (we are considering a one-dimensional
map; for other maps, see below). Both trajectories in a
Benettin pair {xk,xk + δxk} suffer the same noise, so, the
distance vectors δxk are not affected by the imperfect
cloning.

In the forthcoming sections we test the method in several
model systems, trying to determine the best ranges for the
parameters: K (number of samples), N (propagation time), η

(noise amplitude, either dynamical or for imperfect cloning),
�res (period of resampling).

A few general criteria for choosing parameter values can
be given a priori. The renormalization period for the Benettin
method [28], �ren, should be of the order of the Lyapunov
time ≡ 1/λ. The resampling time, �res, must be large enough
in order to allow spreading of clones. Vanneste has argued
that the condition for the validity of the importance sampling
method is K � N [13].

For the tent map and the standard map we chose q

large enough (q = 8), so that importance sampling would
be essential to obtain correct results. Brute force sampling
and the Gaussian approximation are bound to fail in this
case. So, q = 8 constitutes a very stringent test for our
method.
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FIG. 2. Tent map: generalized exponent L(8) versus noise am-
plitude η of the imperfect cloning process (circles). Also shown
are the Gaussian approximation LG(8) (triangles), the results of the
brute-force method LBF (stars), and the maximal Lyapunov exponent
λ (squares). Lines correspond to theoretical values. Three different
sample sizes were used: K = 102 (a), 103 (b), and 104 (c). The
propagation time for all the calculations is N = 103.

III. TENT MAP

The asymmetric tent map is defined by

xn+1 =

⎧⎪⎨
⎪⎩

xn

a
for 0 � x � a,

1 − xn

1 − a
for a < x � 1.

(14)

The asymmetry parameter will be set to a = 0.3. The sim-
plicity of this map permits the analytical calculation of the
generalized Lyapunov exponents [6]:

L(q) = log[a1−q + (1 − a)1−q]/q. (15)

The Gaussian approximation is just the linear expansion of
L(q) about q = 0.

In Fig. 1 we show a comparison of both resampling schemes
described in Sec. II A combined with imperfect cloning. The
first observation is that both numerical methods coincide with
the theoretical predictions for large times, i.e., both methods
are equally accurate. However, Tailleur’s resampling is faster,
at least for q = 6,8. We checked that this behavior persists
for all the systems we tested, i.e., both methods are equally
accurate, but Tailleur’s is equally fast or faster. So, we decided
to use Tailleur’s cloning and pruning scheme in the rest of the
paper. We remark, it is a question of speed, not accuracy.

In Fig. 2 we show the results for L(q = 8) using our
algorithm of imperfect cloning. This is a case of large intermit-
tency, suitable to test our method. The method performs very
well, except for smallest sample size, i.e., K = 100. This is
consistent with the validity criterion K � N . The calculation
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FIG. 3. Tent map: generalized exponent L(8) versus the ampli-
tude η of the dynamical noise (circles). We also show the Gaussian
approximation (triangles), brute-force sampling LBF (stars) and the
maximal Lyapunov exponent (squares). In all cases K = 103 and
N = 103. The dynamical noise is (a) additive, that is, added to the
variable of state x, or (b) multiplicative, that is, to the map control
parameter a. Lines correspond to theoretical values.

is insensitive to the noise amplitude provided it is not too small,
i.e., η � 10−10. It is clear that both the Gaussian approximation
and brute-force sampling give wrong results.

The values of L(q) obtained through the Gaussian approx-
imation and brute-force sampling do not depend on the noise
amplitude η, given that the noise only acts on the cloning
procedure (the same is true for λ). The fluctuations observed
in LG, LBF, and λ are due to the use of a different set of initial
conditions for each value of η (Fig. 2).

Figure 3 exhibits also L(q = 8) but calculated according to
the standard method, i.e., by adding noise to the mapping and
using perfect cloning. Two cases were considered: (i) noise
is added to the state variable x and (ii) noise is added to the
map parameter a (which amounts to multiplicative noise in
x). This figure presents an analogous behavior to Fig. 2. The
noisy-dynamics calculation reproduces the analytical value of
L(8) and is also independent of the noise amplitude (within
certain bounds).

We used the following parameter values: d0 = 10−12,
�ren = 4, and �res = 40.

IV. CHIRIKOV STANDARD MAP

The standard map is a two-dimensional symplectic system
defined by the equations

pn+1 = pn − K sin qn, (16)

qn+1 = qn + pn+1, (17)

where both variables, q and p, are taken modulo 2π . The
parameter K controls the map’s chaoticity. For K � 7 the phase
space appears to be covered by a single chaotic sea; however,
islets of regularity do exist for arbitrarily large values of K
[31,32]. As K decreases the area filled with islands increases.
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FIG. 4. Standard map: generalized exponent L(8) versus map
parameter K. Shown are the results of imperfect cloning (circles),
noisy dynamics plus perfect cloning (crosses), brute-force method
(stars), and Gaussian approximation (triangles). Numerical results for
the Lyapunov exponent λ are represented by squares (numerical) and
compared to Chirikov’s analytical approximation [Eq. (18), full line].
All values were obtained for time N = 320, sample size K = 103,
and noise amplitude η = 10−5.

For small K, e.g., K ≈ 2, the phase portrait has a very rich
structure [2,32].

For the standard map there are neither analytical nor
numerical results for L(q) (to the best of our knowledge),
except an approximate formula for λ, valid for K � 6 [31]:

λ ≈ log
K
2

. (18)

Tomsovic and Lakshmirayan have improved the formula above
and provided approximate expressions for higher cumulants of
P (λ) [33].

Thus, we will compare the method that uses imperfect
cloning with the standard method (noisy dynamics plus perfect
cloning), taking as reference the results of the Gaussian
approximation and brute-force sampling. Figure 4 shows such
a comparison as a function of the map parameter K. Figure 5
shows results versus noise amplitude η. In both cases, the noisy
dynamics was obtained by adding noise only to p.

The results for the standard are very similar to those for the
tent map. Both importance sampling methods are insensitive
to noise amplitude and produce almost identical results for
L(8), while brute-force sampling yields too low values.
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FIG. 5. Standard map: generalized exponent L(8) versus noise
amplitude η. Shown are the results of imperfect cloning (circles),
noisy dynamics plus perfect cloning (crosses), brute-force method
(stars), and Lyapunov exponent λ (squares). Sample size is K =
103, time N = 320, noise amplitude η = 10−5, and map parameter
K = 10.
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The Gaussian approximation deserves a separate comment.
This approximation relies on the cumulants κ1 and κ2 of
P (λ), i.e., mean and variance (6). Let us describe how P (λ)
evolves as the chaoticity parameter K increases. Consider, for
instance, K ≈ 2, when phase space is covered almost equally
by regular islands and a chaotic sea [26]. If we choose initial
conditions uniformly distributed over phase space, then we
obtain a bimodal P (λ), showing one peak near the value of 〈λ〉
corresponding to the chaotic sea, and another one at λ = 0
(associated to regular regions). As time grows both peaks
become thinner, but their positions do not change significantly.
Because of this, the variance remains finite, and the Gaussian
approximation to L(q) diverges linearly with time.

However, even if we launch the trajectories from the
chaotic sea, a bimodal P (λ) results [34,35]. In this case,
the secondary peak at λ = 0 is due to long-time trapping at
structures surrounding the islands [33]. As the map becomes
more chaotic, i.e., for larger K, the peak at λ = 0 vanishes
and P (λ) tends to a unimodal distribution (see, e.g., the
figure for K = 6 in [35]). For K � 5 the variance decays
like 1/t :

κ2 t = C(K), (19)

with C(K) a highly oscillating function [33]. This explains
the fluctuations of LG(8) seen in Fig. 4. For each (integer)
value of K we considered only one very long (N = 106)
trajectory in the chaotic sea divided into 1000 segments of
length 1000. For K � 5 we did not observe convergence
of the Gaussian approximation up to the considered times.
Even when LG converges it does to values higher than those
calculated with the importance sampling algorithms. This is a
clear manifestation of intermittent motion, in the present case,
caused by a mixture of chaos and regularity.

Incidentally, the importance sampling algorithms are in-
sensitive to trapping by regular structures because they
clone those trajectories having Lyapunov exponents larger
than the average (for q > 0) and prune those having
λ ≈ 0 [6].

V. COUPLED MAPS

Crisanti, Paladin, and Vulpiani (CPV) studied a ring of
coupled symplectic maps defined as follows [24]:

q
(i)
n+1 = q(i)

n + p(i)
n , (20)

p
(i)
n+1 = p(i)

n + ε
{
g
[
q

(i+1)
n+1 − q

(i)
n+1

] − g
[
q

(i)
n+1 − q

(i−1)
n+1

]}
with 1 � i � D and coupling function g(x) = ε sinβ(x),
where β is an odd integer. All variables are taken mod 2π

(see also [25,27]). They were interested in the question: does
intermittency disappear in the thermodynamic limit, i.e., as
D → ∞? They used L(q) as the quantifier of intermittency,
and calculated numerically L(0) = λ, L(1), and L(2) for D up
to 80, and several values of β and ε.

We will compare (some of) their results with ours, obtained
using importance sampling, either with dynamic noise or
imperfect cloning. (They do not describe their numerical
method [24].) We used additive noise in each p(i) for
both importance sampling schemes. Table I displays the
results. First of all we must highlight the coincidence of both

importance-sampling results for all cases, i.e.,“IC = DN.”
Second, these results are consistent with CPV for the strong-
coupling cases ε = 1.0 and ε = 0.4.

The cases having ε = 0.02 correspond to weakly coupled
maps and exhibit several anomalies. To start with, the
CPV Lyapunov exponents are very different from ours (we
conjecture that this may be associated to different sampling
schemes). Also their generalized exponents L(1) and L(2) do
not coincide with ours, although in this case the difference is
only 10/20%. Finally, the Gaussian approximation diverges
with time.

Falcioni et al. [25] also studied the present system (21)
for β = 1. They observed that the numerical P (λ), obtained
following many trajectories starting from different initial
conditions, has a finite variance κ2. They stress that even
when the chaotic regions have very small probability most
trajectories have a positive λ, even if the values of the λ

depend on the initial conditions. However, for small values
of the coupling constant the tendency to a unique chaotic
phase is very slow. This explains the finiteness of κ2 and,
consequently, the failure of the Gaussian approximation for
the case (β = 5,ε = 0.02).

In order to verify that this anomalous behavior is due to
weak coupling, we analyzed the case (β = 5,ε = 1.0). Here
we verified that κ2 t tends to a definite value, like in the
other cases of strong coupling depicted in Table I. Indeed, for
D = 10 the Gaussian approximation works very well. This is
consistent with the approximate linearity of L(q) as inferred
from the numerical data from columns “B” and “IC,” that
is, [L(2) − L(1)]/[L(1) − L(0)] ≈ 1 (=1.05). For the sake
of completeness we list all the eight “linearity quotients,”
corresponding to eight cases appearing in Table I (from top to
bottom): {0.97,1.05,1.07,1.04,0.46,0.58,0.86,1.07}. Not sur-
prisingly, the lowest quotients—fifth and sixth—correspond
to smallest coupling, ε = 0.02, where LG is not even
defined.

VI. CONCLUSIONS

We put forward and tested an importance-sampling algo-
rithm for calculating Lyapunov generalized exponents of deter-
ministic systems. The algorithm modifies Tailleur-Kurchan’s
and Vanneste’s cloning and pruning methods by introducing
imperfect cloning. This avoids the standard procedure of
adding noise to dynamics, thus preserving the simplicity of
the equations of motion. Moreover, in Hamiltonian systems,
energy conservation is easily imposed in our algorithm: we
just renormalize momenta after cloning. This contrasts with
the use of relatively sophisticated algorithms for implementing
energy-conserving noisy dynamics [19].

We showed that our algorithm performs as well as the
standard method [13,19], provided that the parameters (num-
ber of trajectories, propagation time, resampling frequency,
noise amplitude) are properly chosen. Curiously enough,
both importance-sampling methods are insensitive to noise
amplitude (at least for the considered systems, and noise level
within certain bounds), thus the limit η → 0 is unnecessary—it
suffices to fix η to a convenient value.

We believe that this method is an important contribution to
the suite of tools for computing L(q) [1,5,13,19], especially
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TABLE I. CPV are numerical results by Crisanti, Paladin, and Vulpiani [24]. B, Benettin’s method; IC, imperfect cloning; DN, dynamical
noise + perfect cloning; GA, Gaussian approximation. In all cases η = 10−5 (noise amplitude), N = K = 103; except in (*): N = K = 104.
The square brackets contain the estimated error in the least significant figure (e.g., the notation 0.82[2] stands for 0.82 ± 0.02). Crosses indicate
that the Gaussian approximation failed to converge.

β ε D q CPV B IC DN GA

0 0.676[5] 0.674[1]
1 1.0 5 1 0.766[5] 0.772[1] 0.774[1] 0.86[2]

2 0.856[5] 0.867[1] 0.863[1] 1.020[3]

0 0.723[5] 0.720[1]
1 1.0 10 1 0.793[5] 0.795[1] 0.795[1] 0.810[2]

2 0.856[5] 0.874[1] 0.872[1] 0.883[3]

0 0.397[2] 0.362[1]
3 0.4 5 1 0.437[5] 0.417[1] 0.420[1] 0.496[4]

2 0.473[5] 0.476[1] 0.476[1] 0.652[3]

0 0.372[2] 0.392[1]
3 0.4 10 1 0.434[5] 0.438[1] 0.436[1] 0.453[4]

2 0.478[7] 0.486[1] 0.484[1] 0.526[3]

0 0.027[1] 0.0169[1]
5* 0.02 5 1 0.051[1] 0.069[2] 0.068[1] ×

2 0.080[1] 0.093[1] 0.096[2] ×
0 0.032[1] 0.0250[1]

5* 0.02 10 1 0.061[1] 0.068[1] 0.068[1] ×
2 0.091[1] 0.093[1] 0.096[1] ×
0 0.777[1]

5 1.0 5 1 0.876[1] 0.873[2] 0.899[5]
2 0.961[2] 0.965[2] 1.012[5]

0 0.820[1]
5 1.0 10 1 0.894[1] 0.892[1] 0.890[2]

2 0.973[1] 0.969[1] 0.956[4]

for high-dimensional Hamiltonian systems. Imperfect cloning
could also be used in Lyapunov weighted dynamics, designed
to locate special structures in Hamiltonian systems, e.g., small
islands of regularity, Arnold webs, separatrices, etc., which
are characterized by a Lyapunov exponent off the average
value [19]. In this way, these importance-sampling methods
are complementary to those developed by Manchein et al.

[26,36] and da Silva et al. [37] for the characterization of
weak chaos in high-dimensional Hamiltonian systems.
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