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Here we study how coherence appears in a system driven by noise at small scales. In the wave turbulence
modeled by the Gross-Pitaevskii or the nonlinear Schrödinger equation, we observe states with correlation scales
smaller than the system size but much larger than the excitation scale. We call a such state precondensate to
distinguish it from condensate defined as a systemwide coherent state. Both condensate and precondensate are
characterized by large-scale phase coherence and a narrow distribution of amplitudes. When one excites small
scales, precondensate is achieved relatively quickly by an inverse cascade heating quasiequilibrium distribution
of large-scale modes. The transition from the precondensate to the systemwide condensate requires a much longer
time. The spectra of precondensate differ from quasiequilibrium and are characterized by two bending points,
one on the scale of the average distance between vortex pairs and the other on the scale of the distance between
vortices in a pair. We suggest temporal evolution laws for both lengths and use them to predict the probability of
the transition to condensate.
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In nonlinear systems, a conserved quantity can be dis-
tributed among a large number of degrees of freedom. Such
systems are commonly studied in spectral space where the
nonlinear interaction of modes becomes more apparent. If the
conserved quantity is deposited in a narrow range of modes,
or on a particulate length scale, larger and smaller scales
eventually become excited. The most notable examples are
the redistribution of energy between scales of fluid turbulence
and the redistribution of wave action in wave turbulence. The
presence of a second conserved quantity (enstrophy in two-
dimensional fluid turbulence or energy in wave turbulence)
additionally requires transfer to large scales in the so-called
inverse cascade. Unless infinite space is considered, the
inverse cascade is restricted by the size of the system. The
persistent excitation of small scales can lead to accumulation
of the conserved quantity on the scale of the system, the
turbulent formation of condensate. In two-dimensional fluid
turbulence the condensate appears as a systemwide vortex; in
wave turbulence the condensate is a background state with a
fast-rotating phase and uniform intensity.

When the separation of scales is large, the condensate can
be difficult to build up. There is no general recipe on how long
and how strongly one needs to pump the system to observe
the condensate. The shape of the evolving spectrum is also not
known. In the weak wave turbulence theory [1], which assumes
an interaction local in k space and reduces the description to
a kinetic wave equation, frontlike spectra were observed for
inverse and direct cascades in hydrodynamic turbulence [2]
and for direct cascades in more general settings [3]. In the
models that account for phase interactions of modes, such as
the Gross-Pitaevskii (GP) model [4], the spectra can spread out
rapidly with nontrivial shapes, as was shown in [5,6]. This sug-
gests the importance of nonlocal interactions in the GP system.

The Gross-Pitaevskii equation, also known as the nonlinear
Schrödinger equation, is one of the most studied in modern
physics because of its universality. The equation is applicable
to a wide range of phenomena in fluids, solids, and plasma,
including nonequilibrium states of cold atoms in Bose-Einstein

condensates [4] and propagation of light in media with the Kerr
nonlinearity [7]. In two dimensions, the equation describes the
evolution of a complex wave envelope ψ ,

ψt = i∇2ψ + is|ψ |2ψ, (1)

with wave action N = 〈|ψ |2〉 being the conserved quantity
in question. Here s distinguishes focusing (attractive) (s =
+1) and defocusing (repulsive) (s = −1) nonlinearity and the
angular brackets denote averaging in space.

When applied to the GP equation, weakly nonlinear
theory predicts the formation of large structures for both
focusing and defocusing nonlinearities [1]. However, with
an increase of nonlinearity, these large structures become
unstable if nonlinearity is focusing [8]. This suggests that the
condensate can be observed only in the defocusing case [5,9].
Accumulation of wave action in defocusing systems leads to
a different kind of coherent structure, vortices, i.e., locations
with zero amplitude, around which the phase makes a 2π turn.
As shown in Refs. [6,10,11], a decrease in number of vortices
leads to the formation of condensate.

In this paper we study the evolution of turbulence in the GP
model during persistent excitation of small scales. Our goals
are to (i) explore the possibility of the appearance of local
order on scales smaller than the domain size, (ii) establish
a connection between time-dependent spectra and the phase
coherence of the system, in particular the evolution of vortices,
and (iii) study the effect of system size on its evolution and
make a qualitative prediction of the probability of formation
of systemwide condensate in domains of finite size.

We stress that the key focus of this study is turbulence
evolution. Our earlier work [12] was devoted to the fluxes
of direct and inverse cascades in a steady state of the GP
system stabilized by large-scale friction. While we have
observed some midrange distortion of the spectra, which
was independent of the domain size and similar to the that
described below, the large-scale modes were suppressed by
friction. It is those modes that influence the midrange modes
via nonlocal interactions, making the distortion the feature
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FIG. 1. (a) Typical spectra of wave action at very early, early, and
late stages of evolution. (b) Spectra at late times fitted by Eq. (4).
Here kμ marks the bending point in early spectra, while k1 and k2 are
bending points in late spectra; kmin = 2π/L, where L is the size of
the system.

of steady spectra, in the way that the obtained flux law was
specific to the steady system. Naturally, a steady setup cannot
inform one on the time scale of the establishment of the
condensate, while here we propose a quantitative estimate
of the time of formation of the condensate under a constant
pumping rate.

Similarly to [12], we numerically solve Eq. (1) with
focusing nonlinearity as described in Appendix A. The wave
action is deposited at the rate α in a ring of wave numbers
at k ≈ kp and accumulates in the system at the rate α̃ ≈
0.92α. Initially, the spectrum of the wave action is empty,
nk ≡ |ψk|2 = 0. The first excited modes appear in the pumping
ring. Our intuition might tell us that modes with close k
interact more effectively, resulting in a gradual widening of
the spectrum beyond the pumping ring. Apparently this is
not the case. Already after the time period comparable to the
nonlinear interaction time, we observe a uniform distribution
of nk for k < kp, as well as for k > kp. The spectrum at k < kp

remains flat, with nk growing in time; the spectrum at k > kp

is more complex as it is affected by damping. We observe
the scaling nk ∝ α for the forced modes and scaling nk ∝ α3

for the nonforced modes. The second scaling follows from the
first one and from cubic nonlinearity. The flat shape of nk most
likely is the consequence of a circular arrangement of forced
modes. The simultaneous growth of all modes illustrates the
importance of nonlocal interactions already at the beginning
of evolution. Indeed, the plateau that extends from k = 0 to
the forcing ring is a characteristic of very early spectra, as can
be seen in Fig. 1.

With time, the peak at the forcing becomes smaller, the
height of plateau rises, and a section of sloped spectrum
develops between the plateau and the forced modes. This
shape of the spectrum can be described by the time-dependent
energy-action equipartition

nk = T (t)

k2
μ(t) + k2

, (2)

where T and μ ≡ k2
μ can be interpreted as the temperature and

chemical potential, respectively. The temperature controls the
height of the sloped part of the spectra, nk ≈ T/k2, while kμ

corresponds to the bending point at the end of the plateau.
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FIG. 2. Chemical potential and temperature at early times for
different α. All points, except crosses, are data from simulations with
L = 8π ; crosses are data from simulations with L = 32π . The lines
show the dependence kμ = C exp(−cα2/3t) and T given by Eq. (3)
with C = 640 and c = 0.062.

Both T and kμ decrease with time, as shown in Fig. 2. The
fit by Eq. (2) can be applied to the data only when kμ < kp,
yet the very early rise of the flat spectrum can be seen as
the same process. Initially, the chemical potential is so large
that kμ(t) > kp and most of the waves at k < kp appear in the
state of action equipartition. Filling the system with waves,
we decrease the chemical potential; after kμ decreases below
kp we start seeing the part of energy equipartition nk ∝ k−2

simultaneously with the rise of the plateau.
As shown in Fig. 2, the data from simulations at different

pumping rates α and in domains of different sizes collapse
onto a single curve when rescaled with α. The decay of kμ is
exponential, while T approaches an asymptote. The exponen-
tial decay of kμ follows from the linear growth of the wave
action

∫
nkdk ≈ T ln(kp/kμ) � α̃t , under the assumption that

the temperature must eventually saturate. Then, assuming the
dependence kμ = C exp(−cα2/3t), suggested by data, one can
find the temperature in the limit of kμ 	 kp,

T

k2
min

= (2π )−1 α̃t − Np

cα2/3t − ln(A/kp)
, (3)

where kmin = 2π/L in a system of size L and Np is the
number of waves at k > kp; in our simulations Np ≈ c−1α1/3.
The dependence explains the collapse of data in coordinates
(α2/3t,T α−1/3) observed in Fig. 2.

The scaling of temperature with α is consistent with weakly
nonlinear theory. We expect that, if the nonlinearity is weak,
the flux is cubic in wave numbers nk [1] so that T ∝ α1/3 and
ln kμ ∝ α2/3t , which is indeed seen in Fig. 2. In general, the
scaling for temperature and conservation of wave action lead
to the scaling of time with α,

Ṅ ∼ Ṫ ∼ α ⇒ T/t ∼ α ⇒ t ∼ α1/3α−1 ∼ α−2/3.

One might find the decrease of the temperature with time
counterintuitive. We think it can be interpreted again in terms
of a nonlocal interaction: To carry the same flux through a
longer spectrum one needs smaller amplitude. In other words,
the nonlocal transfer of wave action through a given k is
determined by both the amplitude and the extent of the interval.
When the interval expands towards lower k and acquires higher
nk at low k, the transfer becomes more effective and the
magnitude decreases.
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FIG. 3. The PDF of |ψ | in (a) simulation units and (b) units
rescaled with N = α̃t = 0.92αt .

As time passes and wave action accumulates, the system
transitions to a different regime where the spectra have two
bending points and the fit by Eq. (2) no longer applies (see
Fig. 1). A similar transition occurs in systems with focusing
nonlinearity, as shown in Appendix B. The transition time t∗ ≈
90α−2/3 and corresponding kμ ≈ 2 are surprisingly universal.
Moreover, as we show below, the scaling α2/3t well describes
evolution in the new nonlinear regime, even though this scaling
was obtained under the assumption of weak nonlinearity. This
is somewhat surprising.

Even more dramatically than in spectra, the transition to
the new regime is seen in the probability density function for
|ψ |, shown in Fig. 3. Here we follow the evolution of the
distribution of amplitudes with respect to the time-dependent
average χ = |ψ |/|ψ |rms = N−1/2|ψ |. At the early stage, the
distributions of real and imaginary parts of ψ are Gaussian
with zero average, so the distribution of the magnitude has the
form P(χ ) = 2χe−χ2

; at this stage the standard deviation for
|ψ | widens with time, σ = 1

2N1/2.
In contrast, in the new regime the distribution narrows and

shifts toward higher amplitudes. The maximum is located
at |ψ | = N1/2, while the overall shape closely resembles
a Gaussian distribution, lnP(|ψ |) ∝ −(|ψ | − N1/2)2/σ 2(t).
The probability of small fluctuations |ψ | 	 N1/2 is deter-
mined by vortices (see Appendix C for more details). Figure 4
shows the growth of 〈|ψ |〉, which scales as t1/2 during both
early and later stages; it also shows a nonmonotonic time
dependence for σ . The time when the distribution is the
widest is easily detectable, t∗ ≈ 90α−2/3. We use this time
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FIG. 4. (a) Average and (b) standard deviation for distribution of
|ψ | as a function of time, in units scaled with α.

as the definition for the transition between the earlier and later
regimes.

The narrow distribution of |ψ | is a prominent feature
of systemwide condensates, where most of the wave action
resides in the single mode, k = 0, while other waves add a
small distortion to the condensate’s background. In the case
considered here, the background is formed by multiple modes,
so we refer to the state at t > t∗ as precondensate, as opposed
to systemwide condensate.

Another feature of condensates is the phase coherence. In
a system with a systemwide condensate there are no vortices
and the phase across the domain only slightly deviates from
the phase of the zeroth mode. Precondensate at its later stages
can have most of the wave action absorbed in the k = 0 mode
yet only partial phase coherence because of the presence of
vortices. In such cases the scale of phase coherence is the
typical distance between vortices [6,10,11].

Our simulations show that t∗ corresponds to the time when
distinct vortices start to appear. At t < t∗ the probability of a
near-zero |ψ | is high, the phase correlation length is short, and
formal detection of vortices returns vortex locations all over the
computational grid. If the vortex is a “hole” in the background
amplitude, to have vortices we need to have a nonzero
background. At t ≈ t∗ such a background begins to form.

During the time interval t∗ � t � 2t∗ the distance between
detected vortices is still of the order of grid resolution, but the
number of vortices drops sharply. At t � 2t∗, the vortices can
be located by visual inspection of the phase field; their number
decreases in time, but much slower. One can think of the state
at t < t∗ as containing no distinct vortices, the time interval
t∗ < t < 2t∗ as the stage of vortex formation, and t > 2t∗ as
the stage of vortex annihilation.

Figure 5 shows snapshots of the phase for two pumping
rates at two times. Notice that the system with α = 6400
and t = 4.7 has a smoother phase than the one with α = 100
and t = 8; this is because the transition time scale is shorter
for stronger pumping, t∗ = 0.26 versus t∗ = 4.2. Also notice
that vortices form pairs and that the typical distance between
vortices in a pair remains constant over the course of evolution,
while the number of pairs decreases. Finally notice that the
system with higher pumping rate has more vortex pairs and a
shorter distance between vortices in a typical pair.

To quantify these observations, we have implemented diag-
nostics of vortices and vortex pairs, described in Appendix C.
If we denote the number of vortices of the same sign (half
the total number of vortices) by nvort, then the typical distance
between isolated vortices or vortex pairs is d1 = Ln

−1/2
vort . The

typical distance between vortices in a pair, d2, is estimated
from the distribution of distances d

(i)
2 of individual pairs.

We found that the number of vortices scales with α2/3t

and decreases with time. The time range is too short to
suggest a functional dependence; while both a power law and
a logarithmic dependence are possible, for the interpolation
purposed we adopted the power law. The length of a vortex
pair depends on the pumping rate, rather than time, which is
surprising and deserves further investigation, as discussed in
Appendix C.

Next we connect the statistics of vortices to the evolution of
spectra nk(t). In the precondensate regime t > t∗, the spectra
have two bending points k1 and k2, as shown in Fig. 1. An
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FIG. 5. Phase in a fraction of the domain L/8 × L/8, from
simulations with L = 32π , for (a) α = 100 and t = 8, (b) α = 100
and t = 12, (c) α = 6400 and t = 0.1, and (d) α = 6400 and t = 4.7.
The images illustrate that the typical distance between vortex pairs
d1 increases in time, the typical scale of the vortex pair d2 remains
constant, and the distance between the vortices in a pair d2 is smaller
for larger α.

equipartition shelf at small k meets a slope steeper than k−2 at
k = k1; this slope transitions to a slope close to k−2 at k = k2.
We fit the spectra in the range [kmin,k2] using the function

nk = A

1 + (k/k1)p
. (4)

Here p is some power and A is the height of the equipartition
shelf. When p = 2, k1 = kμ, and A = T/k2

μ, the fit reduces to
Eq. (2).

Figure 6 shows how the parameters of the spectra in
Eq. (4) change with time. After the transition, the height of
the shelf rises linearly with time, as A ∝ α1/3t , in contrast
to early evolution, when the height of the shelf T/k2

μ grows
exponentially (due to exponential decay of kμ). The scale
associated with the first bending point in the spectra, λ1 =
2π/k1, initially grows rapidly, yet not as fast as exponentially
increasing λμ = 2π/kμ. At the time t ∼ 3t∗ the growth of
λ1 slows down. The scale λ1 appears to be proportional to the
distance between vortex pairs, λ1 ∼ 2.5d1, so we conclude that
the first bending point in the spectra marks the scale of phase
coherence or the scale of patches of precondensate. The third
parameter, power p, describes the slope of the spectrum after
the plateau, in the k1 < k < k2 range. This slope steepens with
time from p = 2 in the thermal equilibrium regime to possibly
p = 4 in the long-running evolution.

If k1 corresponds to the distance between vortex pairs d1,
the natural question arises: What scale corresponds to k2? We
notice that the second bending point of the spectrum does not
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FIG. 6. Parameters in late evolution spectra, A, λ1 = 2π/k1, and
p, as a function of time in simulation and rescaled units. The purple
line corresponds to α = 6400 and L = 8π ; all other data are from
L = 32π simulations. Dotted lines show the extrapolations from the
weakly nonlinear regime, with A = T/k2

μ and λμ = 2π/kμ. In (c)

and (d) the typical distance between vortices d1 = Ln
−1/2
vort is shown

with connected points; dashed vertical lines indicate the times t∗

and 3t∗.

move over the course of evolution; however, it shifts to the
smaller scales as α increases. Recall that we made the same
observation about the typical distance between vortices in a
pair, d2. Indeed, the corresponding wave number k2 = α1/3

is located approximately at the second bending point of the
spectra (see Appendix C for details). Thus, the data suggest that
λ2 = d2 = 2πα−1/3 is the typical distance between vortices in
a vortex pair.

The emergence of a second inflection point and deviation
from thermal equilibrium spectra can be interpreted as an
internal bottleneck effect. The pileup occurs at wave numbers
where the nonlinearity is getting substantial. We have observed
a similar pileup in simulations stabilized by low-k friction [12],
where, regardless of the domain size, stronger nonlinearity
leads to more pileup, while pumping at lower rate reduces
piling up and extends the universal part of the spectrum.

Until now we have studied the evolution of wave turbulence
before it gets affected by the size of the domain. Now we are
interested in the transition from precondensate to a systemwide
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condensate. We need relatively long simulations in relatively
small boxes, so we can watch all vortices disappear. We expect
this to happen when the typical distance between vortices d1

exceeds the domain size.
We found that the number of vortices in domains with

sizes L = 2π , π , and π/2 follows the same dynamics as our
large-scale simulations, L = 32π , provided that the evolution
in small boxes is interpreted in the statistical sense. (We
have considered ensembles of multiple realizations for each
combination of parameters; see Appendix D for details.) The
chance of a transition to condensate is much higher when
d1 exceeds the domain size during the vortex formation
stage; during the vortex annihilation stage precondensate
slows down the annihilation of vortices. For the creation of
systemwide condensate, slow pumping rates are favorable,
since d1 is an increasing function of α2/3t . In general, one can
predict the typical time of transition to condensate by solving
d1(α2/3t) = L. This statement is not obvious, since one could
expect the limited size of the system to have an additional
effect.

Once the condensate has been established, the spectra
for over-condensate fluctuations are expected to have slope
nk ∝ k−2 [5,13]. Unfortunately, we could not detect the
transition from the k−p spectrum for a precondensate to the k−2

spectrum of over-condensate fluctuations. This is because, to
resolve precondensate spectra, we need many modes and large
domains, while slow annihilation of vortices requires long
simulation times. All simulations where we could achieve a
transition to systemwide condensate are done in small boxes.
In these simulations, the spectra never have a chance to develop
slopes with p > 2. Instead, they transition from the thermal
equilibrium spectrum with p = 2 directly to the spectrum with
p = 2 for over-condensate fluctuations.

In this work we have used the model of the Gross-Pitaevskii
or the nonlinear Schrödinger equation to study the evolution
of wave turbulence excited by small-scale forcing. While the
wave action accumulates in a system at a constant rate, there is
a time t∗ that marks the transition from a weakly nonlinear to a
substantially nonlinear regime (when the focusing case and the
defocusing case start to deviate, as shown in Appendix B). At
t < t∗ the spectra of nk have the form of a time-dependent
energy-action equipartition, while the distribution of |ψ |
widens with time. At t > t∗ the distribution of |ψ | in the
defocusing case is concentrated near the rising background
(precondensate), while spatial locations with near-zero |ψ |
become sparse and develop a vortex structure. The typical
distance between vortex pairs and the typical distance between
vortices in a pair correspond to two bending points in the
spectra of the wave action.

The evolution of vortex density in a large domain well
describes the probability of developing a systemwide con-
densate in a small domain. The condensate is more likely to
appear if the number of vortex pairs is expected to drop below
1 during the vortex generation stage, t∗ � t � 3t∗. Later,
at t � 3t∗, strong precondensate prevents vortex interaction
and vortex annihilation slows down. The rescaling between
nondimensional units and physical units and the estimate
for the transition time t∗ in physical units are shown in
Appendix E.

I thank G. Falkovich for encouragement, discussions, and
reading a draft of the paper. The work was supported by
NSF Grant No. DMS-1412140. Simulations were performed
at Texas Advanced Computing Center using Extreme Science
and Engineering Discovery Environment, supported by NSF
Grant No. ACI-1548562 through allocation TG-DMS140028.

APPENDIX A: NUMERICAL SETUP

Our setup is almost identical to that in [12], where we
studied the inverse cascade stabilized by large-scale friction,
with the exception that now the friction is turned off. The wave
action is deposited at the rate α in a ring of wave numbers
k ∈ [kl,kr ]. Some fraction of it is lost to small-scale damping,
applied at k > kd ≈ 3kr ; the rest accumulates in the system at
the rate Ṅ = α̃. The forcing and damping are represented on
the right-hand side of the equation,

iψt + ∇2ψ + s|ψ |2ψ = if̂kψ + iĝk. (A1)

Forcing and damping are both applied in spectral space. The
forcing is additive, gk = |gk|eiφk , with random phases φk and
amplitudes |gk| ∝

√
(k2 − k2

l )(k2
r − k2), while the damping is

multiplicative, fk = −β(k/kd )4(k/kd − 1)2. Equation (A1) is
solved using a standard split-step method [5] modified to be
fourth-order accurate in time.

Our computational domains are square, L × L, with pe-
riodic boundary conditions, so the lowest wave number is
determined by the domain size, kmin = 2π/L. The highest
wave number is the same in all simulations, kmax = π/
x =
512, as well as the parameters kl = 68, kr = 84, kd = 256,
and β = 400. This choice of parameters gives 8% loss of wave
action in most of simulations, α̃ = 0.92α. We model systems
with different strengths of forcing, α = 100, 400, 1600, and
6400, and of different sizes, up to L = 32π . Note that our
main results are scaled with α and kmin, so the forcing length
scale is the only fixed parameter in our study. This restriction
can be relaxed by rescaling of units described in Appendix E.

As a remark on the size of the simulation we emphasize
that the major results reported in this paper, the pileup of
wave action at low k and the formation of spectra with two
bending points, are not effected by a finite domain size. Most
results were obtained in domains with L = 32π , yet when
we repeated some of the simulations in domains L = 8π , we
observed essentially the same behavior (see, for example, the
curves for α = 6400 in Fig. 6). The largest of the discussed
length scales is λ1 ∼ 10 (at the end of the run with α = 100),
which is still small compared to L = 32π ≈ 100. The smallest
number of vortex pairs used in vortex statistics is 840, also at
the end of the run with α = 100; this number is large enough
to ignore the effects of domain size.

APPENDIX B: FOCUSING CASE

Weakly nonlinear theory does not distinguish positive and
negative nonlinearity. So, at very early times, the spectra with
focusing and defocusing nonlinearities are expected to evolve
in the same way. It turns out that this similarity lasts almost to
the end of the weakly nonlinear regime, t � t∗. Figure 7 shows
the spectra of focusing and defocusing systems for α = 100
(t∗ ≈ 4.2) and for α = 6400 (t∗ ≈ 0.26). At the very early
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FIG. 7. Comparison of focusing spectra (solid lines) and defocusing spectra (dashed lines) at different times of system evolution for (a)
α = 100 and (b) α = 6400. The insets show the total number of waves.

times, the spectra look qualitatively the same, except that the
focusing nonlinearity is more effective in populating low-k
modes, especially at higher α, possibly because of a nonlinear
shift of frequency and a higher effective nonlinearity parameter
(k2 ± N )/k2. Since in the weak turbulence approximation the
evolution of focusing and defocusing systems must be exactly

FIG. 8. Diagnostics of vortex pairs. The image shows the phase
in the system with α = 6400 and L = 8π at t = 12. The pairs with
distance between vortices exceeding 2d1, where d1 is the typical
distance between vortex pairs, are marked with dashed lines.

the same, this small difference in the spectra is already an
effect of nonlinearity.

Approximately at the time when defocusing spectra start to
deviate from the thermal equilibrium form, focusing spectra
stabilize at an equilibrium. This is also seen in the total number
of waves (insets in Fig. 7). The stabilization of N (t) at constant
pumping is the sign of enhanced loss of wave action due
to collapses. Indeed, at t ≈ t∗ both systems start to develop
coherent patches of precondensate. In the focusing case,
coherent patches turn into collapses; this process transfers the
wave action to high k, where it gets consumed by damping.
The stable level of the wave action can be estimated as
N∗ ≈ αt∗ ∝ α1/3. By the order of magnitude that this is seen
in simulations, however, the functional dependence appears to
be more complex.
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FIG. 9. Number of vortex pairs in (a) lin-log and (b) log-log
coordinates obtained in simulations shown in Fig. 6, with line colors
matching. The longest range is for α = 6400 in the L = 32π box
(blue) and the L = 8π box (purple). The straight lines correspond
to f (t) = 0.0045[1 − 0.1 ln(α2/3t)] and to f (t) = 0.021(α2/3t)−2/5,
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transition. At early times, B = (α̃t)−1, shown with dashed lines. At
later times, B(t) is proportional to the vortex density: For the number
of vortices given by Eq. (C1), it scales as B ∝ (α2/3t)−12/5.

The last observation suggests that it might be possible to
build condensate in a focusing system, if the size of the domain
is so small that condensate is formed before the total number
of waves reaches a critical wave action, Ncr = 11.7/L2. In
our setup, however, this would require long simulation times
at small pumping rates, α ∝ N3 ∝ L−6 and t ∼ Nα−1 ∼ L4.

APPENDIX C: EVOLUTION OF VORTICES IN RELATION
TO THE PROBABILITY OF SMALL AMPLITUDES

AND TO SPECTRA

To find the location of vortices we use a method based on the
vortex definition. Starting with the phase on a computational
grid, φ

j

i , we compute the circulation of phase along the
perimeter of each computational cell,

δφ = [
φ

j

i+1 − φ
j

i

] + [
φ

j+1
i+1 − φ

j

i+1

]
+[

φ
j+1
i − φ

j+1
i+1

] + [
φ

j

i − φ
j+1
i

]
.

We restrict each expression in square brackets not to exceed
π in absolute value, by adding or subtracting 2π as necessary.
The cells with nonzero δφ are recorded as vortices. (We have
observed only vortices with a single charge, δφ = ±2π .)

To find vortex pairs, we compute the matrix of distances
between positive and negative vortices. Two vortices with the
shortest distance are assigned into a pair and excluded from
the list. Then the pair with the shortest distance is found again

from the reduced matrix and the process is repeated until all
vortices are assigned into pairs. This might not be an optimal
algorithm, say, in comparison with minimizing the sum of
distances over all possible pair assignments, but it is easy to
implement and fast to execute. A side effect of this algorithm is
a small number of distant vortices formally assigned into pairs;
this happens at the end of the assignment procedure because of
the lack of unassigned neighbors. Such pairs can be taken out of
consideration, if, for instance, their distance exceeds the typical
distance between pairs. The results of vortex and vortex pair
detection is illustrated in Fig. 8, for a small domain containing
131 vortex pairs. Most of our production runs contain ∼10 000
pairs at the beginning of vortex diagnostics. Subsequently, we
implemented even simpler diagnostics, where the length of a
pair was computed as the distance to the closest vortex of the
opposite sign, and obtained qualitatively the same results.

The number of vortices nvort scales with α and decreases
with time, as shown in Fig. 9. The time range is too short to
distinguish a power law from a logarithmic dependence, so we
restrain from making a statement on the scaling of the number
of vortices with time. Yet we need the nvort(t) dependence to
estimate the probability of small |ψ | and for comparison with
the evolution of small systems. For this purpose, we use the
power-law dependence

nvort = 0.021L2α2/5t−2/5. (C1)

The proposed scaling explains how the probability of small
|ψ | decreases with time. Initially, the probability of small
amplitudes is 2χdχ = 2N−1|ψ |d|ψ |, so P(|ψ |) ≈ B(t)|ψ |
with B(t) = 2N−1 = 2(α̃t)−1. At later times the probability
of small amplitudes is determined by the density of vortices
and by the profile of an individual vortex. Assuming a radially
symmetric vortex, one obtains |ψ | ∼ r at the core. If the
healing length scales as N−1/2 [14], then |ψ | ∼ Nr . This
leads to B = 4πnvort/L

2N2, shown in Fig. 10, for nvort given
by Eq. (C1). This estimate gives B ∼ (α2/3t)−12/5 up to a
numerical coefficient.

Both logarithmic and power-law scalings for the number
of vortices were reported in the literature. Power laws with
exponents 0.3–0.4 were observed in relaxation studies [11],
with transitional logarithmic scalings. Nazarenko and Onorato
[6] reported a logarithmic scaling for forced simulations, but
the behavior appears to be transitional as well. It was observed
at the early stages, before the formation of precondensate,
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with the number of vortices dropping from 20 000 to 3000, in
the 2π box, while here the number of pairs drops to 2000 in
the 32π box.

It is interesting that the straightforward averaging of
intervortex distances gives d2 ∝ d1 ∝ t1/5. The contradiction
with visual observation of constant d2 is the effects of ultrashort
and extra-long dipoles. During the stage of vortex formation,
vortices are hard to distinguish from noise; the diagnostics
detects a colossal number of vortex pairs with lengths at
the limit of resolution. At later times, isolated vortices are
formally assigned into pairs as a side effect of our vortex
matching algorithm. The number of such pairs is small, but
their large lengths significantly affect the average. We found
the histograms of the intervortex lengths, shown in Fig. 11,
more informative than the average.

In Fig. 11, the system with weakest pumping α = 100 is still
going through the vortex formation stage, as indicated by the
peak at the first bin of the distribution. In the case of α = 6400,
the fraction in the first bin is insignificant for t > 1 and the
distribution preserves its shape over the course of the system
evolution. In all cases, the number of vortices dropped from
nvort ∼ 10 000 to nvort ∼ 1000 during the time interval consid-
ered. In all cases, the length d2 = 2πα−1/3 is proportional to
the distance at the peak of distribution, with a factor ∼2.5.

Our observation that the length of a vortex pair depends
on the pumping rate, rather than time, is surprising. One
would expect the intervortex distance to be proportional to a
typical size of the vortex core, which scales as 1/|ψ | ∼ N−1/2

[14]. Such a reduction of intervortex distance was observed
in experiments [15] and simulations [16] for vortex pairs
moving from regions of less dense condensate to more dense
condensate. In contrast, in images shown in Fig. 5, the wave
action for the system with α = 6400 increases by the factor
of 47, which would translate to the decrease of intervortex
distances by factor of 7, yet we observe that the intervortex
distance is unchanged.

As discussed in the main part of the paper, the length
of the vortex pair, d2, corresponds to the bending point in
the spectra, k2, shown by dashed lined in Fig. 12. Nowak
at al. [10] made a similar connection between vortices and
the shape of the spectra in simulations on thermalization of
Gross-Pitaevskii turbulence. First, they inspected the spectrum
of a manufactured field of vortices and concluded that (i) the
spectrum has a k−2 slope on scales greater than the length of
a typical vortex pair, (ii) the slope steepens to k−4 for scales
between the vortex pair and vortex core, and (iii) the slope

is k−6 on scales below the size of the vortex core. Next they
confirmed the presence of k−2 and k−4 slopes in dynamical
simulations (although to observe k−2 the authors had to select
simulations with the shortest dipoles). As for the k−6 slope,
the interval of smallest scales was dominated by the spectrum
of over-condensate fluctuations, k−2. Forced evolution has
different dynamics than thermalization. Even though both
types of spectra show qualitatively similar shapes with three
distinct exponents, the values of the exponents are different.
We observe a plateau (rather than the k−2 slope) at largest
scales and a midrange slope that gradually increases with time.

APPENDIX D: TRANSITION FROM PRECONDENSATE
TO CONDENSATE

We expect the transition from precondensate to condensate
to occur when the typical distance between vortex pairs d1

exceeds the domain size. We consider three domain sizes L =
π/2, π , and 2π and two pumping rates α = 100 and 1600
and we estimate the times of the transition to condensate tcond

as the abscissa of d1 = L in Fig. 6. These times are listed in
Table I. Among the combinations considered, the transition to
condensate in cases (a), (b), and (d) is expected to happen on
the border between the stages of vortex formation and vortex
annihilation, tcond ∼ 2t∗; for the other three combinations the
transition is expected in the vortex annihilation regime tcond �
2t∗. For each case, we have performed ten simulation with
different random seeds. For each realization, we measured the
number of vortex pairs in the domain as a function of time.

First, let us compare simulations with two different
pumping rates in the domain of size L = π/2, cases (a) and

TABLE I. Parameters of simulations in small boxes and time of
transition from precondensate to condensate estimated from Fig. 6.
Here the data beyond the interpolation range are shown as blank
entries.

Case α 2t∗ L Lα1/3 α−2/3tcond tcond

(a) 100 8.4 π/2 7.29 194 9
(b) 100 8.4 π 14.58 240 11
(c) 100 8.4 2π 29.16 1500 70
(d) 1600 1.3 π/2 18.37 220 1.6
(e) 1600 1.3 π 36.74 tcond � 2t∗

(f) 1600 1.3 2π 73.49 tcond � 2t∗
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(d). In case (a) the last vortices have disappeared during
the time range [8.0,10.8], in agreement with the expected
tcond = 9. In case (d) tcond = 1.6, and by the time t = 2.6 six out
of ten realizations are vortex-free. The other four realizations
have a single vortex pair; they become vortex-free by the
time t = 16.6. This is consistent with the overall dynamics
in large boxes: At α = 100 the transition between thermal
equilibrium and the precondensate regime occurs relatively

late, at t∗ ≈ 4.2, vortices become detectable at 2t∗ ≈ 8.4,
and the slow vortex annihilation regime is not reached until
3t∗ ≈ 12.6. On the other hand, for α = 1600, 2t∗ ≈ 1.3,
which explains the disappearance of most of the vortices by
time t = 2.6. Vortex annihilation becomes slow after 3t∗ ≈ 2,
which is why it takes so long time (up to t = 16.6) for the four
remaining pairs to disappear. Simulations with L = π and
2π show qualitatively the same results, except that only the
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FIG. 13. Establishment of condensate in small domains (a) and (b) L = π and (c) and (d) L = 2π for (a) and (c) α = 100 and (b) and (d)
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runs from case (b) have good chances of forming systemwide
condensates before vortex annihilation becomes slow.

For cases (b), (c), (e), and (f) we compare the wave action
N0(t) accumulated in the condensate (that is, in the k = 0
mode) to the wave action of the whole system N (t). The
comparison is shown in Fig. 13. Within each set of realizations,
the curve N (t) does not depend on realization. (The curves for
α = 1600 deviate from linear growth because of higher losses
to damping at large N .) In contrast, the wave action in the con-
densate is different in each realization, at least during the time
when vortices are still present in the system. When vortices are
gone, the wave action of over-condensate fluctuations N − N0

stays at an approximately constant level, with the exceptions of
small-amplitude oscillations [17]. Notice that the small level of
over-condensate fluctuations N − N0 	 N does not guarantee
a vortex-free system. Moreover, the systems with the same
number of vortices can have different fractions of waves in
the condensate and N − N0 is nonmonotonic function of the
number of vortex pairs.

The insets in Fig. 13 provide another way to compare the
dynamics of vortex annihilation in small and large domains.
Here the dots show the number of vortex pairs in small
domains, averaged over ten realization, as a function of time.
The lines are predictions derived from the extrapolation (C1)
for large domains. Qualitatively, the number of vortex pairs in
small systems agrees with the dynamics of evolution of large
systems.

APPENDIX E: TIME SCALE OF TRANSITION
IN PHYSICAL UNITS

The time scale t∗ is an important characteristic of the
system. Our simulations, done in nondimensional variables,
show that t̃∗ ≈ 90(dÑ/dt̃)−2/3. (In this appendix we denote
nondimensionalized quantities by tildes.) Let us estimate t∗
for a physical system.

We restore physical dimensions in Eq. (1),

iq2τψt + q2
2∇2ψ ± q2 |ψ |2
I0

ψ = 0,

introducing coefficients τ , 
, and I0 that have units of
time, length, and wave intensity, respectively. The multiplier
q is an arbitrary quantity that parametrizes the family of
transformations between simulation units and physical units,

t = q2τ t̃, x = q
x̃, ψ =
√

I0

q
ψ̃.

It is natural to assume that the physical pumping scale 
p

is known. Then we can use it to select the transformation
parameter q = 
p/

̃p, where 
̃p = 2π/80 is the pumping
scale in our simulation units. Thus, we obtain

t∗ ≈ 16.5τ

[

p




τ

I0
Ṅ

]−2/3

,

where N = 〈|ψ |2〉.
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