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Coupled Lorenz oscillators near the Hopf boundary: Multistability, intermingled basins,
and quasiriddling
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We investigate the dynamics of coupled identical chaotic Lorenz oscillators just above the subcritical Hopf
bifurcation. In the absence of coupling, the motion is on a strange chaotic attractor and the fixed points of the
system are all unstable. With the coupling, the unstable fixed points are converted into chaotic attractors, and the
system can exhibit a multiplicity of coexisting attractors. Depending on the strength of the coupling, the motion
of the individual oscillators can be synchronized (both in and out of phase) or desynchronized and in addition
there can be mixed phases. We find that the basins have a complex structure: the state that is asymptotically
reached shows extreme sensitivity to initial conditions. The basins of attraction of these different states are
characterized using a variety of measures and depending on the strength of the coupling, they are intermingled or
quasiriddled.

DOI: 10.1103/PhysRevE.96.062203

I. INTRODUCTION

For more than five decades now the Lorenz system [1]

ẋ = α(y − x)

ẏ = βx − y − xz

ż = −γ z + xy (1)

has been a very useful model on which many concepts and
principles of nonlinear dynamical systems have been tested
and illustrated. The parameters chosen in the initial study,
namely α = 10, β = 28, and γ = 8/3, have been most
often used in numerical studies; these ensure a single chaotic
attractor on which almost all the dynamics eventually settles,
and it is easy to see that there are three other fixed points, all
of which are unstable. Keeping α and γ at the same values,
Sparrow [2] has given a fairly comprehensive description of
the dynamical states when β is varied, and it is known that
there are a number of other dynamical states and bifurcations
that occur at different values of the parameters.

Within the phenomenon of chaos synchronization the
Lorenz system has been extensively used as a paradigm,
starting with the earliest studies [3,4] that introduced the
notion of synchronization between coupled chaotic units. As
is now well known, coupled chaotic systems can show a
number of different forms of synchrony [4–8], depending on
the nature of the coupling [9–11], its topology [10], as well as
on the nature of the dynamical systems that are coupled [12].
Synchronization is attained between the systems when their
trajectories (or states) get closer with the pairwise differences
of the system variables approaching zero asymptotically. This
phenomenon requires that the states of the system evolve
in time, as when there are oscillations. Depending on the
nature of the coupled systems and on the coupling scheme,
different forms of synchronization can be observed [8,13].
There can be complete synchronization [10], the generalized

synchronization [14], the phase synchronization [15], the
anticipated synchronization [16], and so on. For the past
few decades, interest in chaotic synchronization has grown
considerably due to the potential applications it can have in
diverse fields ranging from computational neuroscience [17]
to secure communication [6,7,18].

In the present paper we revisit the dynamics of coupled
Lorenz systems with parameters close to the subcritical Hopf
bifurcation. For α = 10 and γ = 8/3 for instance, this
bifurcation occurs at β = 24.74, although there is already
a strange attractor born at β = 24.06. This is the familiar
butterfly-shaped attractor, at the “centers” of whose wings are
unstable limit cycles that are created through a homoclinic
bifurcation at β = 13.926. We examine the nature of the
dynamics when the intrinsic parameters of the coupled systems
are just above the Hopf bifurcation, and the nature of the
dynamical phenomena induced by the coupling is qualitatively
and quantitatively very different from the dynamics well above
the bifurcation.

Our motivation arises in part from the observation [19] that
coupling dynamical systems effectively alters the values of
the parameters governing the flows. In addition the coupling
can affect the stability of the coupled dynamics and therefore
it becomes important to examine the dynamics of coupled
systems in the neighbourhood of bifurcations since here
fundamentally new phenomena can arise.

The present study is thus complementary to the work
of Camargo, Viana, and Anteneodo [20] who examined
the features of chaotic synchrony and antisynchrony [21]
in coupled chaotic Lorenz oscillators. (Antisynchronization
is characterized by the dynamical states of the subsystems
having opposite signs.) Since both complete synchrony and
antisynchrony coexist in the coupled system, the nature of
the basins of the coexisting attractors has been described
in great detail [20]. It has been established that for some
range of the coupling strength the basins corresponding to
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the coexisting attractors are both riddled and can therefore be
termed intermingled. This intermingling structure of the basins
is responsible of the complicated nature of the system making it
unpredictable. However, this complexity and unpredictability
is exacerbated further when the number and types of attractors
increase.

We show here that for two mutually coupled identical
Lorenz oscillators near the Hopf bifurcation point, depending
upon the coupling strength there can be a large number
of distinct dynamical states, leading to rich and complex
dynamics in the system. The coexistence of a large number
of attractors introduces additional sensitivity and randomness
in the chaotic system: an infinitesimal perturbation in initial
values is sufficient for a trajectory to shift from one state to
another. This can be of great interest for applications in the field
of secure communication through encryption of information
based chaos for example. We describe and characterize the
basins of attraction corresponding to different attractors using
various measures such as transverse Lyapunov exponent,
power-law relations, and so on. We observe that depending
on the coupling value, the nature of the basins changes from
quasiriddled to intermingled.

The remainder of the paper is organized as follows: Sec. II
presents the model of mutually coupled Lorenz oscillators,
and we describe the different attractors that are possible in the
system. These are characterized using a modified version of
the 0-1 test [22]. The basins of attraction of different states
of the system are described in Sec. III. The fraction of initial
conditions converging to these different states along with the
extreme sensitivity to initial conditions is also quantified in
this section. The riddled nature of the basins is discussed in
Sec. IV and this is characterized using a variety of different
quantitative measures. The paper concludes with a summary
of our results in Sec. V.

II. COUPLED LORENZ SYSTEMS NEAR THE
HOPF BIFURCATION

The Lorenz system, specified by Eq. (1) [1] has a number
of interesting properties that include volume contraction,
nonlinearity, and the discrete symmetry (x,y) → (−x,−y)
[23]. In this paper we work at the “standard” values of α

= 10 and γ = 8/3. As described comprehensively by Sparrow
[2], for β ∈ [0-1[ the fixed point (0, 0, 0) is stable. At β = 1,
the origin loses stability in a supercritical pitchfork bifurcation
and a pair of symmetric stable fixed points C+ = √

β(z − 1)
and C− = −√

β(z − 1) appear. C+ and C− lose stability at
βH = 24.74 in a subcritical Hopf bifurcation by absorbing
an unstable limit cycle [23]. For β ∈ [13.926, 24.06[, there
is transient chaos showing the presence of chaotic orbits
but no chaotic attractors. For β ∈ [24.06, 24.74], the two
attracting equilibria C+ and C− coexist with the butterfly-
shaped chaotic attractor. For β > 24.74, the dynamics of the
system lies on the chaotic attractor and C+ and C− are unstable.
These behaviors are illustrated in the bifurcation diagram in
Fig. 1, obtained by plotting the successive maxima of the
variable x.

The interest here is in the asymptotic dynamics of coupled
Lorenz oscillators near the Hopf bifurcation transition, namely
for β = βH + δ. Coupling two identical Lorenz systems mu-

FIG. 1. Bifurcation diagram of the Lorenz system for α = 10 and
γ = 8/3.

tually through the z variable so as to preserve the equivariance
[2,24], one has the equations of motion:

ẋ1 = α(y1 − x1) ẏ1 = βx1 − y1 − x1z1

ż1 = −γ z1 + x1y1 + ε(z2 − z1)

ẋ2 = α(y2 − x2) ẏ2 = βx2 − y2 − x2z2

ż2 = −γ z2 + x2y2 + ε(z1 − z2). (2)

It is convenient to make a transformation to the new
coordinates [20],

x = x2 − x1

2
, y = y2 − y1

2
, z = z2 − z1

2
,

X = x2 + x1

2
, Y = y2 + y1

2
, Z = z2 + z1

2
,

which permits the coupled system to be rewritten as

ẋ = α(y − x) ẏ = βx − y − (Xz + Zx)

ż = −(γ + 2ε)z + Xy + Yx

Ẋ = α(Y − X) Ẏ = βX − Y − (XZ + xz)

Ż = −γZ + XY + xy. (3)

Either Eq. (2) or Eq. (3) will be used below as convenient.
Note that the dynamics of Eq. (3) is invariant under the
transformations (x,y,z) → (−x,−y,−z). The condition x1 =
x2, y1 = y2, z1 = z2 or equivalently x = y = z = 0 specifies
a three-dimensional invariant subspace, the synchronization
manifold, Ss . The coupled system is also invariant under the
transformations (X,Y,z) → (−X,−Y,−z) and the condition
X = Y = z = 0, which corresponds to x1 = −x2, y1 = −y2,
z1 = z2 defines the antisynchronization manifold Sas which is
also an invariant subspace. Note that within Ss the equations
of motion for the variables (X,Y,Z) have the same form as the
Lorenz equations, Eq. (1): there is another attractor, denoted
As contained in Ss . The variables (x,y,Z) also obey Lorenz
dynamics and give rise to the attractor Aas , which is contained
inSas . We find that the number of attractors in these subspaces,
namely As and Aas , depends on the coupling strength, and near
the Hopf bifurcation point, this number changes.

Consider the case of weak coupling, namely ε small. Upon
decreasing the parameter β from 28 (when the isolated systems
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FIG. 2. The three types of attractors observed by coupling two
Lorenz oscillators for the parameters β = 24.76 and ε = 0.05. A1

and A2 are the two small symmetric ones and A3 the familiar chaotic
Lorenz attractor with the butterfly shape.

support a single strange attractor that we term A3) down to βH

at some point (depending on the value of coupling strength ε)
there is a transition to a regime of β where two new symmetric
stable attractors, A1 and A2 can be observed. An example of
these three coexisting attractors can be seen in Fig. 2; our
calculations are carried out for δ = 0.02, namely β = 24.76
using a standard Runge-Kutta code and we have taken ε =
0.05. The initial conditions were chosen randomly [25] and
expanded views of A1 and A2 are displayed (after discarding
transients) in Fig. 3. It should be noted that these attractors are
similar to those reported earlier by Ujjwal et al. [19], where
chimera states in an ensemble of globally coupled Lorenz
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FIG. 3. Expanded view of attractor A1 in (a), and its symmetric
partner A2 in (b).
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FIG. 4. The two different chaotic attractors with butterfly shape,
(a) A3+ and (b) A3−. The system parameters are β = 24.76 and
ε = 0.05.

oscillators were studied. It was proposed that the attractors A1

and A2 appear as a result of change in the effective parameters
of the system and the effective modulation of symmetric fixed
points due to coupling between the oscillators.

Attractors A1 and A2 can easily be observed in the
range 24.74 < β � 24.8 with coupling strength ε ∈ [0.05,
0.65]. However, the probability of an initial condition to
asymptotically reach these attractors (A1 and A2) is very low
for β � 24.8 and seems essentially to be null above β ≈ 26.
The relative sizes of the attractors A1 and A2 as well as the
relative volumes of their basins decrease as β moves away
from the subcritical Hopf bifurcation, making them difficult to
observe.

The more familiar chaotic attractor A3 has two variants,
denoted A3±. The distinction between these is that the scrolls
are asymmetrical: A3− and A3+ are plotted for β = 24.76
and ε = 0.05 in Fig. 4. The attractors A3+ and A3− can be
distinguished by computing the means M defined as follows:

M = xmax + xmin

2
, (4)

where xmax and xmin represent the maximum and minimum of
the x variable after the transients. M is negative for A3− and
positive for A3+.

To investigate the nature of attractors A1 and A2, we analyze
the time series data corresponding to these attractors by means
of a modification of the 0-1 test for the detection of chaos
[26]. Note that A1 and A2 are generated by a suboscillator of
the coupled system. Therefore, we find this technique more
suitable for the analysis than the traditional method such as
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computation of Lyapunov exponents, in the sense that the time
series of the suboscillator can directly be applied to the test.
Recall that the 0-1 test [22,27] is a binary chaos detection
tool, which takes as input the time series data generated by
a given deterministic dynamical system and returns a single
value 0 or 1 according to whether the dynamics of the system is
regular or chaotic. To use this technique, one neither requires
to know the equations governing the system nor phase space
reconstruction. The implementation of the test does not depend
on the nature of the vector field as well as its dimensionality.
The 0-1 test has been successfully applied to numerical [28]
as well as experimental data [29], and its reliability has been
established [30]. Implementation of this test is as follows
[27]. Given an observable φ(j ) with j = 1,2, . . . ,N , we first
determine the translation variables p(n) and q(n) of φ(j ):

p(n) =
n∑

j=1

φ(j ) cos(jc),

q(n) =
n∑

j=1

φ(j ) sin(jc), (5)

where c ∈ (0,π ) and n = 1,2, . . . ,N . If the plot of p(n) versus
q(n) is a torus the dynamics is regular, whereas if it behaves
like a Brownian motion, the dynamics is chaotic. The behavior
of p(n) and q(n) is investigated by computing the mean-square
displacement (MSD) D(n),

D(n) = lim
N→∞

1

N

N∑

j=1

{[p(j + n) − p(j )]2

+ [q(j + n) − q(j )]2} − (Eφ)2 1 − cos nc

1 − cos c
, (6)

with n = 1,2, . . . ,N/10 and Eφ = limN→∞ 1
N

∑N
j=1 φ(j ) be-

ing the time average of the time series. When the MSD versus
n is bounded in time, the dynamics of the system is regular,
whereas if it scales linearly with time, the dynamics is chaotic.
The asymptotic growth rate Kc of the MSD, representing the
output of the test, is computed

Kc = cov(ξ,
)√
var(ξ )var(
)

, (7)

where ξ = 1,2, . . . ,N/10 and 
 = D(1),D(2), . . . ,D(N/10)
are two vectors. For some isolated values of c the test can give
erroneous results due to resonances. To avoid this problem we
have found it useful to compute the asymptotic growth rate
for several values of c (typically 100 are sufficient to obtain
reliable results), and the final K is obtained by computing
the median of these isolated Kc’s: K ≈ 0 signifies regular
dynamics and K ≈ 1 implies chaos.

Nevertheless, for accurate results the 0-1 test requires a huge
amount of data and is computationally expensive. Further, the
test is unreliable when the time series are oversampled, and to
overcome some of these limitations, we have, in earlier work,
modified it as follows [26]: we analyze only the extrema rather
than the time series itself and have obtained good results [31].
This modified test is applied to the analysis of the dynamics
on the attractors A1 and A2, and the results are given in Fig. 5.
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FIG. 5. Analysis of the dynamics of A1 and A2 by means of the
modified 0-1 test. (a) and (b) are the translation variables p versus q

of A1 and A2, respectively. (c) and (d) represent their MSD.

Figures 5(a) and 5(b) show the translation variables p

versus q of A1 and A2, respectively. They behave like a
Brownian motion which suggests that both A1 and A2 have
chaotic dynamics. The motions of p and q are investigated by
computing the MSD D that scales linearly with n for both A1

Fig. 5(c) and A2 Fig. 5(d), indicating that the attractors are
chaotic. Finally, the asymptotic growth rate K of MSD has
been computed. K is almost 1 for both cases, thus supporting
the chaotic nature of A1 and A2.

The coupled Lorenz system for β just above the Hopf
bifurcation shows very rich dynamics due to the existence of
these several attractors: depending upon the initial conditions
in the phase space and/or the coupling strength, the system
can asymptote on a variety of different states. These can
be confined within the synchronized or antisynchronized
subspaces, or can be in the complement of these subspaces.
A form of intermittency is also seen: trajectories are in the
vicinity of Ss or Sas for varying periods of time, displaying in-
termittent synchronization or intermittent antisynchronization.
Switching between these states is also possible. The taxonomy
of the possible different states and their basins of attraction are
discussed in the following section.

III. THE ATTRACTORS AND THEIR BASINS

The set of initial states that lead to a given attractor is its
basin. While considering the situation where riddled basins
can occur, for example, an attractor may be defined as follows
[32]: Let H be the phase space in which the dynamical system
X is defined. A closed subset A ∈ H is an attractor of X if it
satisfies the following conditions:

(i) A has a basin of attraction, denoted B(A), of positive
Lebesgue measure (volume) in the phase space H.

(ii) A is a compact set with a dense orbit. It should be noted
that the basin of attraction does not need to include the whole
neighborhood of the attractor.

When, as in the present instance, there is more than one
attractor, then the geometries of the different basins become
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FIG. 6. Fraction of initial conditions F converging to the different attractors for the coupled Lorenz system as a function of ε for β = 24.76.
Note that for ε = 0, namely for no coupling the only attractor of the dynamics is Ad

33, namely in each of the subsystems, the dynamics is
independently on an attractor of type A3.

a matter of considerable interest. As noted in the previous
section, the phase space for the coupled Lorenz system
is six-dimensional, and the spaces Ss and Sas have three
dimensions.

Since the uncoupled oscillators are identical, and given
the various symmetries in the phase space, we find that in
the coupled system there is both complete synchronization
when the two subsystems are identical, and antiphase synchro-
nization like antisynchronization, when the dynamics differs
by a phase. For the coupled system, according to the initial
conditions and system parameters, attractors can be either in
synchronization when both oscillators converge to either A1

or A2 or A3− or A3+ so that the difference of their dynamical
variables vanish in time, and these states are denoted by
As

11,A
s
22,A

s
3−3−, and As

3+3+, respectively. It can also happen
that the subsystem dynamics are in antisynchronization as
when one oscillator asymptotes to A1 and the other to A2, or
one oscillator asymptotes to A3+ and the other to A3−. In this
case, the sum of the dynamical variables vanish in time, and
these states are therefore denoted Aas

12 and Aas
3+3−, respectively.

There can also be mixed phases, one oscillator converging
to A1 or A2 and the other to A3+ or to A3−. The notation we use
is straightforward: A13+, A13−, A23+ or A23−, respectively; in
the desynchronized configuration Ad

33, neither the difference
nor the sum of the variables of the two subsystems vanish in
time. The desynchronization can also be intermittent, but it
is not clear whether this behavior is merely transient or not;
there appears to be intermittent synchronization, intermittent
antisynchronization, and a two-state intermittency as well, but
these distinctions are more qualitative than quantitative. When
constructing the basins of attraction of the system we only
consider a single asynchronous state Ad

33.
The relative fraction of the phase space that leads to

these different attractors changes with coupling strength, and

the dependence is shown in Fig. 6 where the fraction of
initial conditions converging to each attractor is plotted as
a function of ε. The dependence is similar to that seen in some
previous studies [21,33], which have noted that intermittent
synchronization precedes complete synchronization. Here,
however, we observe that intermittent synchronization and
antisynchronization coexist with complete synchronization
or antisynchronization over a substantial range of coupling
parameter. The number of observable attractors depends on
the strength of coupling as shown in Fig. 6. A sample of N

randomly chosen initial conditions was evolved, and for each
initial condition, we determine the state to which the system
converges asymptotically from which the fraction of initial
conditions going to each attractor, giving an estimate of the
volume in phase space that the basin of the given attractor
occupies.

In the absence of coupling only the desynchronized state
Ad

33 exists with all initial conditions going to chaotic attractors
of A3 type in either oscillator. As ε increases, above a threshold
ε ≈ 0.05, attractors A1 and A2 emerge and consequently
in the coupled system the synchronized states As

11, As
22,

As
3+3+, and As

3−3− can be seen in proportion to the fractions
F s

11, F s
22, F s

3+3+, F s
3−3−, respectively. The antisynchronized

attractors Aas
12, Aas

3+3− have the fractions Fas
12 and Fas

3+3− of
initial conditions. It should be noted here that for symmetry
reasons an equal number of initial conditions go to the
attractors A1 or A2, and similarly to A3+ or A3−. For the
mixed phase states A13+, A13−, A23+, A23− the corresponding
fractions are denoted F13+, F13−, F23+, and F23−. All the
intermittent synchronized attractors are clubbed together into
F t

33. Due to the emergence of these new attractors, the fraction
of initial conditions going to the desynchronized attractor,
Fd

33 decreases with coupling strength. In the coupling range
0.1 � ε � 0.18, the coupled system can exhibit as many as 14
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TABLE I. Summary of the possible attractors in the coupled system depending on the strength of coupling ε for β = 24.76.

Coupling strength ε ε < 0.05 0.1 � ε � 0.18 0.18 � ε � 0.63 0.63 � ε � 1 1 � ε � 1.5

Possible attractors Ad
33

Ad
33, As

11, As
22,

As
3+3+, As

3−3−,

Aas
12, Aas

3+3−,

A13+, A13−,

A23+, A23−, At
33

Ad
33, As

11, As
22,

As
3+3+, As

3−3−,

Aas
12, Aas

3+3−, At
33

As
3+3+, As

3−3−,

Aas
3+3−, At

33

As
3+3+, As

3−3−,

Aas
3+3− (mainly)

distinct states. When ε � 0.18 the four mixed states vanish
while the fraction of the synchronized, antisynchronized,
and intermittent attractors increases. F s

11, F s
22, Fas

12 reach
their peak at ε ≈ 0.3 and decrease with further increases in
coupling strength. Finally, these states vanish along with Fd

33
at ε ≈ 0.63, where attractors As

3+3+, As
3−3−, Aas

3+3− dominate,
and their corresponding fractions continue to increase till
they saturate at ε ≈ 0.8. On the other hand, the intermittent
attractors peak at ε ≈ 0.63 and then decrease, vanishing at
ε ≈ 1. As can be seen in Fig. 6, for every ε, the sum of all
fractions corresponding to each attractor, FT ≈ 1 indicating
that there is substantially no other attractor in the system. The
possible attractors for different coupling strength have been
summarized in Table I.

To visualize the basin of an attractor, namely the set of
initial conditions from which the trajectories start and then
settle onto it after a long period of time [34], it is easier to
display projections or phase space sections since the coupled
system is six-dimensional. We constructed the sections by

fixing the initial variables of the system as x1 = y1 = x2 =
y2 = 1, and z1,z2 were selected randomly in the interval (20,
24). For each initial condition, the coupled system, Eq. (2) was
evolved for sufficiently long times using a fourth-order Runge-
Kutta algorithm, and then the final attractor was determined.
Shown in Fig. 7 is this representative slice of the phase space
indicating the initial conditions that result in As

11 (colored red),
As

22 (green), Aas
12 (maroon), As

3+3+ (magenta), As
3−3−(white),

Aas
3+3− (black), Ad

33 (blue), A13+ (yellow), A13− (orange), A23+
(gray), and A23−(chartreuse) for β=24.76.

Figure 7(a) displays the basin for a coupling strength
ε = 0.04. For this coupling strength all initial conditions in
the coupled system lead to the asynchronous attractor Ad

33.
With increasing coupling strength, say ε ≈ 0.06, intermittent
behavior results: see Fig. 6. For higher coupling strength
ε = 0.1 the several attractors described above are visible [see
Fig. 7(b)] and upon further increasing the coupling to ε = 0.35,
the mixed states disappear and fewer attractors become visible
as can be seen in Fig. 7(c). When ε = 0.7 as in Fig. 7(d), the
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FIG. 7. Sections of the basins of attraction of the various attractors for the coupled Lorenz system when β = 24.76 with the coupling
strength (a) ε = 0.04, (b) ε = 0.1, (c) ε = 0.35, (d) ε = 0.7, and (e) ε = 1.1. The initial conditions are chosen as described in the text and
are colored according to which attractor they lead to as also described in the text. As can be seen, the number of attractors that are effectively
visible depends on the coupling, and for sufficiently large ε, the basins are strongly intertwined.
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FIG. 8. Panels (a) and (b) are magnifications of the boxes in
Figs. 7(b) and 7(c), respectively, while (c) and (d) are magnifications
of square boxes in (a) and (b), respectively.

basins show the coexistence of four states namely the basins of
As

3+3+, As
3−3−, Aas

3+3−, and Ad
33. Figure 7(e) shows the basins

when ε = 1.1 when Ad
33 has disappeared and the basins of the

three attractors As
3+3+, As

3−3−, and Aas
3+3− are the only ones

evident. This behavior is fairly typical even for somewhat
higher values of β near the Hopf bifurcation point, say for β =
24.78, for example. In the regime of multistability [35], as can
be seen in Fig. 7 the basins of the different attractors are highly
intermixed and in the neighborhood of every initial condition
leading to a particular attractor there are initial conditions
arbitrarily nearby that asymptote to different attractors.

In fact, for dynamical systems with multiple attractors, the
corresponding basins of attraction can exhibit a complicated
structure with fractal basin boundary [36–38] or even more
complex, with the so-called Wada property [39]. Accordingly,
for a randomly chosen initial condition it is difficult to identify
which attractor corresponds to it with certainty. The present
example of coexisting attractors do appear to have basins with
fractal boundaries. Repeated magnifications of regions in the
phase space Figs. 7(b) and 7(c) show that the structures have
increasingly finer detail as can be seen in Figs. 8(a) and 8(b)
and further in Figs. 8(c) and 8(d). These magnifications reveal
the self-similar structure, namely scale invariance, and it may
therefore be anticipated that the present system will display
final state sensitivity on initial conditions.

Final state sensitivity can be quantified through the uncer-
tainty fraction [36,37], a measure that was proposed to evaluate
the fractal nature of the basin in a given multistable dynamical
system. This quantity can be determined as follows: an initial
condition ic1 is randomly selected in the phase space, here with
coordinates (z1,z2) keeping x1 = y1 = x2 = y2 = 1. A second
initial condition is also chosen at random, ic2, a distance ξ

from ic1. The uncertainty fraction ρ is the probability that the

10-1

100

10-6 10-5 10-4 10-3 10-2 10-1 100

ρ

ξ

ε=0.1
ε=0.35
ε=1.1

FIG. 9. Fraction of pairs of initial conditions going to different
attractors, ρ where the initial conditions in each pair are ξ distance
apart, shown for three different values of coupling strength ε. Linear
fitting to the data (solid and dashed lines) gives uncertainty exponent,
α. For ε = 0.1 the slope is α ≈ 0.001 ± 0.003, for ε = 0.35, α ≈
0.0003 ± 0.0005, and for ε = 1.1,α ≈ 0.02± 0.008.

two points ic1 and ic2 belong to basins of different attractors,
namely this is essentially the probability to make an error
while predicting the final state for a given initial condition.
The measure ρ is expected to scale with the uncertainty
radius ξ as ρ ∼ ξα , where α � 0 is the uncertainty exponent
that quantifies the degree of uncertainty in predicting the
asymptotic state of the system for given initial condition.

In the case that α is zero or nearly zero, it is clear that there
will be little improvement in the ability to find the correct
asymptotic attractor with reducing the uncertainty ξ : this will
not substantially decrease the uncertainty fraction ρ. For such
an exponent, the asymptotic attractors are said to exhibit an
extreme type of sensitive dependence on initial conditions [40],
which makes the system utterly unpredictable. Shown in Fig. 9
are results of the above procedure to determine ρ as a function
of ξ for different values of the coupling.

As may be inferred from Fig. 9, the uncertainty exponents
are all nearly zero, which indicate the extreme type of sensitive
dependence of the asymptotic attractors on initial conditions.
Moreover, the uncertainty dimension d of the fractal basin
boundary should be close to the phase space dimension
D, which is related to the uncertainty exponent as α =
D − d [37]. As for all cases α ≈ 0, thus d ≈ D, supporting
the extreme type of sensitivity of the coexisting attractors.
Therefore, the coupled system for given parameters exhibits
very complicated dynamics in terms of the predictability
of asymptotic attractors for specified initial values. This
predictability is in a sense harder than the case exhibited by
systems with ordinary fractal or Wada properties. However,
such an extreme type of sensitivity of asymptotic attractors on
initial conditions are characteristic of riddling phenomenon or
riddling-like structure.

IV. RIDDLING BEHAVIOR IN BASINS OF ATTRACTION

For a dynamical system with multiple attractors, the concept
of riddling was first introduced and studied in Ref. [41] for the
situation where the basin of a chaotic attractor in a symmetric
invariant subspace is punctured with holes containing initial
conditions belonging to the basin of another attractor (whether
chaotic or not). Moreover, this first chaotic attractor should
be stable with respect to transverse perturbations, namely the
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transverse Lyapunov exponent should be negative [40–42].
However, when in the same system more than one attractor is
riddled, the basin structure is said to be intermingled [41].
Attractors in this context must be considered in the sense
of Milnor [32]: any starting point in the neighborhood of
one attractor can converge onto another attractor. It has been
established that riddling occurs when the low period unstable
periodic orbits embedded within the chaotic attractor become
transversely unstable [43]. This can also be induced through
small amplitude random noise [44], and depending on the
manner in which these orbits lose stability, different types of
riddling bifurcations have been reported [42,43,45].

We briefly recall the conditions that need to be satisfied to
classify attractor basins as being riddled [38,41,42]:

(i) There is an invariant subspace of dimension lower than
that of the phase space of the system and which contains a
chaotic attractor.

(ii) There is another attractor (chaotic or not) outside this
invariant subspace.

(iii) The chaotic attractor is transversely stable in the phase
space. The Lyapunov exponents transverse to the invariant
subspace, λ⊥, are negative.

(iv) A set of unstable periodic orbits embedded in the
chaotic attractor are transversely unstable, and therefore for
at least one of the negative transverse Lyapunov exponents,
there should be substantial positive finite-time fluctuations.

As discussed above in Sec. II the present system of coupled
Lorenz oscillators has two distinct three-dimensional sub-
spaces Ss and Sas . The emergence of four different attractors
for each subsystem denoted A1, A2, A3+, and A3−, leads the
coupled system to six different invariant subspaces namelyS1s ,
S2s ,S3+s ,S3−s within the synchronization manifold, andS12as ,
S3+3−as on the antisynchronization manifold. For complete
synchronization and antisynchronization, these subspaces are
invariant since trajectories starting there will remain there.
Moreover, in the synchronization manifolds S1s , S2s , S3+s ,
S3−s contain, respectively, the chaotic attractors As

11, As
22,

As
3+3+, and As

3−3−. Similarly, in the antisynchronization man-
ifolds S12as and S3+3−as contain the chaotic attractors Aas

12 and
Aas

3+3−, respectively. Thus, conditions (i) and (ii) are fulfilled.
It should be noted here that the mixed-phase and asynchronous
attractors do not lie in invariant subspaces, and therefore their
basins cannot be riddled. To verify condition (iii) we computed
the largest Lyapunov exponent transverse to the synchronized
invariant subspaces λ⊥ using the variational equations for
(x,y,z) [Eq. (8)] given below, setting x = y = z = 0:

δ̇x = α(δy − δx)

δ̇y = βδx − δy − Xδz − Zδx

δ̇z = −(γ + 2ε)δz + Xδy + Yδx

Ẋ = α(Y − X)

Ẏ = βX − Y − XZ

Ż = −γZ + XY. (8)

We integrate the system with initial conditions δx =
δy = δz = 0, X = Y = 1, and Z chosen randomly in the
interval [20,24]. We also determine the three largest Lyapunov
exponents of the coupled system [Eq. (2)] using the algorithm

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

λ

ε

FIG. 10. The three largest Lyapunov exponents (red, green, and
blue) of the coupled system [Eq. (2)] as a function of coupling strength
ε. The black curve is the largest transversal Lyapunov exponent.

of Wolf and coworkers [46]. The attractors are chaotic, and
the red, green, and blue curves shown in Fig. 10 represent the
three largest Lyapunov exponents as a function of ε.

The largest (red curve) is always positive, attesting to the
chaotic dynamics on the attractors. The chaotic nature of
the attractors is also supported by K ≈ 1 obtained from the
modified 0-1 test for all values of ε (the result not shown here).
There is always a component formed by part of second and
third exponents which are near zero and represents the dis-
placement along the trajectory while the third exponent (blue
stars) represents the largest transversal Lyapunov exponent.
The black curve is the largest transversal Lyapunov exponent
calculated from the variational equations [Eq. (8)]. Results
from both methods show that the largest transversal Lyapunov
exponent changes sign at ε1 ≈ 0.63, the riddling bifurcation
point and ε2 ≈ 2.6, the blowout bifurcation point [42]. For
ε1 � ε � ε2 the only coexisting chaotic attractors are As

3+3+
and As

3−3− in the synchronization manifold, Aas
3+3− in the

antisynchronization manifold, and partially the asynchronous
state Ad

33 that is formed by intermittent synchronization and
antisynchronization; see Fig. 6. It should be noted that it
is possible to also find attractors As

11, As
22, and Aas

12, but
their fractions are inconsiderable. In this interval, the largest
transverse Lyapunov exponent for chaotic attractors in the
synchronization and antisynchronization manifolds overlap
for both methods and are negative. Thus, condition (iii) is
fulfilled when ε1 � ε � ε2.

Although the chaotic attractors As
3+3+, As

3−3−, and Aas
3+3−

are all transversely stable, they contain unstable periodic
orbits embedded within that are transversely unstable: this is
indicated by positive finite-time Lyapunov exponent values
denoted by λ̃⊥. These unstable segments of the orbits are
responsible for the repulsion of trajectories in the vicinity of
the attractor. We have computed finite-time contributions to
the largest transversal Lyapunov exponent using Eq. (8). The
probability distribution function of the finite-time Lyapunov
exponents is plotted in Fig. 11 for time t = 20 and for
different values of ε. As can be clearly seen, the distribution
of finite-time Lyapunov exponents is Gaussian with negative
mean but extends to positive values. Similar distributions can
be obtained for other values of the finite-time interval, t .

The fraction of positive finite-time Lyapunov expo-
nents can be estimated by evaluating the integral ϕ(t) =∫ ∞

0 P (λ̃⊥(t))dλ̃⊥(t) > 0 [38]. This is shown in Fig. 12 for
different t as a function of ε. For ε < ε1, ϕ ≈ 1 meaning
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FIG. 11. Probability distribution function PDF of finite t = 20
largest transversal Lyapunov exponent for different values of ε.

that the finite-time Lyapunov exponent is positive in average.
This result agrees with the infinite-time transversal Lyapunov
exponent (black curve), which is also positive as shown in
Fig. 10. Then, ϕ decays to 0.5 at ε = ε1 corresponding to
the riddling bifurcation point for which λ⊥ = 0. Thereafter,
ϕ drops below 0.5 for ε > ε1. For this case, the finite-time
transversal exponent is negative on average and agrees with
Fig. 10. Hence, for ε1 < ε < ε2, ϕ is nonzero, although the
largest transversal exponent is negative in average. The higher
limit ε2 defines the blowout bifurcation point through which
the transversal exponent changes sign and becomes positive.
However, for long time limit ϕ tends to be null, since the
finite-time exponent is spread on a Dirac centered at λ⊥ which
is negative. Thus, condition (iv) for riddling basins is also
fulfilled for this range of ε.

The riddling of the basins of attraction can also be inves-
tigated using scaling laws, namely, the measure of fraction
of trajectories that asymptotes to a given attractor [42,47].
Consider the synchronization manifold S3+s that contains the
chaotic attractor As

3+3+. Attractor As
3+3+ is pierced by points

containing initial conditions belonging to other attractors and
any trajectory starting from these points will not converge
to As

3+3+. Whenever x = y = z = 0, the system’s trajectories
will converge to either As

3+3+ or As
3−3− of the synchronized

manifolds depending on the initial condition.
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FIG. 12. Positive fraction ϕ of largest finite-time t transversal
Lyapunov exponent as a function of ε, for different values of t interval.
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FIG. 13. Fraction of initial conditions f not converging to
attractor As

3+3+ in the synchronized manifold S3+s as a function of the
distance l from the synchronized manifold S3+s for different values
of ε.

The fraction f� of points belonging to the basin of As
3+3+

in the synchronized manifold S3+s is evaluated as follows:
we first consider a set of initial conditions x = y = z = 0,
X = Y = 1, and Z randomly chosen so that the system
converges to attractor As

3+3+ in the invariant manifold S3+s .
Then, for the same set of initial conditions but differing in the z

direction by a distance |z| = l we determine to which attractor
the orbit converges. For each l, we repeat this operation for
several values of Z. The fraction f� is obtained by dividing
the number of initial conditions for which the trajectories
synchronize in S3+s by the total number of initial conditions
evolved. The fraction of trajectories that do not synchronize
in S3+s is obviously f = 1 − f�. For riddled basins, f should
scale as a power of l as f ∼ lη, with η > 0 being the scaling
exponent. Figure 13 presents results for two values of ε

belonging to [ε1,ε2] and as can be seen f shows fairly good
scaling as a power of l.

Furthermore, riddling behavior can be manifested by ex-
treme final states sensitivity on initial conditions. To verify this,
the fraction of uncertain initial conditions going to different
attractors, ρ as a function of distance between them can be
plotted. For riddled basins, the uncertainty exponent should
be close to zero, i.e., there is no change in the uncertainty
fraction by decreasing the uncertainty level. Figure 9 shows
the uncertainty fraction ρ for ε = 1.1 belonging to the riddling
interval [ε1,ε2]. The uncertainty exponent was evaluated to be
nearly zero (α ≈ 0.02 ± 0.008).

Although ε < ε1 is inside the multistability range, condition
(iii) for riddled basins is not fulfilled due to the nonnegative
transverse Lyapunov exponent. The coupled system exhibits an
extreme type of sensitive dependence of asymptotic attractors
on initial conditions as we showed in Sec. III, implying that
a perturbation on initial conditions, no matter how small,
has the same consequence as riddled basins regarding the
ability to predict the final state of the system. The near-zero
values of the uncertainty exponents indicate this and thus we
term the resulting basins of attraction for this range of ε as
“quasiriddled.”

To summarize, for ε1 � ε � ε2 there are three chaotic
attractors As

3+3+, As
3−3−, and Aas

3+3− that occupy three-
dimensional invariant subspaces, as well as the asynchronous
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attractor Ad
33 that is in the six-dimensional phase space. The

basin of each of the three attractors in the invariant subspace
is riddled with holes containing initial conditions belonging
to the basin of other coexisting attractors. Since more than
one basin is riddled, the resulting coexisting basins are said to
be intermingled. When ε < ε1, the asymptotic attractors are
extremely sensitive to initial conditions, thus sharing similarity
with riddled basins in terms of predictability of the final states
of the system, and hence can be termed quasiriddled.

V. CONCLUSION

In the present work we have studied the asymptotic
behavior of a system of two mutually coupled identical Lorenz
oscillators near the subcritical Hopf bifurcation point. Our
motivation has been to explore the effect of coupling, namely
the manner in which the coupling modifies the behavior.

Given the proximity of the bifurcation, the coupling results
in the system displaying aspects of the dynamics of the uncou-
pled system below the bifurcation when there is multistability.
In comparison with the studies that have examined coupled
Lorenz systems for the “standard” parameter values, our work
has uncovered a multiplicity of attractors that are not easily
accessed far from the Hopf bifurcation. Indeed, the large
number of attractors are uncharacteristic of coupled systems
in which the dissipation is so large; instances of systems
with a large number of coexisting attractors have frequently
been observed for weakly dissipative dynamics. In this
parameter regime, the system shows very rich dynamics. There
are coexisting synchronized, antisynchronized, intermittent,
mixed-phase, and desynchronized states, but depending on the
coupling strength, different numbers of attractors are visible.

We have also examined the basins of attraction of these
different states and found that the basins have a complicated
structure that leads to unpredictable dynamics. Depending on

the coupling strength value, the basins can be quasiriddled or
intermingled. Such a coexistence of large number of attractors

makes the chaotic coupled system highly sensitive to initial
conditions, thus impeding our ability to predict the final state
of the system. These properties can be of great significance in
various areas of science and technology: multistability can
be exploited in applications such as in the field of secure
communication for instance. At the same time, it can also
indicate features that need to be avoided to ensure stable
dynamics.

Given such dynamical complexity in a system of two
coupled Lorenz attractors, an ensemble of coupled Lorenz
systems near the Hopf boundary—whether identical or not—
will inevitably give rise to chimera states. Subsystem dynamics
on the attractors of type A1 or A2 will almost surely be
synchronized and antiphase to one another, while those
subsystems that lead to the A3 attractor will not be in
synchrony. This mixture of synchrony and asynchrony can be
seen to arise from the fact that there is multistability and that
the basins of attraction have a complex intertwined structure.

We have not addressed the effect of noise which can play a
major role when there are a large number of possible attractors.
In particular, the intertwined nature of the basins of the
different attractors makes the system extremely susceptible
to fluctuations in the dynamics. These effects are being
quantitatively studied in our ongoing work [48].
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