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Aging in mortal superdiffusive Lévy walkers
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A growing body of literature examines the effects of superdiffusive subballistic movement premeasurement
(aging or time lag) on observations arising from single-particle tracking. A neglected aspect is the finite lifetime
of these Lévy walkers, be they proteins, cells, or larger structures. We examine the effects of aging on the
motility of mortal walkers, and discuss the means by which permanent stopping of walkers may be categorized
as arising from “natural” death or experimental artifacts such as low photostability or radiation damage. This is
done by comparison of the walkers’ mean squared displacement (MSD) with the front velocity of propagation
of a group of walkers, which is found to be invariant under time lags. For any running time distribution of a
mortal random walker, the MSD is tempered by the stopping rate θ . This provides a physical interpretation for
truncated heavy-tailed diffusion processes and serves as a tool by which to better classify the underlying running
time distributions of random walkers. Tempering of aged MSDs raises the issue of misinterpreting superdiffusive
motion which appears Brownian or subdiffusive over certain time scales.
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I. INTRODUCTION

Superdiffusive motion has been experimentally observed in
a wide range of scenarios [1,2], from human movement [3,4] to
bacterial swarming [5] and intracellular transport [6], often by
the tracking of individual walkers (be these proteins, humans,
cells, or otherwise) [7–11]. Due to the complex nature of the
transport, a common assumption made in the analysis of their
motility is that the observed motion commences at the time of
observation (t = 0). That is, observation begins immediately
after preparation of the system, such that the velocity �v at which
the walker is moving was sampled at the beginning of our
measurements. If this is not the case, as occurs in a multitude
of experimental setups [12,13], the system is subject to time
lag or aging. The assumption of no aging becomes especially
problematic in cases where the walkers’ movements are time
affected and have finite life spans and reproduction patterns,
such that there is a finite time over which movement occurs.

In this work, we consider the effects of such time lags on
superdiffusive Lévy walkers with a finite lifetime in which
they are motile, after which the walkers stop. We further study
the effects of replenishing these walkers, which either leads
to a constant or increasing number of walkers. The physical
interpretations of a walker stopping are manifold, but can be
thought of as the “death” of the walker (with replenishing as
“birth”). Death may be “natural” or induced by, e.g., radiation
damage during observation, as can be the case when utilizing
optical tweezers with light of high intensity [14–16]. However,
the end of a trajectory may also result from photobleaching
[17–21], expiry of the walker fluorophore’s ability to emit light
as a result of photodissociation [11,17,18,22], or sedimentation
aided by the probe size or mass [18] of the walker in the
observed sample. For in vivo experiments, the walker may
also bind to another compound in the system. “Mortal” thus
simply refers to the finite duration of time over which the
walker moves. The main question is the extent to which aging
and stopping affect the observed transport, which we shall
gauge via the mean squared displacement (MSD) and its time

*helena.stage@manchester.ac.uk

average (TAMSD). By producing theoretical predictions of the
properties of these quantities, we obtain a test by which the
empirically measured (TA)MSDs may be studied to ascertain
whether such stopping effects are taking place.

Aside from improving the accuracy of our models, the
inclusion of time lags for mortal walkers leads to qualitatively
different results. The implication of this is clear: for systems
where time lag occurs, the nature of movement of each
individual walker may be obfuscated if aging and stopping
of walkers are not considered. Over longer time scales,
one intuitively expects the effects of aging to disappear but
crucially, for a plethora of practical reasons, experiments may
not be continuously conducted for long durations. Hence, if
the time lag is longer than or comparable to the time scale of
the experiment, it can significantly influence the observations.
Similarly, if one is at liberty to discard any trajectory wherein
the walker stops, the following analysis may seem superfluous.
However, particularly for in vivo experiments, the transport of
a walker as it approaches another distinct region may be of
interest, and naturally requires the previously ongoing process
to stop. Examples include transport close to the cell membrane
[23], the cell nucleus [24], and neuronal transport [25]. In the
case of active motion, the time scales over which stopping
occur can inform the loss of adenosine triphosphate (ATP) or
other energy sources.

What is age?

Let us now define what we mean by time lag or age in
a random walk. Consider a system of noninteracting random
walkers moving on the real line with a given velocity �v which
takes values ±v moving to the right and left, respectively.
The walkers move continuously in a certain direction for
a time T , which we call the running time, drawn from a
probability density function (PDF) ψ(τ ). Consequently, the
probability of uninterrupted movement is given by the survival
probability �(τ ) = ∫ ∞

τ
ψ(u)du [26]. Similarly, the position

of the walker is a random quantity X(t) which for symmetric
random walks has zero mean. So, a walker will draw a running
time T1 and move for a distance �X1 = �v1T1, after which a
new running time and direction of movement will be sampled
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FIG. 1. An illustration of a random walk on the line. Observed
movement happens with finite velocity ±v for some time Ti (for the
ith segment of the walk), starting from the initial position x(t = 0).
The continuous movement leads to a time-dependent position x(t).
As shown with the full arrow, no age corresponds to the case where
t = 0 coincides with the time at which a running time is sampled for
a new segment (T1 sampled at t = 0). Otherwise, for an aged process
this run started some time before (as shown by the dotted line).

and a distance �X2 = �v2T2 + �X1 will be covered, etc. For the
PDFs, we consider the mean running time 〈T 〉 as finite since
the integral

∫ ∞
0 τψ(τ )dτ = ∫ ∞

0 �(τ )dτ converges. For an
illustration of this movement, see Fig. 1. If there is no aging
in the random walk, T1 is sampled at t = 0. However, if the
system is lagged, this movement will have commenced before
observation at some time t < 0 and thus the total running time
of a run ending at X1 has duration longer than the apparent
value of T1. Since each run is independent of the next, we need
only consider the last run before observation in the case of
time-lagged movement.

The MSD 〈X2(t)〉 of this random walk considers the PDF
P (�x,t) of a walker being at position �x at time t and is defined
(for simplicity here in one dimension) as

〈X2(t)〉 =
∫ ∞

0
x2P (x,t)dx. (1)

Recall that for classical diffusion (as originally described by
Fick’s first law) a diffusion coefficient D leads to an MSD
〈X2(t)〉 = 2Dt which grows linearly in time [27–29].

One can introduce a mean structural probability density
n(�x,t,τ ) which describes the probability density of walkers
found at position �x at time t with a given running time. That
is, n(�x,t,τ )�τ gives the probability of walkers with running
times in the interval (τ,τ + �τ ) assuming the population
of walkers is conserved [30–32]. Standard initial conditions
which assume the current run started at observation t = 0 are
given by

n(�x,0,τ ) = p0(�x)δ(τ ). (2)

Under this assumption, all walkers initially have zero run-
ning time [27,28]. However, if we are to consider systems
which require preparation before observations can commence,
movement will have begun before t = 0 and will thus have
nonzero running times. The introduction of our structural
probability n(�x,t,τ ) makes the description of the random walk
semi-Markovian as each run is independent of previous ones.
For aging systems, we thus need only consider the last run
commenced before t = 0 (and not ending at that time). We
consider the following two types of time lag which may occur:

n(�x,0,τ ) =
{
p0(�x)δ(τ − τ0), τ0 initial running time
p0(�x)�(τ )

〈T 〉 , equilibrium state. (3)

The first case describes a system wherein at t = 0 all walkers
have running times τ0, such that movement began at t � −τ0

and has continued uninterrupted since t = −τ0. This is subtly

different from a random walk wherein movement started at a
time t = −τ0, but the walker may have changed direction in the
interim period. The second case of (3) describes the walkers
having reached an equilibrium state before measurements
began [30]. That is, a sufficiently long time has passed
between preparation and measurement that the distribution
of the walkers’ movement has approximated their survival
probability �(τ ). We cannot necessarily expect the behavior
of these two cases to coincide as τ0 → ∞. This is because we
are concerned with the time lag in the last run only, and not a
sequence of runs which sum to this duration. There is thus a
possibility of very long runs which do not necessarily reflect
the equilibrium distribution.

A considerable body of literature exists on time lags in
random walk theory, be these continuous time random walks
(CTRWs) [12,29,33–35] or Lévy walks specifically [36,37].
Aging in Lévy walks has been studied both in the context
of MSDs, TAMSDs [13,27], as well as the disparity between
these two quantities and its relation to ergodicity breaking
[38,39]. Analogous results were previously found by Zumofen
and Klafter in the context of dynamical systems [40,41],
who also considered equilibrated and nonequilibrated initial
conditions [27]. The focus of this work is superdiffusive Lévy
walks, though results may also be found in subdiffusive [42]
and ballistic [43] regimes. It has been suggested that aging may
lead to qualitatively different transport being observed [44,45].
Aging may also play a role for Lévy walks in systems subject
to finite time or space constraints as is indeed the case for
empirical measurements of motility [46,47]. For an excellent
review on time lags and their effects on random walks, we refer
the reader to [13], otherwise a comprehensive review specific
to Lévy walks was published in [48]. The structural probability
density has previously been used to explore the effects of
aging on movement between discrete states [49] or for jump
processes [34]. Our contribution is the joint study of aging
and stopping effects in the random walk, which yield different
results than when studied separately. As will be shown, these
results can have far-reaching implications for the interpretation
of the underlying dynamics of the observed motion.

The structure of the paper is as follows: In the subsequent
Sec. II we develop the mathematical framework with which to
describe aging walkers, starting from the mesoscopic outset of
n(�x,t,τ ). After summarizing some key technical methodology,
we derive the macroscopic equations for random walkers
subject to fixed (see Sec. III A) and equilibrated (see Sec. III B)
time lags. In both cases, we compare the results for the
probability density of a single walker trajectory with equations
for the mean density of walkers throughout space. The latter
approach assumes a growing mean population of walkers
and applies reaction-diffusion equations to predict the front
velocity of the propagating group of walkers. We discuss
the consequences for TAMSDs in Sec. IV. The results are
discussed and concluded upon in Sec. V.

II. GENERAL DESCRIPTION OF MOVEMENT

The aim of this section is to derive a general expression
for movement of walkers via the structural probability density
n(�x,t,τ ) under the influence of time lag. For simplicity, let
us consider movement along the real line so the notation can
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be simplified to �v = ±v and �x = x. We introduce the “turning
rate” β(τ ) = ψ(τ )

�(τ ) of the walkers which gives the rate at which a
new velocity and running time is sampled. Notice that this rate
may vary with τ to depict more or less persistent movement
(decay or growth with τ ). If we separate the population of
walkers according to their current direction of movement,
we can write n(x,t,τ ) = n+(x,t,τ ) + n−(x,t,τ ) + n0(x,t,τ ),
where n± denote the populations moving in the ±ve directions
(or populations with respective velocities ±v). Similarly,
n0(x,t,τ ) denotes the stopped walkers, though this quantity
may be regarded as zero if only the motile walkers are of
interest. The new component of the problem is that we will be
taking into account that the walkers may have had runs which
began before t = 0, and that changes may occur in the total
number of mobile walkers.

The walkers being measured are entities of finite lifetime
(and possible reproduction), such that there is a replenishing
rate η of new walkers, and a stopping rate θ . As already
discussed, stops may result from a natural finite lifetime of the
walker, premature death as a result of, e.g., radiation damage
during measurement [14–16], or binding to an alien component
in the environment. An apparent stop of the walker need not
correspond to “natural” death; we may simply be observing
an experimental artifact or by-product of the measurement.
This is most apparent in the low photostability of photofluores
employed as probes, leading to finite photon emission counts
[7,11,22] and the detrimental effects of photobleaching [17].
Depending on the experiment in question, several of the
suggested causes may be relevant concerns over multiple
experiment iterations. Circumventing these issues by the
insertion of larger physical probes poses uncertainty regarding
the preservation of walker behavior, as well as the risk of
accelerated sedimentation resulting from its increased size or
mass [7,18]. While concerted efforts have been made to reduce
these issues and their effects on the sampled data [8,50,51],
they remain problematic and should not be ignored. The result
is a net “stopping rate” which may include both technical
noise, induced death from measurement, and natural death
of the walkers, though not all of these will be present in
every experiment. Care must be taken when identifying this
net rate as an effective death rate, as we thus overestimate
the biological mortality of the walkers [52]. This problem
becomes especially pertinent when studying walkers which
merge, split, and perish over the time span of experimental
observation. Having described the causes of walkers stopping,
let us now proceed to their movement through space.

It is sensible to assume that there is no bias in the “newborn”
or replenished walkers, and these thus begin moving in either
direction with equal probability and zero initial running time.
The equations of motion are thus given by

∂n±
∂t

± v
∂n±
∂x

+ ∂n±
∂τ

= −β(τ )n± − θn± + η

2
(n+ + n−).

(4)

The unbiased direction of “newborns” is contained in the rate
n(x,t,τ )/2 rather than referring to a single direction n±. In the
case of a constant motile population with η = θ , new walkers
are replenished as often as others stop but need not move
in the same direction as the walkers they are replacing. The

overall movement of the walkers is consequently affected by
the stopping of individuals. One can solve (4) using the method
of characteristics and considering two cases: τ = t − ts when
τ < t and τ = t + τs when τ > t . The subscript s refers to
the evaluation at the start of the characteristic. The general
solution to the resulting equation

∫
dn±
n±

= − ∫
[β(u) + θ ]du

is given by

n±(x,t,τ ) = n±(xs,ts,τs) exp

(
−

∫ τ

τs

β(u) + θ du

)
, (5)

where τs = 0, τ − t depending on whether τ < t or τ > t ,
respectively. The values of xs and ts similarly depend on
whether t < τ or t > τ . Note the expression is independent of
η as replenished walkers appear with zero running time. The
continued movement of random walkers is thus affected if a
walker suddenly stops, cutting short the length of the current
trajectory segment. Since the running time is reset for each seg-
ment, and the durations of these segments as dictated by β(τ )
are independent of each other, the trajectories of replenished
walkers are formally indistinguishable from the trajectories
of “older” walkers after choosing a new direction of move-
ment. Letting n±(x,0,τ ) = f ±(x,τ ), n±(x,t,0) = j±(x,t),
and choosing to write �(τ ) = e− ∫ τ

0 β(u)du = −� ′(τ )/β(τ ), we
obtain the solutions

n±(x,t,τ ) =
{

n±(x ∓ vτ,t − τ,0)�(τ )e−θτ if τ < t,

f ±(x ∓ vt,τ − t)�(τ )e−θt

�(τ−t) if τ > t.
(6)

We have identified e− ∫ τ

0 β(u)du as the survival function �(τ )
corresponding to the turning rate β(τ ). The result for the
case τ < t is intuitively obvious: the probability density of
the population at a certain point in time and space with given
running time is the surviving portion of the population initially
at position x ∓ vτ and time t − τ with zero running time. As
the walkers can also stop with a constant rate, only a certain
portion e−θτ remain after such a time interval. In the case of
τ > t , we must correct for the walkers which already started
moving before this point, hence dividing by �(τ − t). We are
interested in the overall displacement of the walkers, for which
it is convenient to introduce a macroscopic description P±(x,t)
of the walkers with velocity in either direction

P±(x,t) =
∫ ∞

0
n±(x,t,τ )dτ, (7)

which is the sum over all running times walkers may have
while moving in the ±ve direction. If no walkers stop, the
above expressions sum to the PDF of a walker’s position over
time. As the walkers change direction, we consider a switching
term i±(x,t) given by

i±(x,t) =
∫ ∞

0
β(τ )n±(x,t,τ )dτ, (8)

which weighs these probabilities by the turning rates asso-
ciated with each running time. i± is thus a probability flux
corresponding to the change in direction of the walkers. The
initial conditions f ± for the case τ > t are already given in
(3), but we must provide the conditions for what happens
when a run ends. The functions j±(x,t) = n±(x,t,0) describe
the walkers newly arriving at x at time t and starting a new

062150-3



HELENA STAGE PHYSICAL REVIEW E 96, 062150 (2017)

run, and are given by

j±(x,t) = 1

2

∫ ∞

0
β(τ )n+(x,t,τ )dτ

+ 1

2

∫ ∞

0
β(τ )n−(x,t,τ )dτ

= 1

2
[i+(x,t) + i−(x,t)]. (9)

By integration of (4) and using the above definitions we obtain
the corresponding macroscopic evolution equation for P± of
the form

∂P±
∂t

± v
∂P±
∂x

= ∓1

2
[i+(x,t) − i−(x,t)]

− θP± + η

2
(P+ + P−). (10)

That is, the rate of change of walkers moving in either direction
depends on the probability flux of turning from either direction,
as well as stopping-replenishing processes.

In the context of, e.g., cell division and death where η, θ

may be interpreted literally, a stable population of walkers
requires η � θ . In such a case, a probabilistic approach is less
applicable, and a reaction-diffusion equation is considered to
ascertain the velocity at which the mean population of walkers
propagates. This is done in Secs. III A 2 and III B 2. However,
the alternative interpretation where η, θ are, e.g., stopping
and replenishing rates of the random walkers lends itself to a
probabilistic approach for a constant number of walkers. This
requires that we either consider a further quantity P0(x,t), the
immobile walkers across space (for a system where η = 0),
or let η = θ and renormalize for a constant number of motile
walkers. For the stationary walkers, we find that

∂P0(x,t)

∂t
= θ [P+(x,t) + P−(x,t)], (11)

such that P0 increases locally where walkers cease to move.
Assuming that initially all walkers are moving, it follows that
P0(x,0) = 0. Note that (10) relies on quantifying the position
and flux of the motile walkers. Using the definitions of (7) and
(8) combined with the integration of (6), the motile walkers
are described by

P±(x,t) =
∫ t

0
j±(x ∓ vτ,t − τ )�(τ )e−θτ dτ

+ e−θt

∫ ∞

0
f ±(x ∓ vt,τ )

�(τ + t)

�(τ )
dτ (12)

and (using ψ = β� from the definition of β) analogously the
flux equals

i±(x,t) =
∫ t

0
j±(x ∓ vτ,t − τ )ψ(τ )e−θτ dτ

+ e−θt

∫ ∞

0
f ±(x ∓ vt,τ )

ψ(τ + t)

�(τ )
dτ. (13)

We notice that all information relevant to time lags is contained
in the second term of the expressions for P±, i±. Prehistory
and future movement are thus separate in our analysis. These
contributions decay exponentially due to the stopping of the
walkers bringing forth these effects.

We must now ensure that the total probability of a walker oc-
cupying a certain position is commensurate with our different
assumptions regarding the biological birth or death or stopping.
If the walkers only change direction (η, θ = 0), the total
probability is simply given by P (x,t) = P+(x,t) + P−(x,t).
If the number of walkers is preserved but some bind or cease
to move with a rate θ , then the total probability is instead

P (x,t) = P+(x,t) + P−(x,t) + P0(x,t), (14)

where we additionally consider those walkers which over
time attain zero velocity. In the interpretation where η, θ are
viewed as birth and death rates the population of walkers is
preserved when η = θ . In such a context, it makes little sense to
consider the “dead” individuals as stationary walkers P0(x,t)
since the moving walkers are replenished by the birth rate η.
Instead, the propagators for the moving, mortal walkers must
be renormalized to accrue the effects of the “newborn” walkers
which (on average) replace them. Naturally, for η, θ 	 1 these
rates will likely have little effect over short time scales, though
this changes for longer times. The reasoning for this is as
follows: θ results in shorter running times than those imposed
should the walker have trajectories of durations specified by
β(τ ). The result is thus an increased “effective” rate at which
a run ends, making longer excursions less likely. As θ grows,
the duration of the last run of the walker will be prematurely
shortened by the stopping or death of the walker. The effect of
this changes whether we consider a single walker which stops
(η = 0, θ > 0), a renormalized probability of walkers which
stop but are replenished (η = θ > 0), or a concentration of
walkers where η > θ > 0.

If we consider a constant population, either in terms of
binding or walkers which are replenished, we are concerned
with a probability P (x,t) of single trajectories as defined
in (14), and can be observed experimentally using single-
particle tracking. However, subject to a trivial rescaling, P (x,t)
becomes a mean-field density ρ(x,t) or concentration of
walkers throughout space, which we call the “bulk.” Here,
we are instead concerned with group motility of multiple
walkers, where the total population on average is increasing.
Single-particle tracking is not suitable for such an approach,
but the group may be monitored by other means. As the walkers
are noninteracting, η does not affect the probability of a single
walker’s trajectory, but will affect the bulk of all walkers
(via the growth in the number of walkers). This distinction
between single walker and bulk is important: for single-particle
tracking we are concerned with the probability of a single
walker’s trajectory. However, study of the bulk may aid us
in better interpreting the microscopically observed behavior
of each walker by the comparison of stopping rates of the
bulk compared to those of the individual walker. This may
indicate whether θ is an inherent property of the walker (over
the times that experiments are conducted) or an experimental
artifact. Study of the bulk requires the execution of a separate
experiment measuring the group propagation (specifically, the
front velocity) as occurs when η > θ for sustained population
growth. If this is not practicable, individual trajectories must
suffice. The front velocity of a moving, living bulk of walkers
has previously been studied in systems with no aging [32,53].
In this work, we produce the corresponding bulk descriptions
of walkers under aging conditions, and outline the implications
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of these findings on the propagation velocity and interpretation
of single trajectory observations. This shall be done for both
initial conditions given in (3). In order to avoid confusion
and to clarify the scope of validity of our results, calculations
which specifically consider the bulk dynamics will be denoted
using the mean-field notation ρ(x,t) instead of P (x,t). P (x,t)
thus refers to a random walker’s PDF of position, and ρ(x,t)
the mean density of a growing population of random walkers
that moves through space. Thus far, our analysis makes no
distinction between the two, as we must first construct the basic
equations for the single walker before these can be averaged
to describe the bulk. What follows is a brief description of
the chosen methods by which to calculate our quantities of
interest.

Brief technical interlude

We are presented with somewhat involved integrodiffer-
ential equations in (10), which are often solved by working
in Fourier or Laplace space. To this end, we introduce the
Fourier-Laplace transform (FLT) of a function g(x,t):

FxLt {g(x,t)}(k,s) = g̃(k,s) =
∫
R

∫ ∞

0
eikx−st g(x,t)dx dt.

(15)

We also introduce the notation for a Fourier transform (FT)
Fx{g(x,t)}(k,t) = ǧ(k,t) = ∫

R eikxg(x,t)dx and a Laplace
transform (LT) Lt {g(x,t)}(x,s) = ĝ(x,s) = ∫ ∞

0 e−st g(x,t)dt

of the function g. These transforms are very useful when
working with integral definitions of functions, as illustrated
here with the renewal measure [54]. If we call each occasion
a walker changes direction an “event,” such that the mean
number of events up to a time t is given by E[N (t)], the
renewal density is the rate of change of this quantity and one
can write

h(t) = dE[N (t)]

dt
= ψ(t) +

∫ t

0
h(s)ψ(t − s)ds, (16)

more commonly known as the renewal equation for a running
time PDF ψ(τ ) of a walker [55]. The benefit of these
transformations is being able to trivially rearrange such
integral equations to, e.g., ĥ(s) = ψ̂(s)

1−ψ̂(s)
= ψ̂(s)

s�̂(s)
.

While powerful, this methodology is more easily applied
by the separate consideration of the two forms of time lag f ±
posed in (3). In the following section, we proceed to analyze
the effects of each of these lags on the walker movement.

III. SOME EXAMPLES OF TIME LAG

In this section, we obtain the propagators of single walkers
and interpret these results by comparison with the bulk
movement. This is done for both fixed and equilibrated time
lags. To begin with, we shall consider the case of fixed running
times τ0 at t = 0, and determine the resulting MSD.

A. Constant lag f ±(x,τ ) = p0(x)δ(τ − τ0)

Consider the effects of a time lag wherein the lag τ0 is fixed
for all walkers. By substitution of f ±(x,τ ) = p0(x)δ(τ − τ0)
into (12) and (13), we find the equations in Fourier Laplace

space of the form

P̃±(k,s) = j̃ (k,s)�̂(s ∓ ikv + θ )

+ p̌0(k)

�(τ0)
L{�(t + τ0)}(s ∓ ikv + θ ) (17)

and

ı̃±(k,s) = j̃ (k,s)ψ̂(s ∓ ikv + θ )

+ p̌0(k)

�(τ0)
L{ψ(t + τ0)}(s ∓ ikv + θ ). (18)

These equations are similar, save for the presence of ψ̂ or �̂.
To relate these two quantities, we thus introduce the memory
kernel K(t) defined in Laplace space as

K̂(s) = ψ̂(s)

�̂(s)
= sψ̂(s)

1 − ψ̂(s)
= 1

�̂(s)
− s = sĥ(s), (19)

where we have used the result that ψ̂(s) = 1 − s�̂(s). Elimi-
nating for j̃ (k,s), we can directly relate the probability flux to
the probability of walkers where

i±(x,t) =
∫ t

0
K(τ )e−θτP±(x ∓ vτ,t − τ )dτ

+ p0(x ∓ vt)e−θt

�(τ0)

{
ψ(t + τ0)

−
∫ t

0
K(τ )�(t + τ0 − τ )dτ

}
, (20)

which is valid for all running time distributions ψ(τ ). For τ0 =
0 the second term vanishes, as expected. The quantity i±(x,t)
describes the flux of walkers moving in the ±ve direction
which change direction. It is the statement that the probability
of newly arrived walkers equals the sum of probabilities of
all walkers which were previously at positions with a velocity
that now would allow them to be at position x at time t .
Noting that the above equations in Laplace space all have
argument s + θ ∓ ikv, we introduce the shorthand ω∓ = s +
θ ∓ ikv. From the walker flux (20), the definition of j±(x,t) =
1
2 [i+(x,t) + i−(x,t)] and (17), it follows that

2P̃±(k,s)

= ψ̂(ω∓)P̃±(k,s) + K̂(ω±)�̂(ω∓)P̃∓(k,s)

+ p̌0(k)

�(τ0)
L{ψ(t + τ0) ∗ �(t) − ψ(t) ∗ �(t + τ0)}(ω∓)

+ p̌0(k)

�(τ0)
L{ψ(t + τ0) − K(t) ∗ �(t + τ0)}(ω±)�̂(ω∓)

+ 2
p̌0(k)

�(τ0)
L{�(t + τ0)}(ω∓), (21)

where f (t) ∗ g(t) = ∫ t

0 f (t − u)g(u)du denotes a convolution
of two functions. A well-known approach in the literature
[27,56] is to use expressions for P̃± to find the expression for
the total probability P̃ = P̃+ + P̃− + P̃0, where P̃0 may be
zero. From (11) we know that sP̃0(k,s) = θ (P̃+ + P̃−). This
is the propagator for the walkers already moving on the real
line, which accounts for the rate θ at which the walkers stop.
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We thus find

�(τ0)

s + θ

P̃ (k,s)

p̌0(k)

= L{�(t + τ0)}(ω−) + L{�(t + τ0)}(ω+)

2sp̌0|k=0

+ �̂(ω+)L{ψ(t + τ0)}(ω−) + �̂(ω−)L{ψ(t + τ0)}(ω+)

2sp̌0|k=0[2 − ψ̂(ω+) − ψ̂(ω−)]

+ L{�(t) ∗ ψ(t + τ0)}(ω+) + L{�(t) ∗ ψ(t + τ0)}(ω−)

2sp̌0|k=0[2 − ψ̂(ω+) − ψ̂(ω−)]
,

(22)

from which we can characterize the walker trajectories and
MSD. This is the transformed PDF for the walkers moving
through space, which is normalized for walkers which stop
and are not replenished, or which are replenished at a rate
η = θ . Note that (22) does not apply to the total concentration
of walkers, which is derived in a separate manner later in
the text.

A crucial point to note here is that usually one would not
measure the MSD in a reaction-transport system containing
processes such as death or binding (or general stopping of
the motion). However, as already discussed, θ may affect
the motion of the walkers by shortening longer trajectories,
and must thus be considered. In other words, if we consider
processes which eventually cease movement, there is a prob-
ability of shortened last segments of the trajectories due to an
increased “effective rate” of changing direction. This becomes
especially relevant if the tracked particles are in a constrained
region or otherwise move in a system where disregarding
the trajectory segments immediately before binding is un-
reasonable. Furthermore, for very persistent trajectories with
occasionally long running times, disregarding the last segment
in order to avoid issues pertaining to the binding may result in
inaccurate measurements of the distribution of running times
ψ(τ ). Consequently, if the MSD is a quantity of interest which
has been empirically measured, then a theoretical MSD as
will be calculated below is of high relevance in predicting
the variation from the MSD that would arise from similar
dynamics in an “immortal” system (where practically θ = 0).
If there are no expectations of constrained boundaries in the
system such that binding is unlikely, experimentally measured
MSDs of the form to be determined serve as indicators that
internal cell dynamics or deterioration is at play in walkers of a
size where directly observing such phenomena simultaneously
is challenging.

Having motivated why an MSD for a stopping walker
may be of interest, we now proceed to derive this quantity.
We remind the reader that for such time-lagged PDFs, their
Laplace transform is given by L{ψ(t + τ0)}(s) = �(τ0) −
sL{�(t + τ0)}(s), and use the well-known result that moments
can be obtained from the characteristic function [26,27]

L{〈Xm(t)〉}(s) = i−m ∂mP̃ (k,s)

∂km

∣∣∣∣
k=0

. (23)

As expected, the mean position of the walkers 〈X(t)〉 = 0 since
the turning rates of the walkers are symmetric. The MSD thus

requires us to evaluate

∂2P̃

∂k2

∣∣∣∣
k=0

= −2v2

s

L{�(t + τ0)}(s + θ )�̂ ′(s + θ )

�(τ0)�̂(s + θ )
+ 2v2

s

×
(

�̂ ′(s + θ )

(s + θ )�̂(s + θ )
+ L′{�(t + τ0)}(s + θ )

�(τ0)

)
+ p̌′′

0 |k=0

sp̌0|k=0
, (24)

where the prime notation (′) implies a derivative �̂ ′(s) =
d�̂(s)/ds in Laplace space and arises from the dependence
of ω± on k. When stopping disappears (θ = 0), we recover
the expected form arising from a Lévy walk with memory.
Furthermore, in the case when the time lag is zero (τ0 = 0),
we recover the known results for no aging [27,28]. However,
once stopping comes into effect we find that the transport
is tempered to produce a plateau once time scales become
comparable to θ .

What occurs to this system for very large time lags,
i.e., τ0 → ∞? We can let �(t + τ0) ≈ �(τ0) − tψ(τ0) using
ψ(t) = −� ′(t). By manipulation of (24) we can approximate

∂2P̃

∂k2

∣∣∣∣
k=0

= − 2v2

s(s + θ )2

(
1 − β(τ0)

�̂ ′(s + θ )

�̂(s + θ )
− 2β(τ0)

s + θ

)
+ p̌′′

0 |k=0

sp̌0|k=0
, (25)

where we have used the result that β = ψ/�. For persistent
random walks β(τ0) → 0 as τ0 → ∞. If this is the case, we
find that for times τ0 � t , the MSD of any walker is linear in
time, but tempered by the stopping rate: 〈X2(t)〉 ∼ te−θt . In
the case when θ = 0, the MSD is ballistic with 〈X2(t)〉 ∼ t2.
However, other random walks may not be persistent, such that
β(τ0) → const. In such cases, or for smaller time lags t � τ0,
these terms in (25) do not vanish and we must consider their
effects.

1. Variances for different running time distributions

We now evaluate the MSDs for different running times,
subject to finite time lags τ0 < t .

Exponential distribution. ψ(τ ) = λe−λτ which corresponds
to a walker moving with a constant turning rate λ and mean
running time 〈T 〉 = 1/λ. We find that

〈X2(t)〉 = 2v2

θλ(θ + λ)
(λ + e−θt [θe−λt − θ − λ]) − p̌′′

0 |k=0

p̌0|k=0

∼ t0, (26)

which is constant over time. Considering that for nonstop
transport (θ = 0) the MSD is linear in time, it should not
be surprising that when θ > 0 the variance falls. The MSD
is unchanged by time lag due to the constancy of the turning
rate which indicates a Markov process. That stopping tempers
the behavior of the walkers is a well-known general effect
previously seen in, e.g., live cells [57]. This is underscored by
qualitatively different results arising from the walker mortality,
an effect which can be seen when attempting to set θ = 0 in
the above expression.
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Gamma distribution. ψ(τ ) = λ2τe−λτ which has a mean
running time of 〈T 〉 = 2/λ and a preference for longer running
times than the exponential distribution. In this case, for long
times,

〈X2(t)〉

= 2v2

1 + λτ0
t
e−(λ+θ)t λτ0

λ + θ
− p̌′′

0 |k=0

p̌0|k=0

+ v2e−θt

λ(1 + λτ0)

(
e−2λt (λτ0 − 1)

θ + 2λ
− 3(1 + λτ0)

θ

)
+ v2e−θt

λ(1 + λτ0)

2e−λt [2(λ + θ ) + λ(2λ + θ )τ0]

(λ + θ )2

∼ te−(λ+θ)t . (27)

A key feature of the transport here is that despite a nonzero
stopping rate θ , the MSD is linear in time, though tempered by
the rates λ, θ . Crucially, this is an aging effect of walkers
which vanishes when τ0 = 0. For sufficiently long times,
the likelihood of such uninterrupted excursions decreases
leading to a constant MSD analogous to an exponential
distribution. In other words, aging here results in a qualitatively
different transport phenomenon than if one assumes movement
commencing with zero running times. Aging or finite time
effects have previously been found to result in variations
in motility from subdiffusive to ballistic movement in sys-
tems with heavy-tailed running times [46] as we shall now
investigate.

Power law distribution. ψ(τ ) = μτ
μ
∗ /(τ + τ∗)1+μ, 1 <

μ < 2 corresponding to a persistent random walk with a
turning rate μ

τ+τ∗
which decreases with the running time.

This leads to a mean running time 〈T 〉 = τ∗
μ−1 where τ∗ > 0

is a characteristic time scale. Referring to (24), we need an
expression for �(t + τ0). We recall that for no time shift
and with characteristic time scale τ∗, the survival function is
given by

�τ∗(t) =
(

τ∗
τ∗ + t

)μ

, (28)

where the subscript reiterates the time scale parameter.
This notation will only be used where relevant for the
rest of this section. The Laplace transform of the survival
function is given by Lt {�τ∗(t)}(s) = �̂τ∗ (s) = esτ∗ (sτ∗)μ

s
�(1 −

μ,sτ∗), where �(α,x) is the incomplete gamma func-
tion [58]. In the time-lagged case, we similarly find
that

�τ∗ (t + τ0) =
(

τ∗
τ∗ + τ0

)μ(
τ∗ + τ0

τ∗ + t + τ0

)μ

= �τ∗(τ0)�τ∗+τ0 (t), (29)

such that time-lagged survival requires surviving through-
out the lag τ0, as well as the subsequent time with
a different time scale. For ease of notation, let us
introduce the constant γ = τ∗ + τ0. Then, Lt {�τ∗(t +
τ0)}(s) = �τ∗(τ0)�̂γ (s) = �τ∗ (τ0)esγ (sγ )μ

s
�(1 − μ,sγ ). In the

long-time limit (or equivalently when s → 0), we find

FIG. 2. Effect of tempering on an MSD with heavy-tailed running
times. The bold line indicates a tempered superdiffusive process with
μ = 1.8, θ = 0.01, τ0 = 1. Without tempering, this MSD would be
expected to continue as indicated by the (black) dotted line. However,
if measurements are taken over shorter time windows, there is a
risk of identifying the resulting motion as Brownian (blue dashed
line), subdiffusive (red dotted-dashed line), or a joint process which
undergoes all three stages. For clarity, the subdiffusive component of
(30) has been suppressed.

that

〈X2(t)〉 = 2v2

τ
1−μ
∗

�(2 − μ)

[μ − 1]−1

(
1

θ3−μ
− t3−μEiμ−2(θt)

�(3 − μ)

)
+ 2v2

τ
−μ
∗

[
γ μ

τ
μ
∗

− γ

τ∗

](
�(2 − μ)

θ2−μ
− t2−μEiμ−2(θt)

)
∼ t3−μEiμ−2(θt), (30)

where we have used the approximation �̂τ∗ (s) ≈ 〈T 〉 +
(sτ∗)μ�(1 − μ)/s [54], and the definition of the exponential
integral Eiα(x) = ∫ ∞

1 e−ux/uαdu [58]. Hence, over shorter
time scales, the transport is superdiffusive with 〈X2(t)〉 ∼ t3−μ

which gradually becomes tempered to a constant MSD. This
is consistent with the results obtained for previous running
time distributions. While the time lag does contribute over
shorter time scales (of order t2−μ), the qualitative behavior
of the observed superdiffusion is unchanged by the time lag
for larger times t > τ0. However, for systems where τ0 � t

the MSD is tempered Brownian and follows te−θt . This is
consistent with known findings from the literature [29].

We have shown that the choice of running time PDF
significantly influences the qualitative behavior of the diffu-
sion. In the gamma-distributed case, the aging is capable of
producing a shift from one kind of diffusion to another. A
shared feature is the tempering and eventual constant value
of the MSD arising from the stopping rate θ as discussed in
Sec. II. We now briefly illustrate the effect of this tempering
and resulting possible interpretations of the motility in Fig. 2.
If measurements are available over many orders of magnitude,
one easily observes that there is a superdiffusive component
which eventually reaches a plateau. Hence, the proposed model
provides a natural mechanism for the presence of an “effective
truncated power law” distribution of running times by the
consideration of (natural or induced) death. Furthermore, for
high-precision measurements which only record over shorter
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time intervals, there is a risk of interpreting the observed MSD
as a transition from superdiffusive to subdiffusive motion as
illustrated in Fig. 2. Care must thus be taken in arguing whether
the movement simply appears to be behaving in a certain
manner, or whether it is a reflection of the intrinsic movement
of the walkers. Once the possibilities of experimental artifacts
such as photobleaching or degeneration have been discarded,
one can with greater confidence assert any transitions between
movement regimes that might be observed. Naturally, when
conducting the experiment a data set will likely be discarded
if little movement is seen [as corresponds to the expectations
from a constant turning rate β(τ ) = λ]. In the case of non-
Markovian motion, measurement will likely also cease once it
becomes clear that the walker is no longer moving (the plateau
is reached). However, the times taken for this to occur will
likely vary for each iteration of the experiment.

Thus far, we have studied the MSD of single walkers mov-
ing throughout space as might be done using single-particle
tracking. We now turn to a related system to be understood via
a different experiment, with the intent that the results arising
from these related investigations may bring greater under-
standing to walker motility. The walkers in question may still
cease to move or die, but immobile walkers will be replaced
with mobile ones at a rate η � θ . If the number of walkers is
not constant, it makes little sense to consider the MSD as a
measure of the motility, and instead we study the mean-field
density or bulk of walkers ρ(x,t) throughout space. One can
still think of the walkers as binding or dying as interchangeable
interpretations, but unless η = θ there must now be a growth
in the population of walkers in order to sustain the spread.

2. Description of the bulk of walkers

We shall now consider the mean population of walkers
across space and time, which we term the bulk. We must
therefore include the birth of new walkers as these contribute
to the population growth and hence the spreading of the bulk.
The extent to which time lag contributes to this spread is also
examined. Study of the bulk of walkers requires an experiment
wherein a region of initially high concentration of walkers is
monitored as the walkers multiply and spread into the empty
surroundings, e.g., the movement of the boundary of a colony
of walkers. The aim of such a description is to determine the
front velocity �uβ at which the bulk propagates into the unoccu-
pied region, which may vary for each turning rate β. Heuris-
tically, one further expects such a velocity to vary with the
walker speed v, the birth rate η, and the death rate θ , such that

|�uβ | = uβ(v,η,θ ). (31)

The speed of the walkers is a constant for each system; the
above expression simply underscores that it may be affected
by the values of our chosen parameters as well as the motility
of each walker. For each hypothesized turning rate β, the
death rate θ may be estimated by inverting (31) for known
η, v. If one assumes the same parameter values for the
bulk of walkers (e.g., θfront), and each individual random
walker (e.g., θsingle), comparison of these values may indicate
whether further experimental artifacts arise in single-particle
tracking should θsingle �= θfront. In other words, it can be used to
determine whether the stopping rate of each walker is entirely

determined by the death rate. We have implicitly assumed that
the inherent movement (as given by β) undertaken by each
member of the bulk is similar to what would be observed
during single-particle tracking if there were no experimental
artifacts. This approach thus only applies if walker interactions
do not significantly alter motility. Having motivated the
dual approach of single walker and bulk modeling, we
now investigate the effects of aging and mortality on the
bulk propagation. Note that the employed methodology has
previously been applied to estimate the speed of propagation
during the Neolithic transition [31] and other non-Markovian
processes (often with chemotactic interactions) [53,59,60].

The starting point of this approach is still (20), but we now
utilize the method popularized by Hillen and others [59–62]
to obtain a single integrodifferential equation for the bulk
(for derivation see Appendix) where the population changes
described in (10) are taken into account. By the algebraic
manipulation of (10), one obtains a single equation of the form

∂2ρ

∂t2
− v2 ∂2ρ

∂x2
+ (2θ − η)

∂ρ

∂t
− θ (η − θ )ρ

= e−θt

�(τ0)
v

∂

∂x
[p0(x − vt) − p0(x + vt)]

×
(

ψ(t + τ0) −
∫ t

0
K(τ )�(t + τ0 − τ )dτ

)
−

∫ t

0

K(τ )

2
e−θτ

(
∂

∂t
+θ−η−v

∂

∂x

)
ρ(x−vτ,t−τ )dτ

−
∫ t

0

K(τ )

2
e−θτ

(
∂

∂t
+θ−η+v

∂

∂x

)
ρ(x+vτ,t−τ )dτ.

(32)

As before, when τ0 = 0 the aging contribution vanishes
and we have the standard transport equation for the bulk.
A spatially uniform initial distribution p0(x) also leads
to a vanishing aging contribution. This is one means of
establishing a basis of comparison between aging effects
and other (previously discussed) variables. The macroscopic
transport (from a mesoscopic outset) and its changes with
aging effects has previously been studied for walkers, though
not taking into account their mortality [63].

For groups of walkers it is of interest to determine the front
velocity, i.e., the velocity at which the growing bulk of walkers
spreads through space. In order to find the front velocity uβ ,
we apply a hyperbolic scaling to the equation for the mean
number of walkers (32) which takes the form

t → t

ε
, x → x

ε
, (33)

and subsequently let ε → 0 [32,64]. A single wave equation
for a Lévy walk has also recently been derived [65]. Crucially,
the front velocity is unchanged by this as space and time
coordinates are scaled equally. The contribution of aging to
this equation is enveloped by the death of these walkers e−θt ,
such that when hyperbolic scaling is applied to these terms
(leading to e−θt/ε) they vanish as ε → 0. Further details may
be found in [53] for similar random walks without aging. The
front velocity uβ is upper bounded by the speed of walkers
uβ � v, and decays to zero as the population stagnates θ → η.

062150-8



AGING IN MORTAL SUPERDIFFUSIVE LÉVY WALKERS PHYSICAL REVIEW E 96, 062150 (2017)

Consequently, while the birth and death of walkers still needs
to be taken into account for the calculation of the front velocity,
it is a measure that is independent of aging. Since the bulk
motility as an ensemble average is less susceptible to errors
and the birth of new walkers is unlikely to be an experimental
artifact, the front velocity can be used as a gauge for the
magnitude of these errors not inherent to the “life” of the
walkers. Single trajectory expectations and the front velocity
of the bulk in conjunction hence allow us to better gauge
whether walkers are truly exhibiting, e.g., Brownian motion,
or only appear to be doing so due to the experimental effects
previously discussed.

We now proceed to investigate the effects of sufficiently
long time lags that the system has equilibrated before measure-
ment. We again consider both walkers which cease movement,
and the movement of the bulk.

B. Equilibrium state f ±(x,τ ) = p0(x) �(τ )
〈T〉

We now consider the case wherein enough time has elapsed
that the system has equilibrated. As more time passes, the
running times thus become proportional to their survival
probability �(τ ) scaled uniformly by the mean running
time 〈T 〉 [27,30]. If the system starts from an asymptotic
equilibrium state, we can write the time lag from (12) as

e−θt

∫ ∞

0
f ±(x ∓ vt,τ )

�(τ + t)

�(τ )
dτ

= p0(x ∓ vt)e−θt

〈T 〉
∫ ∞

0
�(τ + t)dτ. (34)

Moving into Fourier Laplace space, Eqs. (12) and (13) become

P̃±(k,s) = j̃ (k,s)�̂(s ∓ ikv + θ )

+ p̌0(k)

〈T 〉(s ∓ ikv + θ )
[〈T 〉 − �̂(s ∓ ikv + θ )]

(35)

and
ı̃±(k,s)= j̃ (k,s)ψ̂(s ∓ ikv + θ )

+ p̌0(k)

〈T 〉(s ∓ ikv + θ )
[1−ψ̂(s ∓ ikv+θ )]. (36)

By the same method as used in Sec. III A, we obtain

i±(x,t) =
∫ t

0
K(τ )e−θτP±(x ∓ vτ,t − τ )dτ

+p0(x ∓ vt)e−θt

{
1

〈T 〉 −
∫ t

0
K(τ )dτ

}
(37)

as the expression for the walker flux. As done previously,
we shall make use of the shorthand ω∓ = s + θ ∓ ikv for
arguments in Laplace space. From the walker flux (37),
the definition of j±(x,t) = 1

2 [i+(x,t) + i−(x,t)] and (35), it
follows that

2P̃±(k,s) = ψ̂(ω∓)P̃±(k,s) + K̂(ω±)�̂(ω∓)P̃∓(k,s)

+ p̌0(k)

ω∓

(
2 − �̂(ω∓)

〈T 〉 − ψ̂(ω∓)

)
+ p̌0(k)

ω±

(
1

〈T 〉 − K̂(ω±)

)
�̂(ω∓). (38)

In analogy to the statement regarding (14), we may either
consider a constant population of walkers where η = θ , or
interpret θ as a rate at which the walkers cease to move.
The resulting probability of the walker moving through
space, where the probability P = P0 + P− + P+ is then given
by

(s + θ )2 + k2v2

s + θ
P̃ (k,s)

= p̌0(k)

p̌0|k=0

s + θ

s

+ p̌0(k)

p̌0|k=0

ikv

〈T 〉
�̂(ω+)[1−ψ̂(ω−)] − �̂(ω−)[1−ψ̂(ω+)]

s[2−ψ̂(ω+) − ψ̂(ω−)]
,

(39)

which can be used to characterize the motility of the walkers.
We find from the symmetry of the turning rates that the mean
displacement of the walkers is zero, but the MSD can be found
from

∂2P̃

∂k2

∣∣∣∣
k=0

= p̌′′
0 |k=0

sp̌0|k=0
− 2v2

s(s + θ )2

(
1 − �̂(s + θ )

〈T 〉
)

(40)

using (23). We can now draw a comparison between this
behavior and that of the MSD for fixed time lags in (24). For
random walks where the mean running time grows 〈T 〉 → ∞,
we again encounter tempered Brownian behavior with an MSD
of order te−θt . However, when θ = 0 the MSD is ballistic;
a phenomenon consistent with strongly anomalous motion
(0 < μ < 1), which also holds another interpretation. For
random walks with large time lags τ0 � 1 as examined in
Sec. III A, one empirically also measures very long running
times if β(τ0) → 0. If the turning rate β(τ0) → const, we do
not observe this behavior, and thus have no reason to expect
the motion to be ballistic. In the case of no stopping, very
long fixed time lags can therefore be regarded as qualitatively
equivalent to nonaged walkers which are strongly anomalous
rather than superdiffusive. When θ > 0, the MSD of the
walkers is slower and tapers off as the walkers bind. We
now investigate the MSD for a variety of running time
PDFs.

1. Variances for different running time distributions

Exponential distribution. ψ(τ ) = λe−λτ which corresponds
to a walker moving with a constant turning rate λ and mean
running time 〈T 〉 = 1/λ. We find that

〈X2(t)〉 = 2v2

λθ (λ + θ )
(λ + e−θt [θe−λt − λ − θ ]) − p̌′′

0 |k=0

p̌0|k=0

∼ t0, (41)

as expected. The MSD behaves the same as for no time lag due
to the constancy of the turning rate which makes this random
walk a Markov process. The result is therefore identical to that
of (26).

Gamma distribution. ψ(τ ) = λ2τe−λτ which has a mean
running time of 〈T 〉 = 2/λ and a preference for longer
running times than the exponential distribution. In this
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case,

〈X2(t)〉 = v2

{
e−(λ+θ)t

[
t

λ + θ
+ 3θ + 4λ

λ(λ + θ )2

]
− 3e−θt

λθ

}
+ 3λ + 2θ

θ (λ + θ )2
− p̌′′

0 |k=0

p̌0|k=0
∼ te−(λ+θ)t . (42)

This MSD also exhibits tempered Brownian behavior before
converging to a constant, which is consistent with our findings
from (27). Since aging is an inherent assumption here from the
statement of (3), there is no fixed time lag τ0 that may be set
to zero to demonstrate that indeed the above behavior arises
from aging. However, from inspection of (27) and (42), the
qualitative agreement between the two should be taken as a
clear indicator that aging changes the expected observations
in the system, regardless of the particular form in which it
manifests itself. In this case, the distribution of running times
arising from an equilibrium condition at t = 0 means that
there is a high likelihood of trajectories which have longer
excursions, and thus again we observe a time window in which
stopping does not dominate the transport.

Power law distribution. ψ(τ ) = μτ
μ
∗ /(τ + τ∗)1+μ, 1 <

μ < 2 corresponding to a persistent random walker with a
turning rate μ

τ+τ∗
which decreases with the running time. This

leads to a mean running time of 〈T 〉 = τ∗
μ−1 where τ∗ > 0 is

a characteristic time scale. In the long-time limit we find that
the MSD is given by

〈X2(t)〉 = 2v2

τ
1−μ
∗

�(2 − μ)

(
1

θ3−μ
− t3−μEiμ−2(θt)

�(3 − μ)

)
∼ t3−μEiμ−2(θt). (43)

This result is consistent with the literature [29] in the case
of walkers which never stop (η,θ = 0). The trajectories of
single walkers appear less affected by initial conditions which
commence from an equilibrated state than those which do not.
This should not be surprising as equilibration assumes each
trajectory to be representative of the underlying probability
�(τ ) of the running times, and consequently little change
is observed. For systems which commence with zero running
times (the standard theoretical description for standard random
walks), the MSD also does not coincide with the above result.
We now proceed to investigate how equilibration of the system
of walkers’ premeasurement affects the bulk.

2. Description of the bulk of walkers

Using the same method as described in the Appendix, we
obtain a single equation for the bulk probability of the form

∂2ρ

∂t2
− v2 ∂2ρ

∂x2
+ (2θ − η)

∂ρ

∂t
− θ (η − θ )ρ

=
(

1

〈T 〉 − h(t)

)
e−θt v

∂

∂x
[p0(x + vt) − p0(x − vt)]

−1

2

∫ t

0
K(τ )e−θτ

(
∂

∂t
+θ−η−v

∂

∂x

)
ρ(x−vτ,t−τ )dτ

−1

2

∫ t

0
K(τ )e−θτ

(
∂

∂t
+θ−η+v

∂

∂x

)
ρ(x+vτ,t−τ )dτ.

(44)

TABLE I. Qualitative description of the MSD for different
running time PDFs and initial conditions. For large times, all
MSDs tend to a constant value, while the case θ = 0 recovers
previously known results which are qualitatively different from the
above. Global tempering of these quantities introduces the risk
of naive misinterpretation of the walker motility. Random walks
with no memory (exponential) or strong memory (heavy tailed)
are either unchanged or slightly modified in the presence of aging.
Gamma-distributed MSDs are qualitatively different when we take
into account aging.

Single walker 〈X2(t)〉 for different initial conditions

�(τ ) δ(τ ) δ(τ − τ0) �(τ )/〈T 〉
e−λτ t0 t0 t0

(1 + λτ )e−λτ t0 te−(λ+θ)t te−(λ+θ)t(
τ∗

τ+τ∗

)μ
t3−μEiμ−2(θt) t3−μEiμ−2(θt) t3−μEiμ−2(θt)

For initial spatial distributions p0(x) which are homogeneous,
the aging effects vanish. This allows for the same basis of
comparison as discussed for (32). Note that time lag effects
here are included by the renewal density h(t) [defined in
(16)], which is not unexpected. If the walkers are allowed
to equilibrate before measurement, we must simply consider
the rate of change of events relative to the mean.

For the same reasons as discussed after (32), the front
velocity of the bulk in this case is also independent of the
equilibrated aging. We again find a front velocity uβ � v

which decays as θ → η. For further details on the front
velocity in such systems, please see [53]. A summary of
the qualitative diffusion processes obtained in this work for
ensemble-averaged MSDs can be found in Table I.

Thus far, we have considered the ensemble averages of
trajectories which stop at a certain rate θ and, with exception
of the gamma-distributed running time PDF, the results are
qualitatively similar whether or not we take into account aging.
We now turn to the effect of stopping on another quantity of
experimental interest, the TAMSD.

IV. EFFECTS ON TIME-AVERAGED MSDS

One might argue that stopping only has perceptible effect on
the ensemble average of trajectories. However, if all trajectory
segments are of importance due to, e.g., the dynamics of
interest being close to the region where stopping occurs, we
cannot disregard the segment during which stopping occurs.
As a result, if the stop occurs at the end of the last segment, we
need to consider how this may affect the conclusions drawn
from our trajectories. For ease of illustrating the consequences
of this effect, where necessary we shall disregard the effects of
aging in this last part of the trajectory. We expect the findings
of this section to qualitatively coincide with equilibrated aged
systems wherein a large portion of time has passed since
preparation of the walkers and the experiment being carried
out. Let us define the (ensemble-averaged) TAMSD 〈δ̄2〉 to
follow the definition

〈δ̄2〉 = 1

T − �

∫ T −�

0
〈[X(t + �) − X(t)]2〉dt, (45)
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where the angular brackets 〈. . .〉 denote an ensemble average,
T is the total duration of measurement, and � the “windows”
over which changes are observed [27]. The TAMSD thus
considers changes in the position averaged over the trajectory
itself. The effects of binding on this are evident: if the trajectory
contains few long segments, the “premature” shortening of
one of these due to stopping can affect our conclusions.
Naturally, if the trajectory consists of a very large number of
segments, all of which describe motion in the region wherein
the transport is of interest, it is reasonable to assume that
one can discard the last trajectory segment. However, this may
only be done if one is convinced the remaining set of trajectory
segments are representative of the entirety of the motion being
studied. Otherwise, the portion of the movement leading up to
stopping must also be considered. In order to calculate 〈δ̄2〉,
we require the correlation function for a Lévy walk, which can
be calculated using the relation

〈X(t)X(t + �)〉 =
∫ t+�

0
dy

∫ t

0
du〈V (u)V (y)〉, (46)

where V (u) is the velocity of the walker at a time u. Hence,
the correlation of positions may be determined from the
correlation of velocities, where we can make use of the fact
that on the real line the velocity has the same magnitude but
changes sign for every turn (every renewal event) the walker
makes. Consequently,

〈V (u)V (y)〉 = v2
∞∑

n=0

(−1)npn(u,y), (47)

where pn(u,y) is the probability for n turns in the time interval
(u,y). This problem was considered by Godrèche and Luck
[54] and addressed for Lévy walkers without stopping in
[38]. For a persistent random walker where β(τ ) → 0 as
τ → ∞, we can make the simplifying assumption that the
most likely case is one wherein there are no turns, and can
thus approximate (47) to 〈V (u)V (y)〉 ≈ v2p0(u,y). In other
words, this is the probability of uninterrupted movement (or
persistence probability) during this time interval, during which
the walker must also not stop. Let us consider the last segment
of the trajectory, during which the movement stops. If θ = 0,
continued movement would have occurred in a given direction
for a duration which we denote τl (last running time), sampled
from the running time PDF ψ(τ ). However, the final running
time is instead τf � τl which on average we expect to be less
than τl . The reason for this is simple: each previous segment of
the trajectory were all at a risk of stopping with a probability
1 − e−θt , such that over time the risk of stopping increases.
Earlier movements occurred during a time where there was
still a high probability of not stopping, and the durations
of these segments were thus governed by the turning rates
β(τ ). However, the last segment of the trajectory has a larger
probability of stopping, and the stop hence occurs at some
point after this run has begun.

This argument can be illustrated with a heavy-tailed distri-
bution of running times where the motion is superdiffusive and
the survival probability �(τ ) = τ

μ
∗ /(τ + τ∗)μ is tempered by

the stopping rate θ . If we for simplicity consider the nonaged
running times of the segment τ for motion which started at

t = 0, then the survival probability of the last segment is(
τ∗

τ + τ∗

)μ

e−θt . (48)

Each segment of the trajectory is independent of the next one
as a new direction is chosen, but as time increases stopping
of the walker becomes increasingly likely. Of course, if the
total duration of measurement T 	 t and θ 	 1, then the
time scales over which stopping effects are likely to occur
are beyond those of the experiment. However, for longer
experiments or larger stopping rates, the mean duration of
the final trajectory segment is

〈Tf 〉 = (θτ∗)μ

θ
e−θ(tb−τ∗)�(1 − μ,θτ∗)

= e−θ(tb−τ∗)

(
τ∗

μ − 1
+ (θτ∗)μ

θ
�(1 − μ)

)
+ O(θτ 2

∗ ),

(49)

where tb is the duration of time the walker was moving
before the last segment of the trajectory began. For small
θτ∗, the mean duration 〈Tf 〉 contains the mean running
time τ∗/(μ − 1) arising from heavy-tailed distributions with
1 < μ < 2. However, this mean time is diminished by the
likelihood of the walker not stopping until now, which for
larger tb may be significant. In order to determine the TAMSD
of a trajectory which may be stopped at one end, (45) requires
that we calculate 〈X2(t)〉 and 〈X2(t + �)〉 in addition to the
correlation of the trajectory between two points. It is the last
quantity defined in (46) where the presence of stopping is
most notable as the shorter segment at the end of the trajectory
is compared with positions at earlier times. There is thus a
risk of the trajectories appearing less correlated than they
actually are as � increases. The consequence of this is that,
in analogy to the findings for the ensemble-averaged MSD,
the TAMSD slows in growth in a similar manner as illustrated
in Fig. 2. The MSD and TAMSD for a superdiffusive Lévy
walk have previously been related via a constant, indicating
weak ergodicity breaking for such diffusion processes [38].
However, these two quantities are still qualitatively similar and
this is expected to also be the case for the TAMSD. Specific
details between the two experimental quantities may vary,
but since stopping primarily affects displacement over longer
times, there is little reason to expect significant differences
over shorter time scales. Over longer times, it is expected that
the TAMSD will contain features such as slowing down in
its growth (or even reaching a plateau) though the particular
details will likely vary somewhat.

V. DISCUSSION AND CONCLUSION

In this work, the effects of aging have been explored
on random walks, with focus on superdiffusive subballistic
movement which stops at a rate θ , and thus has a finite time
span of movement. Aging is applicable to any experiment
involving single-particle tracking, and in most biological and
physical systems it is understood that the duration movement
will take place over is finite; the results are thus broadly
applicable. The two forms of aging (walkers all have a fixed
nonzero initial running time, or have equilibrated to the sur-

062150-11



HELENA STAGE PHYSICAL REVIEW E 96, 062150 (2017)

vival function) have been shown to result in different diffusion
processes for non-Markovian random walk processes. Certain
subleading, e.g., subdiffusive behavior may arise in addition
to diffusion coefficients which depend on the fixed time lag
τ0. All descriptions of the transport have been shown to slow
down when considering a rate θ > 0, leading to a constant
MSD of the walkers for sufficiently long times (heuristically
consistent with time scales over which all walkers are expected
to have ceased movement). In the case of gamma-distributed
running times of the walkers, it has been shown that aging
produces a qualitatively faster spread of the walkers, resulting
from the peak in the PDF ψ(τ ). That is, aging is shown to
qualitatively counteract the slowing effects of binding over
certain time windows, leading to an MSD 〈X2(t)〉 ∼ te−(λ+θ)t .
The observation of experimental quantities commensurate
with this work’s theoretical predictions thus provides a test by
which to ascertain if binding, sedimentation, death, or similar
processes are occurring in systems where this is not directly
observable. Furthermore, we have shown that for sufficiently
large time lags τ0, such that empirically the mean running
time of the walker is very large [or theoretically β(τ0) → 0],
the movement transitions from superdiffusive to ballistic in the
case of θ = 0. We have further discussed the cases in which one
may expect the MSDs from the fixed time lag and equilibrated
initial conditions to qualitatively coincide. In the case where
θ > 0, the MSD tends to 〈X2(t)〉 ∼ te−θt when τ0 � t , i.e.
a variance consistent with Brownian motion tempered by the
stopping rate.

In addition to aging, we have considered the implications
of the random walkers often having a finite duration in which
they are motile before stopping. As a result, the diffusion
processes are qualitatively altered due to the finite lifespan of
the walkers, resulting in either a tempering factor e−θt or a
plateau in the MSD once stopping or death dominates. The
theoretical prediction of the transport close to times at which
stopping occurs may be of interest in systems approaching
such a state, as might occur in confined regions where binding
may occur with the boundaries. As discussed, a portion of the
apparent death effects may arise as experimental artifacts of
observation, and in aid of this distinction we have included a
mean-field description of the bulk of walkers which is expected
to be less affected by external effects. The combination of the
age-independent front velocity of the bulk with the predictions
for individual trajectories should allow for improved under-
standing of the underlying dynamics of the walkers by the
existence of a comparable measurement which is more robust
in the face of experimental noise. The front propagation speed
uβ of the bulk should be easier to determine as it is less prone to
the experimental issues discussed above and is directly related
to the net growth rate η − θ of the walkers.

The implications of a stopping rate θ for a TAMSD has
been discussed. As time (since the beginning of measurement)
passes, there is an increasing likelihood of the walker stopping.
As a result, when the walker finally stops, the duration of this
last trajectory segment is shorter than what one would expect
from the running time PDF due to the “premature” stopping
that θ causes. When calculating the TAMSD, it has been
illustrated how such a shorter duration of the last trajectory
segment may lead to a reduction in 〈δ̄2(�)〉 for large �. This
is qualitatively similar to what was found for 〈X2(t)〉, and

is of particular importance for running times which are heavy
tailed and thus have a higher probability of long, uninterrupted
trajectory segments. A key implication of this tempering is
often neglected: namely, the interpretation of the running times
of the walkers in terms of optimal transport mechanisms when
applied to, e.g., intracellular transport. Experimental artifacts
or constraints may result (for a naive analysis) in seemingly
exponentially distributed movement which is in fact described
by, e.g., a hidden underlying heavy-tailed distribution as illus-
trated in Fig. 2. This requires more careful analysis of future
experimental results. In other words, we must consider whether
the walker movement is inherently changing, or if it merely
appears to be doing so due to a binding or stopping process.

We have made no attempt to separate the different causes of
walker death, be these the result of intrinsic walker mortality
or artifacts of the measurement. If the causes of mortality or
stopping can be more precisely pinpointed via a function θ (t),
it may be possible to separate these rates in the model and thus
determine the times over which natural and experimentally
imposed death rates dominate the observed motility. This
could potentially identify the magnitude of systematic errors
imposed by the measurements on the estimates of intrinsic
walker behavior and reproduction.

Future work aims at considering the effects of aging
on systems wherein the walkers are interacting, such that
additional reactions may occur before observation begins. This
may be of particular significance in the study of photosensitive
reactions where the increased light intensity present under
observation affects the reactions relative to their course during
preparation of the sample.
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APPENDIX: DERIVATION OF THE GENERAL
EQUATIONS OF TIME-LAGGED MOTION

The aim of this appendix is to outline the method, as pop-
ularized in [59–62], used to derive a single integrodifferential
equation for the bulk of walkers. In order to do so, we consider
two quantities: ρ(x,t) = ρ+ + ρ− and J (x,t) = v(ρ+ − ρ−).
From (10) we thus find the expressions

∂ρ+
∂t

+ v
∂ρ+
∂x

+ ∂ρ−
∂t

− v
∂ρ−
∂x

= ∂ρ

∂t
+ ∂J

∂x
= (η − θ )ρ

(A1)
and

∂ρ+
∂t

+ v
∂ρ+
∂x

− ∂ρ−
∂t

+ v
∂ρ−
∂x

= 1

v

∂J

∂t
+ v

∂ρ

∂x

= −[i+(x,t) − i−(x,t)] − θ

v
J. (A2)

If we cross differentiate the above expressions by x,t we can
eliminate J (x,t) to find

∂2ρ

∂t2
− v2 ∂2ρ

∂x2
− θ (η − θ )ρ + (2θ − η)

∂ρ

∂t

= v
∂

∂x
[i+(x,t) − i−(x,t)]. (A3)
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The right-hand side of the above expression is most easily
found for a particular set of initial conditions, and we shall
consider both in what follows. The general expression can
also be evaluated but is unnecessarily cumbersome for our
intended use. It is helpful to note that ρ± = 1

2 (ρ ± J
v

).

1. Fixed time lag

If the switching term for the walkers is given by (20),

i± = 1

2

∫ t

0
K(τ )e−θτ

[
ρ ± J

v

]
(x ∓ vτ,t − τ )dτ

+ p0(x ∓ vt)e−θt

�(τ0)

(
ψ(t + τ0)

−
∫ t

0
K(τ )�(t + τ0 − τ )dτ

)
, (A4)

then by differentiation [and using (A1)] we find

v
∂i±
∂x

= v
∂p0(x ∓ vt)

∂x

e−θt

�(τ0)
ψ(t + τ0) +

∫ t

0

K(τ )

2
e−θτ

×
[
v
∂ρ

∂x
∓ ∂ρ

∂t
± (η − θ )ρ

]
(x ∓ vτ,t − τ )dτ

−v
∂p0(x ∓ vt)

∂x

e−θt

�(τ0)

∫ t

0
K(τ )�(t + τ0 − τ )dτ.

(A5)

The explicit expression of i+ − i− substituted into (A3) yields
(32).

2. Equilibrated time lag

On the other hand, if the switching term is given by (37),
such that

i±(x,t) = 1

2

∫ t

0
K(τ )e−θτ

[
ρ ± J

v

]
(x ∓ vτ,t − τ )dτ

+p0(x ∓ vt)e−θt

(
1

〈T 〉 −
∫ t

0
K(τ )dτ

)
, (A6)

then by an analogous method to the above we find

v
∂i±
∂x

=v
∂p0(x ∓ vt)

∂x
e−θt

(
1

〈T 〉 −
∫ t

0
K(τ )dτ

)
+

∫ t

0

K(τ )

2
e−θτ

×
[
v
∂ρ

∂x
∓ ∂ρ

∂t
± (η − θ )ρ

]
(x ∓ vτ,t − τ )dτ.

(A7)

This leads to (44).
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