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Entanglement transitions induced by large deviations

Udaysinh T. Bhosale*

Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411 008, India
(Received 3 October 2017; revised manuscript received 1 December 2017; published 28 December 2017)

The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite
systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this
probability, for large N , goes as exp[−βN2�(ζ )], where the parameter β is the Dyson index of the ensemble,
ζ is the large deviation parameter, while the rate function �(ζ ) is calculated exactly. Corresponding equilibrium
Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest
and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy.
Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further
partitioning the subsystem A, using the properties of the density matrix’s partial transpose ρ�

12. The density of
states of ρ�

12 is found to be close to the Wigner’s semicircle law with these large deviations. The entanglement
properties are captured very well by a simple random matrix model for the partial transpose. The model predicts
the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify
the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model.
Numerical simulations are in excellent agreement with the analytical results.
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I. INTRODUCTION

The large deviation is defined as the atypical behavior of a
system from its average state. Its theory is an active field of
research in probability and statistics [1]. This theory has found
applications in the field of random matrices [2–7], quantum
entanglement [8–14], economics [15], geophysics, hydrology
[16], image processing [17,18], etc. This theory has been
tested in the context of coupled lasers and found to agree very
well with experiment [19]. It has been successfully applied
in the field of quantum information to study entanglement.
Entanglement is a central property of quantum mechanics
which is not in classical physics. In fact, recently it has
been shown that any theory which has a classical limit
must have entanglement as an inevitable feature [20]. It is
studied extensively since it is a critical resource for quantum
computation and information tasks [21], quantum teleportation
[22], dense coding [23], etc. Entanglement has been studied in
various experiments using optics, superconductivity, etc. [21].
In this paper, we are interested in the applications of large
deviation theory to study the entanglement transitions.

Let us start by considering a standard bipartite system
A ⊗ B which is composed of two smaller subsystems A and
B having Hilbert spaces HA

(N) and HB
(M) having dimensions

N and M , respectively. The full system is described by
the product Hilbert space H(MN)

AB = HA
(N) ⊗ HB

(M). Here
the simple case of N = M is studied in detail but the
results can be extended to the N �= M case. Consider |ψ〉 =∑N

i=1

∑M
α=1 ci,α|i〉 ⊗ |α〉 a normalized pure state of the full

system A and B, where |i〉 ⊗ |α〉 is the orthonormal basis
of HAB . The density matrix is given as ρ = |ψ〉〈ψ |, which
satisfies the Tr[ρ] = 1 condition. The reduced density matrix
of subsystem A is given by ρA = TrB[ρ] = ∑M

α=1〈α|ρ|α〉.
Similarly, subsystem B is described by ρB = TrA[ρ]. Using
the singular value decomposition of the matrix ci,α , one obtains
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the Schmidt decomposition form:

|ψ〉 =
N∑

i=1

√
λi

∣∣uA
i

〉 ⊗ ∣∣vB
i

〉
, (1)

where |uA
i 〉 and |vB

i 〉 are the eigenvectors of ρA and ρB ,
respectively, with the same eigenvalues λi . The λi ∈ [0,1] for
all i = 1 to N such that

∑N
i=1 λi = 1.

Given the Schmidt eigenvalues λi (i = 1 . . . N ), entangle-
ment between A and B, measured using von Neumann entropy,
is given by

SV N = −tr(ρA log ρA) = −
N∑

i=1

λi ln(λi). (2)

It is a good measure of entanglement for a bipartite pure
state [24,25]. It takes value between 0 which corresponds to a
separable state and ln(N ) which corresponds to a maximally
entangled state. Study of the two extreme eigenvalues, the
largest λmax = max(λ1,λ2,...,λN ) and the smallest λmin =
min(λ1,λ2,...,λN ), is important as they give useful information
about the nature of entanglement between the subsystems
A and B [8,10,11,26–30]. It can be seen easily that the
conditions

∑N
i=1 λi = 1 and λi ∈ [0,1] for i = 1 . . . N imply

0 � λmin � 1/N and 1/N � λmax � 1.
To understand the importance of the extreme eigenvalues,

let us first consider the following limiting situations of the
largest eigenvalue. Suppose that λmax takes the maximum
allowed value 1. Then, due to the normalization constraints∑N

i=1 λi = 1 and λi ∈ [0,1] for all i, it follows that all the
rest (N − 1) eigenvalues must be identically equal to 0. Thus,
using Eq. (1) for this case implies that the state |ψ〉 is fully
unentangled. On the other hand, if λmax takes its lowest
allowed value 1/N , then the constraint

∑N
i=1 λi = 1 implies

that λi = 1/N for all i. In this case, it can be shown that
the state |ψ〉 is maximally entangled as it maximizes the von
Neumann entropy SV N = ln(N ).
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Now consider the limiting situations of the minimum
eigenvalue. Suppose that λmin takes the maximum allowed
value 1/N . Then the constraint

∑N
i=1 λi = 1 implies that

λi = 1/N for all i. Thus, the state |ψ〉 is maximally entangled.
When λmin takes the minimum allowed value 0, then not much
information on the entanglement in the state |ψ〉 is obtained.
But, using the Schmidt decomposition, one can see that the
dimension of the effective Hilbert space of the subsystem A

is now reduced from N to N − 1. This also implies that the
maximum von Neumann entropy it can take is reduced from
ln(N ) to ln(N − 1).

The pure state |ψ〉 is called random when it is sampled
uniformly from the unique Haar measure that is invariant under
unitary transformations. As a result, the eigenvalues λi’s also
become random variables. In that case, the distributions of
the extreme eigenvalues of ρA have been studied in detail for
various cases of N and M [8,10,11,26–30]. The distribution
of the minimum eigenvalue for β = 1, 2 and finite N = M

was derived in [10,27] while the N �= M case is addressed in
Ref. [29]. Here β is the Dyson index and it takes values 1, 2,
and 4 for real, complex, and symplectic cases, respectively.
Similarly, the maximum eigenvalue distribution for large
N = M and for all βs is given in Refs. [8,11,14], which include
the small and large deviation laws. In fact, the distribution of
all the Schmidt eigenvalues taken together for large N and M is
known as the Marcenko-Pastur function [11,31] [see Eq. (4)].
Probability distribution of the Renyi entropies, a measure of
entanglement, for a random pure state of a large bipartite
quantum system has been derived analytically [8,11,32].

If the constraint of eigenvalues summing to one is removed
and ci,α are independent and identically distributed Gaussian
random variables, real or complex, drawn from a Gaussian
distribution, then ρA belongs to the Wishart ensemble. These
matrices have found applications in various fields like finance
[33], nuclear physics [34,35], quantum chromodynamics
[36,37], knowledge networks [38], etc. For these ensembles
it is shown that the probability distribution of the typical and
small fluctuations of the extreme eigenvalues is given by Tracy-
Widom distribution [39–41], while the atypical and large
fluctuations obey a different distribution having limiting form
of the Tracy-Widom in the limit of small fluctuations [2,6].

Turning our attention to ρA, whose eigenvalues are non-
negative and sum to 1, the large deviation function for
the maximum eigenvalue and the corresponding equilibrium
charge density is derived in Ref. [11] using the Coulomb gas
method. To be specific, the probability distribution function
P (Nλmax = a), where a > 1 is derived. It is also shown that its
typical fluctuations around the average 4/N follow the Tracy-
Widom distribution. In this paper the large deviation function
for the minimum eigenvalue and the associated equilibrium
charge density is derived. Thus, a generalized Macenko-Pastur
function is derived when there are large deviations in the
minimum eigenvalue. For these derivations, the improved
version of the coulomb gas technique from Refs. [3,4] is used.
The same technique has been used successfully earlier in the
field of random matrices [2,8,11,32,41–47].

The structure of the paper is as follows: In Sec. II some
known and relevant results of the reduced density matrix are
presented. In Sec. III the large deviation function for the
minimum eigenvalue and the associated equilibrium density

of states of the reduced density matrix is derived. In Sec. IV
a short review on the earlier and relevant results of the
maximum eigenvalue is given. These results will be used
in the subsequent sections. In Sec. V the effect of large
deviations of the extreme eigenvalues on the entanglement
between the subsystems A and B is studied in detail. Then
the subsystem A is divided into two equal parts 1 and 2 of
dimension N1 each such that N = N2

1 . In Sec. VI the effect of
these large deviations are studied on the entanglement between
subsystems 1 and 2.

II. STATISTICAL PROPERTIES OF THE REDUCED
DENSITY MATRIX

Consider the state |ψ〉 of quantum system of A and B

drawn from the ensemble of random pure states. The joint
probability density function (jpdf) of the eigenvalues of the
reduced density matrix ρA is then given as follows [48,49]:

P [{λi}] = KM,N δ

(
N∑

i=1

λi − 1

)
N∏

i=1

λ
β

2 (M−N+1)−1
i

×
∏
i<j

|λi − λj |β, (3)

For the N = M case the jpdf corresponds to the Hilbert-
Schmidt measure, whose statistical properties are well studied
[50]. The normalization constant KM,N is calculated using the
Selberg’s integral [49]. For large N and M , the density of
the eigenvalues is given by an appropriately scaled Marcenko-
Pastur (MP) function [11,31],

f (λ) = NQ

2π

√
(λ+ − λ)(λ − λ−)

λ

λ± = 1

N

(
1 + 1

Q
± 2√

Q

)
,

(4)

where λ ∈ [λ−,λ+], Q = M/N , and Nf (λ)dλ is the number
of eigenvalues in the range λ to λ + dλ. For Q = 1 (N = M)
the distribution has a divergence at the origin and it vanishes
at 4/N , whereas for Q > 1 the eigenvalues are bounded away
from zero.

The purity of the subsystem, defined as tr[(ρA)2], lies
between 1/N and 1. For the minimum value, ρA is maximally
mixed and is equal to I/N where I is the identity matrix of
dimension N . While for the maximum value the two subsys-
tems are unentangled. The average purity of the subsystem A

for the random state |ψ〉 is given by

〈tr[(ρA)2]〉 = N + M

NM + 1
≈ 1

N
+ 1

M
, (5)

where the last approximation is valid for N,M 	 1 [51]. An
exact formula for the average of the von Neumann entropy is
evaluated over the probability density in Eq. (3). It is given as
follows [52–54]:

〈SV N 〉 =
NM∑

m=M+1

1

m
− N − 1

2M

≈ log(N ) − N

2M
for 1 
 N � M. (6)
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FIG. 1. Equilibrium density of the Coulomb fluid [Eq. (8)] when
all the charges are constrained to the right of ζ = 0.5 (black solid
line) together with the Monte Carlo simulations (blue circles) for the
case N = M = 100.

This implies that, practically, there is very little information
about the full pure state in a subsystem. More precisely, in a
random pure state there is less than one-half unit of information
on an average in the smaller subsystem of the total system.

III. LARGE DEVIATION FUNCTION FOR THE MINIMUM
EIGENVALUE

In this case all the rescaled eigenvalues Nλ are constrained
to lie on the right side of a wall at ζ . This condition is satisfied
when Nλmin � ζ , since λmin satisfies the condition 0 � λmin �
1/N , which implies 0 � ζ � 1. First, the results for this case
will be summarized, which then will be proved in Sec. III A.
In this case the density of states of the rescaled eigenvalues for
large N is as follows:

ρ(λ′) = 1

2π (1 − ζ )

√
4 − 3ζ − λ′

λ′ − ζ
, ζ � λ′ � 4 − 3ζ, (7)

where λ′ = Nλ and 0 � ζ � 1. It has a divergence at ζ and
vanishes at 4 − 3ζ . An example for this case is demonstrated
in Fig. 1 for the case of ζ = 0.5. For this case one obtains the
following distribution:

ρ(λ′) = 1

π

√
5 − 2λ′

2λ′ − 1
,

1

2
� λ′ � 5

2
. (8)

In the Fig. 1 the Monte Carlo simulations of N = 100 is shown.
It shows a good agreement between theory and the numerical
simulations.

A. Evaluation of the density of states in Eq. (7) using the
Coulomb gas method

The method of mapping the eigenvalues of a random matrix
to a Coulomb gas problem goes back to Dyson [42,55]. But a
major development came when the Tricomi’s solution [56] was
used first in Refs. [3,4] to compute the optimal charge densities
and the associated rate functions of the extreme eigenvalues
of the Gaussian ensembles. This “modified Coulomb gas”

has led to a lot of developments in the field of random
matrix theory and its applications [4,6,7,32,47,57–64], for
example, problems which include finding the distribution of
the extreme eigenvalues of the Gaussian and Wishart matrices
[2–4,6,41], quantum transport in chaotic cavities [59,65], the
index distribution for the Gaussian random fields [66], and
the Gaussian ensemble [7,58]. This method will be used
extensively in this paper. The definition of the rate function
will be given in the subsequent part of this subsection. The
results obtained here will then be compared with the previously
known results in the last part of this subsection.

The unit trace constraint
∑N

i=1 λi = 1 implies that the
typical amplitude of the eigenvalues is λtyp ∼ 1/N , whereas
in the case of the Wishart ensemble λW

typ ∼ N . This implies
that the scaling with N , for large N , differs in both the cases.
But it should be noted that the effect of the trace constraint
does not imply the rescaling of the Wishart results by a factor
of 1/N2. This effect of the trace constraint leads to a different
and new behavior which includes a condensation transition,
which is absent in the Wishart ensembles [8,11,32].

The density of states in Eq. (7) corresponds to the following
probability:

P (Nλmin > ζ ) = P (Nλ1 > ζ,Nλ2 > ζ, . . . ,NλN > ζ )

=
∫ ∞
ζ

. . .
∫ ∞
ζ

P [{λi}]
∏N

i=1 dλi∫ ∞
0 . . .

∫ ∞
0 P [{λi}]

∏N
i=1 dλi

, (9)

when all the eigenvalues are constrained to be larger than
a fixed constant ζ . The joint pdf of the eigenvalues P [{λi}]
given in Eq. (3) can be seen as a Boltzmann weight at inverse
temperature β:

P [{λi}] ∝ exp{−βE[{λi}]}, (10)

where the energy E[{λi}] = −γ
∑N

i=1 ln λi − ∑
i<j ln |λi −

λj | and γ = 1/2 − 1/β (for N = M case). This energy is
the effective energy of a 2D Coulomb gas of charges where
the charges repel each other electrostatically via logarithmic
interaction in 2D. For large N , the presence of the logarithmic
interaction potential term results in the effective energy to
be of the order E ∼ O(N2). Thus, to compute the multiple
integral in Eq. (9) the method of steepest descent is used.
In this method, for large N , the configuration of {λi} which
dominates the integral is the one that minimizes the effective
energy. For large N , it can be expected that the eigenvalues
are close to each other. In that case the saddle point will be
highly peaked, i.e., the most probable value and the mean will
coincide, thus, labeling the λi by a continuous average density
of states ρ(λ,N ) = N−1 ∑

i〈δ(λ − λi)〉 = N ρ(x), where

ρ(x) = N−1
∑

i

〈δ(x − λiN )〉 (11)

and x = λN . Thus, the probability of Nλmin greater than ζ can
be written as

P (Nλmin > ζ ) ∝
∫

D[ρ] exp
{−βN2 Eζ [ρ]

}
, (12)
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where the effective energy Eζ [ρ] is given by

Eζ [ρ] = −1

2

∫ ∞

ζ

∫ ∞

ζ

dx dx ′ ρ(x)ρ(x ′) ln
∣∣x − x ′∣∣

+μ0

(∫ ∞

ζ

dx ρ(x)−1

)
+ μ1

(∫ ∞

ζ

dx x ρ(x)−1

)
.

(13)

The Lagrange multipliers μ0 and μ1 enforce the constraints∫
ρ(x)dx = 1 (the normalization of the density) and

∑
i λi =

1 (the unit trace), respectively. For large N , the method of
steepest descent gives the following:

P (Nλmin > ζ ) ∝ exp{−βN2Eζ [ρζ ]}, (14)

where ρζ minimizes the energy (the saddle point):

δEζ

δρ

∣∣∣
ρ=ρζ

= 0. (15)

This saddle point equation gives:∫ ∞

ζ

dx ′ ρζ (x ′) ln |x − x ′| = μ0 + μ1x. (16)

Differentiating with respect to x gives:

P
∫ ∞

ζ

dx ′ ρζ (x ′)
x − x ′ = μ1, (17)

where P denotes the Cauchy principal value.
This singular integral equation can be solved by using the

Tricomi’s theorem [56] which states that if the solution ρ∗ has
the finite support [L1,L2], then the finite Hilbert transform
which is defined by the following equation:

F (x) = P
∫ L2

L1

dx ′ ρ∗(x ′)
x − x ′ , (18)

can be inverted as

ρ∗(x) = −1

π2
√

x − L1
√

L2 − x

×
[
C + P

∫ L2

L1

dx ′
√

x ′ − L1
√

L2 − x ′

x − x ′ F (x ′)
]
, (19)

where C = −π
∫ L2

L1
dx ρ∗(x). Here L1 = ζ and F (x) = μ1.

This solution was first used successfully in Refs. [3,4] to study
the large deviations of the extreme eigenvalues of Gaussian
ensemble as mentioned in the beginning of this subsection.

The integral in Eq. (19) can be evaluated explicitly to obtain:

ρ∗(x) = 1

π
√

x − ζ
√

L2 − x

×
[

1 + (2(ζ + L2) − 4)(ζ + L2 − 2x)

(ζ − L2)2

]
,

where ζ � x � L2.

(20)

Here the normalization condition
∫ L2

ζ
dx ρ∗(x) = 1 is used

to set the constant C = −π , whereas μ1 = 4(ζ + L2 − 2)/
(ζ − L2)2 is obtained using the constraint

∫ L2

ζ
dx x ρ∗(x) = 1.

There is one more unknown L2 which needs to be fixed. At
the two end points ζ and L2, the solution ρ∗(x) either vanishes

or has an inverse square-root divergence (which is integrable).
When there is no constraint, the density has an inverse square-
root divergence at the origin and it vanishes at 4. But when
the minimum eigenvalue has to satisfy the constraint of being
greater than ζ , then intuitively it seems that the new density
must have the same nature at the boundary points as that of
when there is no constraint. This is verified numerically for
various values of ζ between zero and 1. One such illustration is
shown in Fig. 1. Thus, the condition ρ(L2) = 0 gives L2 = 4 −
3 ζ . Thus, the final density as a function of ζ is given as follows:

ρ(x) = 1

2π (1 − ζ )

√
4 − 3ζ − x

x − ζ
, ζ � x � 4 − 3ζ. (21)

Using L2 = 4 − 3ζ , the constant μ1 simplifies to
1/[2(1 − ζ )]. The constant μ0 is found using Eq. (16) and
putting x = ζ . This gives μ0 = ln(1 − ζ ) + (3ζ − 2)/[2(1 −
ζ )]. Finally, the saddle-point energy is calculated. First, the
saddle point Eq. (16) is multiplied by ρ(x) and then the
integration is carried out. Then using Eq. (13) one obtains

Eζ [ρζ ] = 3/4 − ln(1 − ζ )/2. (22)

Now the rate function for the large fluctuations will be
calculated. It is defined as follows. For large N the probability
P (Nλmin > ζ ) ≈ exp{−βN2�(ζ )}, where �(ζ ) is the rate
function. The normalized probability is given as follows:

P (Nλmin > ζ ) ≈
∫
D[ρ] exp{−βN2 Eζ [ρ]}∫
D[ρ] exp{−βN2 E[ρ]} , (23)

where Eζ [ρ] is given in Eq. (22) and E[ρ] is the effective
energy associated to the joint distribution of the eigenvalues
without any constraints obtained by putting ζ = 0 in the
Eq. (22). Using the steepest descent method for both the
numerator and the denominator one obtains the following:

P (Nλmin > ζ ) ≈ exp{−βN2Eζ [ρζ ]}
exp{−βN2E[ρ∗]}

≈ exp{−βN2�(ζ )},
(24)

with �(ζ ) = Eζ [ρζ ] − E[ρ∗] and where ρ∗ (respectively, ρζ )
is the density that minimizes the energy E[ρ] (respectively,
Eζ [ρ]). The density ρ∗(x) is thus simply the rescaled average
density of states given in Eq. (4) (for Q = 1) which corre-
sponds to the ζ = 0 case in Eq. (22). Finally, the rate function
is given as follows:

�(ζ )I = Eζ [ρζ ] − E[ρ∗]ζ=0 = − ln(1 − ζ )

2
(25)

and is plotted in Fig. 2 (region I of top figure). It shows a
divergence as ζ → 1−, whereas it vanishes at ζ = 0, which is
consistent with the no constraint condition. The theoretically
obtained curve is compared the numerically obtained rate
function using the Monte Carlo simulations and both of them
agree very well with each other. The large deviations for the
minimum eigenvalue of the Wishart ensemble (where there
is no trace constraint) was studied earlier in Ref. [6]. Our
results, namely the rate function in Eq. (25) and the density of
states of the Coulomb charges, differ from those of Ref. [6].
These differences can be attributed to the trace constraint on
the reduced density matrices.
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FIG. 2. Rate functions (top) and the average von Neumann
entropy (bottom) as a function of the barrier position. Region I
corresponds to 0 � ζ � 1 when all the charges are on the right side
of the barrier. Regions II and III corresponds to 1 � ζ � 4/3 and
4/3 � ζ � 4, respectively, when all the charges are on the left side
of the barrier. Monte Carlo simulations are shown in both the figures
using black circles for M = N = 100.

Now the connection of our results to the previously known
ones is given. The full distribution, for all N = M , of the
minimum Schmidt eigenvalue and the minimum eigenvalue of
Wishart ensemble is known [67]. An exact relation between
the two is also known [67]. These results have been evaluated
for the three cases of β = 1, 2, and 4. From these earlier
results it can be seen easily that the large deviation tail is (1 −
ζ )(βN2/2), which gives the rate function as −(1/2) ln(1 − ζ ).
This expression agrees with our expression for �(ζ )I . But our
calculations, using the Coulomb gas method from Refs. [3,4],
shows that this expression for the rate function holds for all the
values of β and not just for these three values. The connections
of the rate function �(ζ )I and the corresponding equilibrium
density in Eq. (21) to those of maximum eigenvalue will be
given in the next section.

IV. REVIEW OF RESULTS OF THE MAXIMUM
EIGENVALUE

In this section, a short review on the relevant results of
the maximum eigenvalue will be given. These results will

be used in the subsequent parts of this paper. The question
addressing the constraint on all the eigenvalues being less than
a fixed constant ζ has been studied in detail earlier in Ref. [11]
using the modified Coulomb gas method from Ref. [3,4]. This
constraint is equivalent to the condition that λmax � ζ . For the
equal dimensionality N = M case, i.e., Q = 1, the rescaled
eigenvalues lie in the interval (0,4] [refer to Eq. (4)]. Thus,
the barrier position ζ is effective only when ζ � 4, since λmax

satisfies the condition 1/N � λmax � 1 which implies 1 �
ζ � 4. Throughout this paper, whenever ζ lies between zero
(1) and 1 (4) it refers to the fact that Nλmin � ζ (Nλmax � ζ ).

In Ref. [11] it was shown that there are two regions
depending on the nature of the density which shows a
transition at ζ = 4/3. Thus, there are two sub cases. Case one
(4/3 � ζ � 4): The density has a support on [0,ζ ] and has
a divergence at both boundaries except at ζ = 4/3 where the
density vanishes at the origin. Case two (1 � ζ � 4/3): The
density has a support on [4 − 3ζ,ζ ]. In this case it vanishes at
4 − 3ζ and has a divergence at ζ . The density in the first case
is given as

ρ(x) = 2ζ 2 + 4(ζ − 2)(ζ − 2x)

2πζ 2
√

x(ζ − x)
, 0 � x � ζ ; (26)

whereas in the second case it is given as

ρ(x) = 1

2π (ζ − 1)

√
3ζ − 4 + x

ζ − x
, 4 − 3ζ � x � ζ. (27)

The rate functions were also derived in Ref. [11]. For the first
case it is given as

�(ζ )III = 3

4
− 4

ζ − 1

ζ 2
− 1

2
ln

(
ζ

4

)
(28)

and is plotted in Fig. 2 (region III of the top figure). It vanishes
at ζ = 4, which is consistent with the no-constraint condition.
Whereas for the second case it is given as

�(ζ )II = − ln(ζ − 1)

2
(29)

and is plotted in Fig. 2 (region II of the top figure). It can
be seen from Eq. (25) that the rate functions �(ζ )I (derived
in Sec. III of this paper) and �(ζ )II are reflections of each
other around ζ = 1; in fact, it can be seen from the densities in
Eqs. (27) and (7) that both are reflections of each other around
ζ = 1 provided 2/3 � ζ � 1 is used for the deviations of the
minimum eigenvalue.

The large deviations for the maximum eigenvalue of the
Wishart ensemble (where there is no trace constraint) are
studied in Ref. [2]. But no transition in the density as well
as the rate function is observed there, which can be attributed
to the absence of the trace constraint on the matrices. For the
N = M case in Ref. [2] the density shows divergence at both
ends of its eigenvalue support whenever λmax < 4.

V. BIPARTITE ENTANGLEMENT

In the earlier works in Refs. [8,11], using the Coulomb gas
method, the full probability distribution of the Renyi entropy,
a measure of bipartite entanglement of which von Neumann
entropy is a special case, is derived. There, two critical points
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are found for which the charge density shows a transition as
the value of Renyi entropy is varied. In the first transition,
the integrable singularity at the origin disappears while, in
the second, the largest eigenvalue gets detached from the
continuum sea of all the other eigenvalues. As explained in
Sec. IV the density shows a transition when there are large
deviations in the maximum eigenvalue while no such transition
is observed for the same in the minimum eigenvalue.

In the Introduction, the importance of the extreme eigenval-
ues from the perspective of entanglement between subsystems
A and B is given. But the question regarding what the actual
entanglement is when measured using the von Neumann
entropy for given constraints (case of large deviations here) on
these extreme eigenvalues is unanswered. Thus, in this section
our aim is to quantify the bipartite entanglement between
subsystems A and B when there are large deviations in the
extreme eigenvalues from their average values. We would
also like to investigate whether the signature of presence
or absence of transition in the densities is reflected in the
entropies or not. Here the von Neumann entropy is used as a
measure of entanglement [24,25]. For this study the optimal
Coulomb charge densities obtained in Sec. III and the ones
from earlier studies reviewed in Sec. IV will be used. It should
be noted that when there no large deviations in the extreme
eigenvalues the average von Neumann entropy is known as
Page’s formula [52] and is given in Eq. (6). Thus, with
this conditional average generalization of this formula will
also be addressed. Results obtained in this section and those
on tripartite entanglement in the next section are compared
qualitatively from the perspective of monogamous nature of
entanglement at the end of next section.

As a first case, the large deviations in the case of maximum
eigenvalue are considered. As pointed out in the earlier parts
of this paper, there are two subcases depending on the position
of the barrier. Using Eq. (2) and labeling the eigenvalues of ρA

by a continuous average density of states as done in Sec. III A,
the average von Neumann entropy is given as

〈SV N 〉 = −N

∫
x ln(x)ρ(x)dx, (30)

where the form of ρ(x) is given in Eq. (11). One needs to use the
appropriate expression of the charge density ρ(x) depending
on the value of ζ for calculating the average entropy. For
the case where 4/3 � ζ � 4 the density given in Eq. (26) is
used in Eq. (30) to calculate the average entropy. Then, using
Mathematica 9, it is found to be

ln

(
4N

ζ

)
+ ζ

4
− 3

2
. (31)

It is plotted in Fig. 2 for the case N = 100 (region III of
the bottom figure). For the special case of ζ = 4 which
corresponds to no constraint on the maximum eigenvalue, the
average von Neumann entropy turns out to be ln(N ) − 1/2
[52]. This value agrees very well with that derived in Ref. [52]
where there are no additional constraints on the eigenvalues
of ρA.

For the second case when 1 � ζ � 4/3 the density given in
Eq. (27) is used in Eq. (30) to obtain the average von Neumann

entropy. Again, using Mathematica 9, it turns out as follows:

ln(N ) − 1

ζ (4 − 3ζ )

{
(ζ − a)2(3ζ − 4)

× pFq

[
{1,1,3/2},{3,4},4(ζ − 1)

3ζ − 4

]

+ 2(ζ − 1)2(9ζ − 10)pFq

[
{1,1,5/2},{3,4},4(ζ − 1)

3ζ − 4

]

− (3ζ − 4)
[
8 − 19ζ + 11ζ 2 + ζ ln (4 − 3ζ )

]}
, (32)

where pFq[a,b,z] is the generalized hypergeometric function.
It is plotted in Fig. 2 for N = 100 (region II of the bottom
figure). The special case when ζ = 1 is now considered. In that
case, the maximum eigenvalue is equal to 1/N , which implies
that the von Neumann entropy is ln(N ), which is also the
maximum value it can take as explained in the Introduction. It
can also be evaluated using the Eq. (32). The entropy for N =
100 indeed equals ln(100) ≈ 4.605. The Eqs. (31) and (32)
are compared with the Monte Carlo simulations as shown in
bottom of Fig. 2. It can be seen that the numerical simulations
agree very well with the analytical results.

At ζ = 4/3 (the transition between regimes II and III),
the average von Neumann entropy 〈SV N 〉 has a nonana-
lyticity. It is continuous with 〈SV N 〉(4/3) = ln(3N ) − 7/6
and once differentiable with d〈SV N 〉

dζ
|ζ=4/3 = −1. However, the

second derivative is discontinuous: d2〈SV N 〉
dζ 2 |ζ=4/3− = −9/2 but

d2〈SV N 〉
dζ 2 |ζ=4/3+ = 9/16. Thus, similarly to rate function, the

von Neumann entropy shows a discontinuity but in its second
derivative at ζ = 4/3. Thus, the signature of the transition in
the density of states can be observed in the von Neumann
entropy.

Now the case of the large deviations of the minimum
eigenvalue is considered. The barrier position ζ satisfies
0 � ζ � 1. Computing analytical expression for the entropy
is difficult. Thus, it is evaluated numerically using the density
in Eq. (21) and Eq. (30) for the case of N = 100. It is plotted
in Fig. 2 (region I in the bottom figure) along with the Monte
Carlo simulations. It can be seen that both agree with each
other very well. It can be seen easily from the figure that the
entropy is continuous and infinitely differentiable in region I
since it is concave downward. This can be attributed to the fact
that the density shows no transition in this case.

VI. ENTANGLEMENT WITHIN SUBSYSTEMS

In this section, the subsystem A is further divided into two
parts, denoted as 1 and 2, having Hilbert space dimension N1

and N2, respectively, such that N = N1N2. Then the effect
of the large deviations of the extreme eigenvalues of ρA are
studied on the entanglement between subsystems 1 and 2.
Now we have a tripartite pure state having dimensions N1,
N2, and M . The entanglement in such a tripartite pure system
when its state is chosen randomly has been studied previously
in Refs. [12,68,69]. There it is shown that the entanglement
between subsystems 1 and 2 shows a transition at M = 4N1N2

for sufficiently large subsystem dimensions.

062149-6



ENTANGLEMENT TRANSITIONS INDUCED BY LARGE . . . PHYSICAL REVIEW E 96, 062149 (2017)

FIG. 3. Density of states of ρ�
12 for various values of barrier

positions ζ between zero and 1. All the eigenvalues of randomly
chosen ρ12 are greater than the barrier position. One thousand such
matrices are used for each ζ . It corresponds to the large deviations
of the minimum eigenvalue (0 � ζ � 1). A vertical line at the origin
has been shown to draw attention to the negative part of the spectrum.
Here N1 = N2 = 10 and M = 100.

The entanglement between subsystems 1 and 2 is studied
using the log negativity measure [70]. It is defined as
ELN (ρ12) = log(||ρ�

12||), where ||ρ�|| is the trace norm of the
partial transpose (PT) matrix ρ� [71]. When the log negativity
is greater than zero, the state is said to have the negative partial
transpose (NPT). Then the state is entangled. When the log
negativity is zero, the state is said to have the positive partial
transpose (PPT). Then the state is either separable or bound
entangled [72].

Now the numerical procedure to generate random states
ρ12 having large deviations in their extreme eigenvalues is
given. Every density matrix, which is Hermitian, can be
diagonalized by an unitary rotation U . It is thus natural that the
distribution of eigenvalues and that of eigenvectors of ρ12 are
independent. Thus, the probability measure of ρ12 factorizes
in a product form [49,73], dμx = dνx(λ1,λ2, . . . ,λN ) × dh.
Here λ1,λ2, . . . ,λN are the eigenvalues of ρ12 and the factor dh

determines the distribution of its eigenvectors. The probability
measure used for the eigenvalues is given in Eq. (3) along with
the constraint on the extreme eigenvalues. For the measure dh

the unique Haar measure on U (N ) is taken which determines
the statistical properties of the eigenvectors forming U .
Thus, this gives ρ12 = Ud U † where d is a diagonal matrix
[λ1,λ2, . . . ,λN ]. The eigenvalues are generated numerically
using the Monte Carlo method, whereas the matrix U is
generated using the algorithm given in Ref. [74].

Earlier works have studied the effect of PT on ρ12 in
tripartite random pure states [12,68,69]. It is shown that the
density of ρ12 after PT is very close to the Wigner’s semicircle
law when the dimensions of both the subsystems are not too
small and are of the same order. In fact, the Wigner’s semicircle
law is also obtained in a bipartite mixed state ρ12 after PT which
is obtained by uniformly mixing sufficiently large number of
random bipartite pure states [75]. But in this paper our focus
is on the bipartite and tripartite random pure system. In these
works the extreme eigenvalues fluctuates around their average

FIG. 4. Density of states of ρ�
12 for various values of bar-

rier positions ζ between 1 and 4. All the eigenvalues of ran-
domly chosen ρ12 are smaller than the barrier position. One
thousand such matrices are used for each ζ . It corresponds to
the large deviations of the maximum eigenvalue (1 � ζ � 4). A
vertical line at the origin has been shown to draw attention
to the negative part of the spectrum. Here N1 = N2 = 10 and
M = 100.

values. In Ref. [12] the minimum eigenvalue of ρ�
12 is shown to

follow the Tracy-Widom distribution. Using this the fraction
of entangled states at criticality (M = 4N1N2) was given. This
suggests investigating the effects of the large deviations of the
extreme eigenvalues of ρ12 on the density of ρ�

12 as well as
on the entanglement between subsystems 1 and 2. The results
are plotted in Figs. 3, 4, and 5 for the case N1 = N2 = 10
and M = 100. It can be seen that the eigenvalue densities of
ρ�

12 is very close to the Wigner semicircle law. As the barrier
position is changed an entanglement transition takes place
from dominantly NPT states to dominantly PPT.

It should be mentioned here that the case N1 �= N2 without
any large deviations in the extreme eigenvalues has been
studied in Ref. [12]. There it was shown that the density of
states of ρ�

12 had a skewness which was calculated analytically.
It is also observed in our work that the density has a skewness
(not presented here) but calculating it analytically seems to be
mathematically challenging. Thus, it is not addressed in this
paper.

A. Model for shifted semicircles

In the earlier work in Ref. [12] the semicircular density of
ρ�

12 was well studied using a simple model. It was suggested
by using the fact that the first two moments remain unchanged
under the PT operation. The semicircular density depends only
on two moments, the mean and the variance. Thus, it was
proposed to shift and scale the semicircle of the Gaussian
ensembles such that the first two moments of ρ12 are matched.
To explain the semicircular density obtained in this paper the
same model from Ref. [12] is used. The model has been used
to accurately predict the transition from the dominantly NPT
states to the dominantly PPT states.

Now the model for the shifted semicircles is given. Here it
is assumed that these random matrices are sampled from the
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FIG. 5. Average entanglement in random states ρ12 as measured
by the log negativity between subsystems 1 and 2 for various barrier
positions. This is compared with the analytical result in Eq. (37)
based on the simple model. Black solid vertical line (dotted line)
corresponds to ζ = 1/2 (ζ = 4 − √

6) showing the entanglement
transition due to large deviations of the minimum (maximum)
eigenvalue. Horizontal dash-dotted line is drawn such that ζ between
0 and 1 corresponding to its intersection with the log negativity is 1/8.
Regions a, b, and c correspond to 0 � ζ � 1/2, 1/2 � ζ � 4 − √

6,
and 4 − √

6 � ζ � 4, respectively. Here N1 = N2 = 10 and M =
100.

Gaussian unitary ensemble (GUE). Thus, consider

Y = X + IN

N
, (33)

where X is a N × N random matrix from the GUE ensemble
with the necessary matrix element variance such that it matches
with that of ρ12, and IN is the identity matrix of dimension
N . It can be seen that 〈tr(Y )〉 = 1 since 〈tr(X)〉 = 0, where
the angular brackets indicate the ensemble average. Here the
case of large matrix dimension is considered. Thus, it can
be expected that the influence of the fact that the tr(Y ) is
not exactly equal to one for each and every member of the
ensemble will not be observed except in the case of very small
dimensional cases.

It can be seen that the eigenvalues of Y are all those of X

shifted by 1/N . Thus, considering the spectrum of X alone
will be sufficient. Under the assumption that X is sampled
from the GUE, it follows that the density of eigenvalues of Y

for large N is given as follows:

P (μ) = 2

πR2

√
R2 −

(
μ− 1

N

)2

,−R + 1

N
<μ<R + 1

N
,

(34)
where

R = 2

√
1

N
〈tr(X2)〉 = 2

√
1

N

〈
tr
(
ρ2

12

)〉 − 1

N2
. (35)

Now the scaled variable x = μN is used. This results in the
semicircular probability density having a shift of 1 and a
rescaled “radius” R̃ = NR. Explicitly:

P�(x) = 2

πR̃2

√
R̃2 − (x − 1)2, 1 − R̃ < x < 1 + R̃. (36)

This is the the Wigner semicircle law that has been observed
in Figs. 3 and 4. Now R̃ is calculated when there are large
deviations in the extreme eigenvalues. This requires finding
the average purity of ρ12. First, the case of large deviations of
the minimum eigenvalue is considered. Using the density of
states in Eq. (7) in Mathematica 9, the purity turns out to be
〈tr(ρ2

12)〉 = P1/N = (2 − 2ζ + ζ 2)/N . This gives the rescaled
radius R̃ = 2(1 − ζ ), where 0 � ζ � 1. Similarly, for the case
of the large deviations of the maximum eigenvalue, the density
of states in Eqs. (27) and (26) is used. The purity is found to
be P2/N = (2 − 2ζ + ζ 2)/N and P3/N = −ζ (ζ − 8)/(8N )
for 1 � ζ � 4/3 and 4/3 � ζ � 4 respectively. Here, P1,
P2, and P3 are the rescaled purities. Using these purities R̃

equals 2(ζ − 1) and 2
√

(−ζ 2 + 8ζ − 8)/8 for 1 � ζ � 4/3
and 4/3 � ζ � 4, respectively. It can be seen that these
analytical expressions for the rescaled radii agrees very well
with those from Figs. 3 and 4.

This model gives the NPT-PPT transition very well. It
can be seen that the condition for this transition is R̃ = 1.
Using this condition one obtains ζ = 1/2 and 4 − √

6 as the
transition points for the large deviations of the minimum and
maximum eigenvalue, respectively. For any ζ > 1/2 in the
case of minimum eigenvalue and ζ < 4 − √

6 in the case of
maximum eigenvalue the radius is smaller than, and there
are predominantly PPT states. Whereas in the opposite cases
the lower bounds are such that there are predominantly NPT
states. Thus, this simple model from Ref. [12] of a shifted
random matrix of the GUE kind for the partial transpose gives
the transition very well. These critical values of the barrier
positions can be observed in Figs. 3 and 4.

In Ref. [12] it was shown analytically that before and after
the PT the range of the eigenvalues is the same. Extreme
deviations from this result were shown to occur when the
state ρ12 is pure or nearly pure. For the large deviation of the
minimum eigenvalue the density before PT has a support on
[ζ,4 − 3ζ ] and after PT it becomes [1 − R̃,1 + R̃], where R̃ =
2(1 − ζ ), where 0 � ζ � 1. Thus, the range of the eigenvalues
before and after the PT are both equal to 4(1 − ζ ).

Similarly, for the large deviations of the maximum eigen-
value the density before PT has a support on [4 − 3ζ,ζ ] and
[0,ζ ] for 1 � ζ � 4/3 and 4/3 � ζ � 4, respectively. After
PT the support is again [1 − R̃,1 + R̃] but with R̃ = 2(ζ − 1)
and 2

√
(−ζ 2 + 8ζ − 8)/8 for 1 � ζ � 4/3 and 4/3 � ζ � 4,

respectively. Thus, it can be seen that only for 1 � ζ � 4/3
does the range of eigenvalues before and after PT equal 4(ζ −
1). This range is reflection symmetry of that corresponding to
the large deviations of the minimum eigenvalue around ζ = 1.
While for 4/3 � ζ � 4 the range of the eigenvalues after PT
is larger than that of before PT except at ζ = 4/3 and 4, where
both the ranges are equal. It should be mentioned that these
results are valid for the case N1 �= N2 since they depend only
on N = N1N2 and M . But when N1 and N2 differ significantly
the density of states of ρ�

12 has a skewness, whereas the model
predicts zero skewness.

B. Logarithmic negativity

The average log negativity between two subsystems 1 and
2 is now studied. The formalism from Ref. [12] is used again
where the fact that the density of states after PT is Wigner’s
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semicircle was used. There it is shown analytically that

〈ELN 〉M = log

[
2

π
sin−1

( 1

R̃

)
+ 2

3πR̃

√
1 − 1

R̃2

(
1 + 2R̃2

)]
.

(37)

Here 〈ELN 〉M denotes the log negativity obtained using the
simple model. This formula is valid only for R̃ � 1; otherwise,
〈ELN 〉M is zero. For our case, R̃ = NR = 2(1 − ζ ) (0 � ζ �
1) for the large deviations of the minimum eigenvalue, whereas
R̃ is 2(ζ − 1) and 2

√
(−ζ 2 + 8ζ − 8)/8 for 1 � ζ � 4/3

and 4/3 � ζ � 4, respectively, for the large deviations of
the maximum eigenvalue. For the critical case R̃ = 1 this
formula gives zero for the average log negativity. When
R̃ < 1, the states obtained are predominantly PPT. In that
case, 〈ELN 〉 = 0. Thus, it can be seen that 〈ELN 〉 = 0 for
1/2 � ζ � 4 − √

6 since R̃ � 1 for this range of ζ as shown
in the previous subsection. Equation (37) is plotted in Fig. 5
along with numerical results for various values of ζ for
N1 = N2 = 10 and M = 100. It can be seen that Eq. (37)
works very well. Consider the situations in which there are
no constraints on either of the extreme eigenvalues. It implies
ζ = 0 (ζ = 4) for the minimum (maximum) eigenvalue. This
gives R̃ = 2 for both of them. In that case the Eq. (37) gives
〈ELN 〉 ≈ 0.148702. This value can be observed in Fig. 5 at
ζ = 0 and ζ = 4.

Another interesting feature that is observed in Fig. 5 is
that there are two different values of ζ ’s (ζ1 and ζ2, say)
corresponding to the large deviations of the extremes for which
entanglement between subsystems 1 and 2 is same. Here ζ1 (ζ2)
corresponds to the large deviation of the minimum (maximum)
eigenvalue. Thus, this implies 0 � ζ1 � 1 and 1 � ζ2 � 4. It
can be seen that from Eq. (37) for the log negativity, derived
using the simple random matrix model, that two different ζ ’s
will result in the same log negativity provided R̃ is same
for both of them, whereas in Eq. (35) it is shown that R̃

depends only on the purity of ρ12. Thus, this implies that large
deviations of the extremes will have the same log negativity if
the corresponding purities (so does the rescaled purities) are
same.

Using the simple model, it is shown that log negativ-
ity is nonzero when ζ < 1/2 (ζ > 4 − √

6) for the large
deviation of the minimum (maximum) eigenvalue. Thus, it
is sufficient to consider the rescaled purities P1 and P3 to
find the desired relation between ζ1 and ζ2. For given ζ1

the rescaled purity is P1 = 2 − 2ζ1 + ζ 2
1 . The parameter ζ2

for which the rescaled purity is P1 one needs to solve for
P1 = P3 = (8ζ2 − ζ 2

2 )/8. Solving this quadratic equation, one

obtains ζ2 = 4 ± 2
√

2(2 − P1) = 4 ± 2
√

2ζ1 − ζ 2
1 . Of these

two solutions only ζ2 = 4 − 2
√

2(2ζ1 − ζ 2
1 ) is valid while the

other solution is invalid since it exceeds its upper limit, which is
4. For the special value of ζ1 = 1/8 the corresponding value of
ζ2 for which the log negativity is same is approximately equal
to 2.6307. Using Eq. (37), the log negativity is approximately
equal to 0.0919. These results can be observed in Fig. 5. It
should be mentioned that these results are valid for the case
N1 �= N2 since they depend only on N = N1N2 and M .

It is important to compare the results obtained in Secs. V
and VI using Fig. 5 and the bottom one in Fig. 2. In can be
seen that at ζ = 1 the von Neumann entropy is maximum
while the log negativity is zero. As ζ goes away from 1,
the von Neumann entropy reduces while the log negativity
increases outside the range [1/2,4 − √

6]. This behavior can be
understood using the monogamous nature of the entanglement
[76]. It says that if two subsystems (here subsystems 1 and
2) have maximum quantum corrections, then they (either 1
or 2) cannot be correlated at all with a third system (here
subsystem B). This also implies that the joint system of 1 and
2 together also cannot be correlated at all with the third system.
Monogamy of entanglement holds for each and every quantum
state, which implies it will also hold on an average. This is what
is observed from these figures. It should be noted that this
is a qualitative observation and a quantitative understanding
demands thorough investigation.

VII. SUMMARY AND CONCLUSIONS

This paper has studied the large deviations of the minimum
Schmidt eigenvalue in a large bipartite system, denoted as
A and B. The state of the system is pure and chosen
randomly from the uniform Haar measure. This eigenvalue
play an important role in the study of entanglement between
the two subsystems. Using the Coulomb gas method, the
large deviation function for the minimum eigenvalue and the
associated equilibrium charge density is derived. Our results
hold for all the values of the Dyson index. These analytical
expressions are found to agree very well with the Monte
Carlo simulations. Thus, with this density the generalization
of the Marcenko-Pastur function is given when there are large
deviations in the minimum Schmidt eigenvalue. In this paper
the case of equal dimensions (N = M) of subsystems A and B

is studied. The nontrivial case of unequal dimensions (N �= M)
will be published elsewhere.

The effect of the large deviations of both maximum and
minimum eigenvalue is studied on the entanglement between
A and B by using the von Neumann entropy. For this the
equilibrium Coulomb charge density obtained for the large
deviations of the minimum eigenvalue in this paper and the
corresponding result for the maximum eigenvalue from earlier
work in Ref. [11] is used. In the case of large deviations of the
maximum eigenvalue, analytical expression for the entropy is
derived using Mathematica 9, while the same for the minimum
eigenvalue remains an open question. The entropy in the latter
case is obtained by numerical integration. These entropies are
found to agree very well with the Monte Carlo simulations.
The entropy corresponding to the large deviations of the
maximum eigenvalue is continuous and once differentiable,
but the second derivative is discontinuous at ζ = 4/3. This
is due to the transition in the density of states occurring at
the same ζ because of the large deviations in the maximum
eigenvalue [11].

One of the subsystems is further divided into two parts,
denoted as 1 and 2. The effect of the large deviations is also
studied on the entanglement, measured using the log negativity,
between 1 and 2. It is found that the state of the subsystem
undergoes an NPT-PPT transition. The transition takes place at
ζ = 0.5 (ζ = 4 − √

6) for the large deviations of the minimum

062149-9



UDAYSINH T. BHOSALE PHYSICAL REVIEW E 96, 062149 (2017)

(maximum) eigenvalue. To be precise, when ζ > 1/2 (ζ <

4 − √
6) for the large deviations of the minimum (maximum)

eigenvalue the states are dominantly PPT, the critical barrier
position being ζ = 1/2 (ζ = 4 − √

6).
It is found numerically that the density of states of the

reduced density matrix of subsystems after PT is close to the
Wigner semicircle law when there are large deviations in the
extreme Schmidt eigenvalues. The skewness of the semicircle
is minimum for the symmetric case N1 = N2. Earlier work in
Ref. [12] has shown the same when there are no such large
deviations. Thus, our work shows the robustness of the Wigner
semicircle law after PT even in the presence of large deviations
in the extreme eigenvalues before PT. A simple random matrix
model from the same work in Ref. [12] is used successfully
to capture the NPT-PPT transition as well as the density of
states after PT. A one-to-one relationship between barrier
positions ζ1 and ζ2, which corresponds to large deviations
of minimum and maximum eigenvalues, respectively, is found

such that the entanglement between subsystems 1 and 2 is the
same for both the positions. Results of bipartite and tripartite
entanglement are interpreted qualitatively from the perspective
of monogamous nature of the entanglement.
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[13] K. Szymański, B. Collins, T. Szarek, and K. Życzkowski, J.
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