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Quantum phase transition in an effective three-mode model of interacting bosons
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In this work we study an effective three-mode model describing interacting bosons. These bosons can be
considered as exciton-polaritons in a semiconductor microcavity at the magic angle. This model exhibits quantum
phase transition (QPT) when the parameters of the corresponding Hamiltonian are continuously varied. The
properties of the Hamiltonian spectrum (e.g., the distance between two adjacent energy levels) and the phase
space structure of the thermodynamic limit of the model are used to indicate QPT. The relation between spectral
properties of the Hamiltonian and the corresponding classical frame of the thermodynamic limit of the model
is established as indicative of QPT. The average number of bosons in a specific mode and the entanglement
properties of the ground state as functions of the parameters are used to characterize the order of the transition
and also to construct a phase diagram. Finally, we verify our results for experimental data obtained for a setting
of exciton-polaritons in a semiconductor microcavity.
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I. INTRODUCTION

One issue of great interest in condensed matter physics
today is quantum phase transition (QPT) [1]. Differently
from the usual thermodynamic phase transition, which is
guided by thermodynamic fluctuations and characterized by
a critical temperature, a QPT can be observed for T = 0
and is conducted by quantum fluctuations. The change in the
system due to a QPT is observed when some parameter of
the Hamiltonian is varied, rather than temperature as in the
thermodynamic phase transition. As a simple example, we
have the quantum Ising model in a transverse field, where
a QPT is observed between ferromagnetic and paramagnetic
phases when the intensity of the applied field is varied [1,2].
As this example illustrates, the study of QPT conveys a better
understanding of the complex behavior shown by many-body
systems. This study can cross very different systems as, for
example, systems involving light-matter interactions, such as
cavity arrays coupled by optical fibers [3], or a two-species
condensate of interacting bosons trapped in optical lattices
[4]. The next paragraphs present other instances where QPT in
many-body problems is considered and which are of interest
for this work.

One of the systems under intense attention in recent decades
is the semiconductor microcavity [5]. In this system, the
interaction between cavity photons and excitons belonging to
the semiconductor gives rise to a new quasi-particle called
exciton-polariton [6]. There are many interesting features
shown by this system as, for example, the superfluidity [7],
and the generation of a Bose-Einstein condensate (BEC) in a
solid state system [8] (which occurs even at room temperature
[9]). Another interesting feature is the so-called magic angle
configuration in which we observe a parametric amplification
of the emitted light [10]. One possible theoretical description
of this feature is given by considering only three modes for
the exciton-polaritons, denominated pump, signal, and idler
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[11]. The evidences pointed by experiment [10] suggest that
only these three modes are coherently and macroscopically
populated [5,11]. In this situation one can approximate
the Hamiltonian of the system by an effective three-mode
Hamiltonian as we do in this work.

The experimental observation of QPT in the scope of con-
densed matter physics has been boosted by the development
of techniques that allowed for the storage and handling of
matter at the atomic level. In the past two decades, intense
research has been done on systems of interacting trapped
bosons, especially cold atoms trapped in optical lattices
[12]. The interest in such systems is assigned to the their
capacity to simulate many phenomena predicted to occur
in arrangements of trapped atoms, such as the BEC itself
[13], solitons [14], bosonic Josephson effect, and nonlinear
oscillations [15], and also a QPT from a Mott-insulator-like
phase to a superfluid-like one [1,16]. For a two-well condensate
[17] or a three-well condensate [18,19], the transition is
between two dynamical regimes: macroscopic self-trapping
and Rabi (or Josephson) oscillations [20]. These kinds of
systems are generally described by a Bose-Hubbard-type
Hamiltonian [21–23]. In this work we study an effective three-
mode Hamiltonian essentially different from a Bose-Hubbard
Hamiltonian but which exhibits a QPT between two phases:
the macroscopic self-trapping (MST), characterized by the
vanishing of the tunneling between the modes, and a regime
of oscillations (RO), where tunneling is present.

In recent years, also classical analyses involving the ther-
modynamic limit of some quantum many-body models have
contributed to the investigations of QPT. These analyses come
to add themselves to other valuable tools to investigate QPT,
many of them referring to the properties of the spectrum of
the corresponding quantum Hamiltonian, as the level approx-
imation (crossing), or to the measurement of entanglement of
the ground state [24] near the critical point. Different systems
were studied in this quantum-classical context, e.g., the Lipkin
model [25] and the pairing model [26] (both in nuclear
physics), the Dicke model for superradiance in quantum optics
[27], excitons in semiconductor bilayer electron systems [28],
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ultracold Bose gases trapped in multiple wells [19], among
others [29]. In parallel with the quantum treatment, we perform
as well the classical limit analysis to study QPT in the effective
three-mode model for a system of interacting bosons. Our
analysis results in a close analogy between some aspects of the
spectrum of the quantum Hamiltonian and classical properties
of the corresponding thermodynamic limit of the model. As an
example, the different phases in the quantum regime are related
to the existence of closed orbits in the classical thermodynamic
limit. In fact, the MST phase corresponds to the situation in
which there are no closed orbits in phase space, whereas the
RO phase is characterized by the presence of such orbits. In
this way, separatrices delimiting regions of the phase space
characterized by different dynamical regimes in the classical
limit are identified with the presence of non-trivial minima
in the separation of adjacent energy levels. Besides that, the
properties of the ground state are used to characterize the order
of the transition and also to construct a phase diagram that
shares some similarity with the phase diagram obtained for
the Lipkin model [25]. Our results can be applied to describe a
system of exciton-polaritons in a semiconductor microcavity
at the magic angle.

This work is organized as follows. In Sec. II, the effective
Hamiltonian is presented and, in Sec. III, its spectral properties
are shown; in Sec. IV, the classical thermodynamic limit of the
Hamiltonian is taken and the resulting phase space is analyzed.
In Sec. V, we discuss the QPT and a phase diagram. In Sec. VI,
we verify our results for exciton-polaritons in a semiconductor
microcavity, based on available experimental data. Finally, we
present our conclusions in Sec. VII.

II. THREE-MODE APPROXIMATION FOR
INTERACTING BOSONS

The starting point of this work is a three-mode Hamiltonian
for interacting bosons in the form

H =
∑

i=0,1,2

Eia
†
i ai +

∑
i+j=k+l

h̄Gijkla
†
i a

†
j akal, (1)

where a
†
i (ai) is the creation (annihilation) operator for a

boson with energy Ei . The first term describes the free
bosons while the second one describes the interaction between
different bosonic modes which obeys the condition: Gijkl �= 0
for i + j = k + l, Gijkl = 0 for i + j �= k + l. As we see
in the following, we can obtain a Hamiltonian as Eq. (1)
for the description of exciton-polaritons in a semiconductor
microcavity at the magic angle (Sec. II A). An effective
Hamiltonian (Sec. II B) can be obtained from Eq. (1) by using
the conservation of total number of bosons and the condition
i + j = k + l, which means conservation of momentum for
exciton-polaritons.

A. Exciton-polaritons in a semiconductor microcavity
at the magic angle

An exciton-polariton is a quasi-particle formed from the
coupling between an exciton and a photon in a semiconductor
microcavity. Under certain experimental conditions we can
model the exciton-polaritons in a semiconductor microcavity

by the Hamiltonian [5,11]

H =
∑

k

h̄�kp
†
kpk + 1

2

∑
k,k′,q

V PP
k,k′,qp

†
k+qp

†
k′−qpkpk′ , (2)

where p
†
k (pk) is the creation (annihilation) operator for an

exciton-polariton with in-plane wave-vector k and energy h̄�k.
The first term describes the free exciton-polaritons while the
second one describes the interaction between different exciton-
polariton modes. For typical values of the experimental
parameters, the interaction coefficients are given by

V PP
k,k′,q � V0u|k′−q|uk.u|k+q|uk′ , V0 = 6e2aexc

ε0A
, (3)

where aexc is the two-dimensional Bohr radius of the exciton-
polariton, ε0 is the dieletric constant of the semiconductor,
and A is the macroscopic quantization area. The uk’s are the
so-called Hopfield coefficients, given by

uk =
⎛
⎝�k +

√
�2

k + �2
R

2
√

�2
k + �2

R

⎞
⎠

1/2

, (4)

where �k = Ecav(k) − Eexc(k) is the detuning between the
energies of cavity photons and excitons.

At the magic angle configuration, the system exhibits a
parametric amplification of the emitted light [10]. In this
situation, a theoretical description of the system is given by
considering that only three modes for exciton-polaritons—
namely, signal (0), pump (kp), and idler (2kp)—are coherently
and macroscopicaly populated [11]. If kp is the wave vector
of pumping, the scattering of two kp exciton-polaritons results
in two other exciton-polaritons with wave vectors 0 and 2kp.
Considering this dynamics, we can approximate Hamiltonian
Eq. (2) by a three-mode Hamiltonian as Eq. (1) with p0 ≡ a0,
pkp

≡ a1, and p2kp
≡ a2. In this way, the coefficients Gijkl

are functions of the V PP
k,k′,q and the condition i + j = k + l in

Eq. (1) is assured by the conservation of momentum in the
second term of Eq. (2).

B. An effective Hamiltonian

The three-mode Hamiltonian Eq. (1) conserves the to-
tal number of bosons represented by the observable N̂ ≡
a
†
0a0 + a

†
1a1 + a

†
2a2. Besides that, the difference between the

population of bosons in modes 0 and 2, i.e., the imbalance
represented by D̂ ≡ a

†
0a0 − a

†
2a2, is also conserved. These are

two constants of motion under the evolution given by Eq. (1).
In terms of N̂ and D̂ operators, we can rewrite Hamiltonian
Eq. (1) as

H = HND(N̂,D̂) + Heff
(
n̂0,a0a2a

†2
1

)
, (5)

where n̂0 ≡ a
†
0a0. For convenience and symmetry, we will

consider N even and D = 0. We can observe that HND is
constant, giving rise only to a global phase in the state of the
system as a function of time. The time evolution depends only
on the second part of Eq. (5), an effective Hamiltonian given
by

Heff = h̄δn̂0 + h̄g(n̂0)2 + h̄
[
Ga

†
0a

†
2a

2
1 + G∗a0a2(a†

1)2
]
, (6)
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FIG. 1. Energy eigenvalues Ei as a function of the eigenstate
index i for g/δ = 0 (a), g/δ = 0.003 (b), N = 500, and different
values of the three-mode coupling coefficient G/δ. The horizontal
dotted lines mark the values E = 0 and E = N/2 + (g/δ)(N/2)2.

where h̄δ = E0 + E2 − 2E1 − h̄G0000 − h̄G2222 + 2h̄G1111

+ 4h̄N [G1212 + G0101 − G1111], g = −8G1212 + G0000 +
4G0202 − 8G0101 + 4G1111 + G2222, and G = 2G1102. In the
next section we study the properties of the spectrum of the
above Hamiltonian for different values of parameters G/δ

and g/δ.

III. QUANTUM SPECTRUM

In Fig. 1 we observe the eigenvalues Ei (i = 1,2,...,N/2 +
1) for the rescaled Hamiltonian E = Heff/h̄δ as a function of
the eigenstate index i for different values G/δ of the coupling
between the three modes. We take g/δ = 0 [Fig. 1(a)],
g/δ = 0.003 [Fig. 1(b)], and g/δ = −0.003 (Fig. 2), and we
choose N = 500. In both cases of Fig. 1, the spectra show
maximal level densities at energies E = 0 and E = N/2 +
(g/δ)(N/2)2, which are inflection points. Moreover, we see
that for g/δ = 0 the spectra are always symmetric with respect
to the central level and both inflection points move accordingly
toward the center as a function of G/δ. For values g/δ > 0,
the spectra are asymmetric and the inflection points move
separately toward the center as G/δ is varied. For g/δ < 0
(Fig. 2), we observe a more complex behavior with a twofold
degeneracy, which disappears for G/δ > 0.0005 [Fig. 2(a)],
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FIG. 2. Energy eigenvalues Ei as a function of the eigenstate
index i for g/δ = −0.003, N = 500, and different values of the three-
mode coupling coefficient G/δ. For G/δ < 0.0005 (a) we observe a
twofold degeneracy which vanishes for G/δ > 0.0005 (b).

but in essence it is similar to the case g/δ > 0, with two
asymmetrical inflection points moving separately to the center
of the spectrum [Fig. 2(b)]. When we calculate the mean values
of population in mode 0, 〈n0〉, and in mode 1, 〈n1〉, for a degen-
erate spectrum, we find that, at a degeneracy, there is the pos-
sibility of population inversion between modes with the same
energy value. In other words, two states with the same energy,
Ei = Ei+1, may have 〈n0〉 > 〈n1〉 or 〈n0〉 < 〈n1〉. Therefore,
the degeneracy is characterized by the possibility of reversing
the population of modes without altering the state’s energy.

We can also observe the behavior of the spectrum in
Fig. 3, where maximal level densities appear as minimal
differences for adjacent energy levels. It has been shown
[26,28] that in these Curie-Weiss models a quantum phase
transition is connected with the level approximation, occurring
maximally at these inflection points. We will also see that in
the thermodynamic limit the inflection point is associated with
a separatrix orbit in the corresponding classical phase space.

IV. CLASSICAL THERMODYNAMIC LIMIT OF THE
HAMILTONIAN

The classical analog can be obtained as the thermodynamic
limit of Hamiltonian Eq. (6). The first step is the mapping of
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FIG. 3. Difference between adjacent energy eigenvalues Ei+1 −
Ei as a function of the index i for g/δ = 0 (a), g/δ = 0.003 (b), and
g/δ = −0.003 (c), N = 500, and different values of the three-mode
coupling coefficient G/δ.

the operators into a SU(2) algebra by taking

Jz ≡ n̂0 − N̂

4
, and (7)

J+ = J
†
− = 1√

2n̂0(N − 2n̂0 + 1)
a
†
0a

†
2a

2
1 . (8)

With these operators, Hamiltonian Eq. (6) is rewritten as

Heff = h̄δ(Jz + J ) + h̄g(Jz + J )2

+ h̄{G
√

2(Jz + J )[N − 2(Jz + J ) + 1]J+

+G∗J−
√

2(Jz + J )[N − 2(Jz + J ) + 1]}, (9)

with J = N/4.
The following step to the thermodynamic limit is obtained

by rescaling the Hamiltonian by the density N/V and taking
the limits N → ∞ and V → ∞, with the ratio N/V being
kept constant. In this limit, the classical variables are provided
by the usual definitions [30],

jk = lim
J→∞

Jk

J
, (k = +,−,z) (10)

and

jx = 1
2 (j+ + j−) =

√
1 − j 2

z cos φ, (11)

where φ and jz correspond to canonical conjugate variables.
The classical Hamiltonian finally obtained is written as

h(jz,φ) = δ′(jz + 1) + g′(jz + 1)2 + 4G′(1 − j 2
z

)
cos(φ),

(12)
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FIG. 4. Phase space φ × jz for g′/δ′ = 0, G′/δ′ = 0.125 (a),
and G′/δ′ = 0.25 (b). Rescaled parameters calculated for N = 500,
g/δ = 0, G/δ = 0.001 (a), and G/δ = 0.002 (b). The critical points
of h(φ,jz) are signaled by black dots.
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FIG. 5. Phase space φ × jz for g′/δ′ = 0.375, G′/δ′ = 0.3125
(a), and G′/δ′ = 0.375 (b). Rescaled parameters calculated for
N = 500, g/δ = 0.003, G/δ = 0.0025 (a), and G/δ = 0.003 (b).
The critical points of h(φ,jz) are signaled by black dots.

with the rescaled parameters δ′ = h̄δV/4, g′ = h̄gNV/16,
and G′ = h̄GNV/16.

The classical phase space φ × jz is shown in Figs. 4–7,
using, respectively, g′/δ′ = 0, g′/δ′ = 0.375, and g′/δ′ =
−0.375 for some given values of the three-mode coupling
G′/δ′. As expected, the phase space is periodic in the variable
φ and jz is restricted to −1 � jz � 1. In these figures we
can see two different dynamical regimes: closed and open
orbits separated by a separatrix corresponding to the classical
energies for jz = ±1. The closed orbits correspond to classical
energies less than h(jz = −1) or greater than h(jz = 1). The
arising of the separatrix in phase space is associated to the level
approximation in the quantum spectrum [26,28]. This can be
seen in the three cases below:

(i) g′/δ′ = 0 (g/δ = 0): We observe the appearance of two
separatrices for G′/δ′ > 0.125 (G/δ > 0.001) next to upper
and lower classical energies h(jz = 1) and h(jz = −1), while
in the quantum spectrum we observe the level approximation
in both extreme energies.

(ii) g′/δ′ = 0.375 (g/δ = 0.003): We observe the appear-
ance of a separatrix for G′/δ′ > 0.125 (G/δ > 0.001) next to
the lower classical energy h(jz = −1) and for G′/δ′ > 0.3125
(G/δ > 0.0025) next to the upper classical energy h(jz = 1),
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FIG. 6. Phase space φ × jz for g′/δ′ = −0.375, G′/δ′ = 0.0125
(a), and G′/δ′ = 0.0625 (b). Rescaled parameters calculated for
N = 500, g/δ = −0.003, G/δ = 0.0004 (a), and G/δ = 0.0005 (b).
The critical points of h(φ,jz) are signaled by black dots and the
degenerated open orbits by trace-dotted curves.

while in the quantum spectrum we observe respective level
approximations next to upper and lower energies.

(iii) g′/δ′ = −0.375 (g/δ = −0.003): Besides the behavior
seen in (ii), we also observe a degeneracy of two classical
trajectories with the same energy. This degeneracy disappears
for G′/δ′ > 0.0625 (G/δ > 0.0005).

The previous aspects can be explained analytically by
means of the critical points of the function h(φ,jz). These
are of two kinds:

—Maxima or minima localized at

(φ,jz)max,min =
(

2nπ,
δ′ + 2g′

8G′ − 2g′

)
(13)

and

(φ,jz)max,min =
(

(2n + 1)π,− δ′ + 2g′

8G′ + 2g′

)
, (14)

—Saddle points at

(φ,jz)saddle =
(

arccos

[
δ′ + 4g′

8G′

]
,1

)
(15)
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FIG. 7. Phase space φ × jz for g′/δ′ = −0.375, G′/δ′ = 0.125
(a), and G′/δ′ = 0.15 (b). Rescaled parameters calculated for N =
500, g/δ = −0.003, G/δ = 0.001 (a), and G/δ = 0.002 (b). The
critical points of h(φ,jz) are signaled by black dots.

and

(φ,jz)saddle =
(

arccos

[−δ′

8G′

]
,−1

)
. (16)

These critical points are shown in Figs. 4–7. The critical
points in Eqs. (13) and (14) can be maxima or minima,
depending on whether g′/δ′ � 0 or g′/δ′ < 0. The closed
orbits are created around the maximum and minimum points.
Therefore, the conditions for the existence of these points are
the conditions for the arising of the separatrix for upper and
lower classical energies. We deduce from the conditions above
that we have the arising of the two separatrices starting for the
same value of the three-mode coupling G′/δ′ = 0.125 when
g′/δ′ = 0. In the same way, when g′/δ′ = 0.375 we have two
distincts values of the three-mode coupling G′/δ′ = 0.125 and
G′/δ′ = 0.3125 for the arising of the separatrix for upper and
lower classical energies respectively. We can interpret these
values as the critical values of the quantum phase transitions,
with the appearance of the closed orbits in phase space
signaling the possibility of another physical phase accessible
to the system. As it is shown in Figs. 4–7, the arising of this
second phase for upper classical energies depends on the value
of the parameter g′/δ′. For g′/δ′ = 0, the second phase (closed
orbits) arises for upper energies when G′/δ′ � 0.125, while for

g′/δ′ = 0.375 and −0.375 it occurs for G′/δ′ � 0.3125 and
G′/δ′ � 0, respectively.

V. QUANTUM PHASE TRANSITION

We can observe characteristics of a quantum phase transi-
tion by looking at the properties of the ground state and of
the measures of its entanglement [1,31]. In Fig. 8 we show
the average value of the 0-mode population 〈n0〉 and the linear
entropy S = 1 − T r[ρ2

n0
] for the ground state of the system.

Here, ρn0 stands for the reduced density operator of the 0-mode
for the ground state, obtained by tracing out the other modes.
We clearly observe two distinct behaviors for these quantities,
for G/δ < 0.001 or G/δ > 0.001. This can be associated with
the phase transition between the two dynamical regimes of
macroscopic self-trapping (MST) and of oscillations (RO).
For G/δ < 0.001, the average 0-mode population is practically
null and we can deduce that the total population of bosons is on
average in the 1-mode. This situation characterizes the MST
phase in which the bosons remain in a single mode. This more
organized phase has a relatively small linear entropy, so a
small entanglement. For G/δ > 0.001, the average 0-mode
population is non-null and increases with the three-mode
coupling. In this situation we can say that the total population
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FIG. 8. Average value of population 〈n0〉 (a) and the linear
entropy S = 1 − Tr[ρ2

n0
] of the 0-mode (b) as a function of the

three-mode coupling G/δ for the ground state of the system.
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FIG. 9. The ground-state energy (a) and its second derivative (b)
as a function of the three-mode coupling G′/δ′. In (a) we also observe
the ground state energy rescaled as E/(N/4) (circle).

of bosons tends on average to be divided among the different
modes. This situation characterizes the RO phase in which
the bosons do not have a preferred mode and oscillate between
them. As the system is in a more disordered situation the linear
entropy is larger, and so is the entanglement.

A. Order of the phase transition

We can now discuss the order of the quantum phase
transition. Following the usual criterion [1,31], we can obtain
this information by analyzing the behavior of the ground state
energy and the entanglement, and their derivatives. Figure 9
shows the behavior of the ground-state energy as a function of
the three-mode coupling G′/δ′. In the same figure we observe
the minimum of the corresponding classical energy h(jz,φ),
which shows a perfect agreement with the ground-state energy
rescaled as E/(N/4). Taking the first and second derivatives,
we observe that the first derivative is continuous and the
second one is discontinuous [Fig. 9(b)]. In Fig. 10 the first
derivative of the linear entropy as a function of the three-mode
coupling G′/δ′ is shown for different values of the total boson
population N . We observe that the curves tend to diverge as
N → ∞ at the critical value G′/δ′ = 1.25. Such aspects, i.e.,
the second derivative of the energy and the first derivative of the
entropy, both discontinuous for the ground state, characterize
a second-order phase transition. We note that a first-order
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FIG. 10. The first derivative of the linear entropy S = 1 − Tr[ρ2
n0

]
as a function of the three-mode coupling G′/δ′ for the ground state
and different total boson populations N = 200, 500, and 1000.

transition would be characterized by a discontinuous first
derivative of the ground state energy [1,31].

B. Phase diagram

We can now construct a phase diagram for the transition. We
observe that in the quantum spectrum (Fig. 1) for G/δ < 0.001
the eigenenergies are restricted to values 0 < E < N/2 +
(g/δ)(N/2)2, while for G/δ > 0.001 some eigenenergies
E < 0 and E > N/2 + (g/δ)(N/2)2 arise. These quantum
states correspond precisely to classical closed orbits which
arise for G/δ > 0.001. In this way we can associate these
quantum states with the second phase of the system and
separate the spectrum in different regions for the values
E < 0 and E > N/2 + (g/δ)(N/2)2. Varying the three-mode
coupling G/δ, we change the number of eigenstates (regions
of the spectrum) associated with the second phase. While G/δ
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FIG. 11. Phase diagram for g/δ = 0.003, 0, −0.002, and
−0.003. For each value of g/δ we have two lines: in the middle of the
lines the eigenstates are in a phase of macroscopically self-trapping
(MST), above and below these lines the eigenstates are in a phase of
the regime of oscillations (RO).
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FIG. 12. Numerical value for G/δ as a function of the detuning
�0, calculated from experimental parameters of a semiconductor
microcavity [32]. The horizontal dotted line marks the critical value
G/δ = 0.00005 for N = 104.

increases, the second phase region of the spectrum becomes
larger. This phase diagram is shown in Fig. 11, where the
vertical axis is a relative index i/imax of the eigenvalues Ei . The
lower curve separates the eigenvalues Ei < 0 while the upper
curve separates the eigenvalues Ei > N/2 + (g/δ)(N/2)2. We
can observe that for g/δ �= 0 the arising of the second phase
in upper energies is changed. A similar phase diagram had
already been done for the Lipkin model in Ref. [25]. The
difference between our three-mode model and the Lipkin
model is just the asymmetry due to coefficient g/δ, since the
Lipkin model has a symmetric phase diagram. This feature
gives rise to a situation in this three-mode model which does
not occur in the Lipkin model: the manifestation of the second
phase in the upper energies is changed for g/δ �= 0.

VI. APPLICATION

In the previous sections we have analyzed the behavior of
the three-mode Hamiltonian and of its corresponding classical
hamiltonian function for different values of the parameters
G/δ and g/δ. But until now we have not discussed how
we can vary physically these parameters. We will examine
below an example for exciton-polaritons in a semiconductor
microcavity.

We can use experimental values of an exciton-polariton
system at the magic angle configuration to test the results
obtained in the previous sections. The values of the parameters
G/δ and g/δ in the effective Hamiltonian Eq. (6) can be
determined from the parameters h̄�k and V PP

k,k′,q in the exciton-

polariton Hamiltonian Eq. (2). In Fig. 12 we observe a curve of
G/δ as a function of the detuning �0 numerically calculated
from experimental values [32]. In this figure we note that the
increase in the three-mode coupling due to detuning variation
results in phase transition from MST to RO.

We emphasize that an exciton-polariton system is a
very complex system with numerous features, which were
not considered in our simple analysis. For example, the
coexistence of other system components such as photons,
excitons, or bi-excitons, and the consequent conversion
between them. Also, there is the nonconservation of total
number of particles due to pumping and dissipation in the
system. In this way, our work constitutes a first and simple
approach to a complex system and is based on features of the
macroscopic population of the three exciton-polariton modes
at the magic angle configuration. In other words, we have an
effective but physically meaningful model.

VII. CONCLUSIONS

The three-mode Hamiltonian studied in this work can be
classified in a class of schematic models named Curie-Weiss
models. There are many examples of this class as the Lipkin
model and the pairing model (both in nuclear physics), the
Dicke model for the superradiance, and others. Models in this
class share the characteristic of a Hamiltonian which allows
an expansion in powers of 1/N , which in a thermodynamic
limit leads to a classical Hamiltonian analysis. In these
models a quantum phase transition is signaled by a level
approximation near an inflection point of the spectrum. This
feature in the classical analysis is signaled by the appearance
of a separatrix in the phase space. In the Curie-Weiss class,
the Lipkin model has the particularity of a symmetric level
approximation in both upper and lower inflection points of
the spectrum. The three-mode Hamiltonian studied here also
has this particularity and allows moreover for a situation
(g/δ �= 0) of an asymmetric level approximation in the upper
and lower parts of the spectrum. In other words, we can have
an asymmetric phase diagram.

The effective Hamiltonian obtained in this work can
describe exciton-polaritons in a semiconductor microcavity
at the magic angle. In terms of the exciton-polariton system,
our results constitute an effective but physically meaningful
model. It is a simple approach to this intricate system, based on
the macroscopic features of the exciton-polariton population
of only three modes.

ACKNOWLEDGMENTS

We would like to thank CNPq (Grant No. 312207/2015-8)
and CAPES for financial support.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 1999).

[2] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95,
105701 (2005); S. Gammelmark and K. Mølmer, New J.
Phys. 13, 053035 (2011); L. Tian, Phys. Rev. A 93, 043850
(2016).

[3] A. Halu, S. Garnerone, A. Vezzani, and G. Bianconi, Phys. Rev.
E 87, 022104 (2013).

[4] F. Lingua, G. Mazzarella, and V. Penna, J. Phys. B 49, 205005
(2016).

[5] A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy,
Microcavities (Oxford University Press, Oxford, 2007).

062146-8

https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1103/PhysRevA.93.043850
https://doi.org/10.1103/PhysRevA.93.043850
https://doi.org/10.1103/PhysRevA.93.043850
https://doi.org/10.1103/PhysRevA.93.043850
https://doi.org/10.1103/PhysRevE.87.022104
https://doi.org/10.1103/PhysRevE.87.022104
https://doi.org/10.1103/PhysRevE.87.022104
https://doi.org/10.1103/PhysRevE.87.022104
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005


QUANTUM PHASE TRANSITION IN AN EFFECTIVE . . . PHYSICAL REVIEW E 96, 062146 (2017)

[6] A. V. Kavokin and G. Malpuech, Thin Films and Nanostructures:
Cavity Polaritons (Elservier, Amsterdan, 2003), Vol. 32.

[7] J. Keeling and N. G. Berloff, Nature 457, 273 (2009).
[8] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,

J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André,
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