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Exact mean-energy expansion of Ginibre’s gas for coupling constants � = 2 × (odd integer)
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Using the approach of a Vandermonde determinant to the power � = Q2/kBT expansion on monomial
functions, a way to find the excess energy Uexc of the two-dimensional one-component plasma (2DOCP) on
hard and soft disks (or a Dyson gas) for odd values of �/2 is provided. At � = 2, the present study not only
corroborates the result for the particle-particle energy contribution of the Dyson gas found by Shakirov [Shakirov,
Phys. Lett. A 375, 984 (2011)] by using an alternative approach, but also provides the exact N -finite expansion
of the excess energy of the 2DOCP on the hard disk. The excess energy is fitted to the ansatz of the form
Uexc = K1N + K2

√
N + K3 + K4/N + O(1/N 2) to study the finite-size correction, with Ki coefficients and

N the number of particles. In particular, the bulk term of the excess energy is in agreement with the well known
result of Jancovici for the hard disk in the thermodynamic limit [Jancovici, Phys. Rev. Lett. 46, 386 (1981)].
Finally, an expression is found for the pair correlation function which still keeps a link with the random matrix
theory via the kernel in the Ginibre ensemble [Ginibre, J. Math. Phys. 6, 440 (1965)] for odd values of �/2.
A comparison between the analytical two-body density function and histograms obtained with Monte Carlo
simulations for small systems and � = 2,6,10, . . . shows that the approach described in this paper may be used
to study analytically the crossover behavior from systems in the fluid phase to small crystals.

DOI: 10.1103/PhysRevE.96.062145

I. INTRODUCTION

This paper is devoted to the study of the two-dimensional
one-component plasma (2DOCP) in hard- and soft-disk cases.
In general, the 2DOCP refers to a system of N identical charges
Q existing on a two-dimensional surface S with a neutralizing
background with uniform density charge −ρbQ, where ρb is
the background number density. For the case of a flat plane,
two charges of the 2DOCP located at �r1 and �r2 interact with a
logarithmic potential of the form

ν(�r1,�r2) = −Q2 ln

( |�r1 − �r2|
L

)
,

with L an arbitrary length constant. The potential energy Uinter

of the 2DOCP is given by

Uinter = Upp + Ubp + Ubb,

where Upp is the particle-particle interaction energy contri-
bution, Ubp is the background-particle interaction, and Ubb

is the background-background interaction. The total average
energy E is the usual bidimensional ideal gas energy plus
the excess energy Uexc contribution E = NkBT + Uexc, with
Uexc = 〈Uinter〉. Generally, the potential energy Uinter depends
on the geometry of S. If a 2DOCP on a hard disk of radius R

is considered, then the potential energy is [1]

UH
inter = Q2

⎡
⎣fH(N ) + 1

2

N∑
i=1

(√
N

R
ri

)2

−
∑

1�i<j�N

ln

(√
N

R
rij

)⎤⎦, (1)

where

fH(N ) = −3

8
N2 + N

2
ln

(
R

L

)
+ N2

2
ln

√
N − N

2
ln N.

(2)

In this situation the particles repel each other logarithmically
while they are bound by an attractive quadratic potential
generated by the background and eventually by the circular
boundary (see Fig. 1).

The statistical behavior of the system depends only on a
coupling parameter � = Q2/kBT , where kB is the Boltzmann
constant and T is the temperature. For � → 0 the system is a
two-dimensional ideal gas and fluid for moderately high values
of �. In contrast, the system becomes a crystal for � → ∞,
where it has an extremely high electric interaction or very
low temperature. There are several analytical studies on the
2DOCP in diverse geometries for the special coupling � = 2
[2–6]. In particular, the excess free energy Fexc per particle at
� = 2 is

Fexc

N
= −Q2

4
ln(ρbπL2) + Q2

2
[1 − ln(2π )]

in the thermodynamic limit, which implies that the particle
density of the background should be kept constant ρb = N

πR2

as N and R tend to infinity. Previously, Jancovici [2] found
that the excess parts of the energy and heat capacity Cexc per
particle in the thermodynamic limit at � = 2 are

Uexc

N
= −Q2

4
ln(ρbπL2) − Q2

4
γ,

Cexc

N
= kB

(
ln 2 − π2

24

)
,

respectively, where γ = 0.577 215 664 . . . is the Euler-
Mascheroni constant. These results are also valid for the
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FIG. 1. The 2DOCP on a hard disk.

2DOCP on the soft disk or Dyson gas where the infinite
potential barrier at R is removed since in the thermodynamic
limit the barrier is moved at the infinite. However, for a finite
number of particles both the soft and hard systems have
substantial differences. The potential energy of the 2DOCP
on the soft disk is

US
inter = Q2

⎡
⎣f S (N ) + 1

2
ρbπ

N∑
i=1

r2
i −

∑
1�i<j�N

ln rij

⎤
⎦,

(3)

where

f S (N ) = fH(N ) − N (N − 1)

2
ln
√

ρbπN.

In Ref. [3] Shakirov computed the average of the last term of
Eq. (3) (which differs from the average of the particle-particle
energy 〈US

pp〉 with some additive constants),

US
pp = −Q2

〈 ∑
1�i<j�N

ln rij

〉
, (4)

by using the replica method, finding the result

US
pp =

ρb= 1
π

,�=2

Q2

2

[
N2

2
HN − N2

4
+ 3N

4
+ 1

4
+ Nγ

2

− �(N + 3/2)

(N + 1)!
√

π/2
3F2

×
(

1 N − 1 N + 3/2
N + 2 N + 1

∣∣∣∣1
)]

(5)

for � = 2 in terms of the hypergeometric function 3F2, the
harmonic numbers HN =∑N

k=1
1
k
, and the Gamma function

�(x).1 Although, analytic solutions for any value of � are
limited, there are several studies of the 2DOCP in diverse
geometries especially for positives integers values of � [7–11].
Previously, Jancovici and Téllez [11] described a way to
compute the excess energy of the 2DOCP on the sphere based
on the expansion the Vandermonde determinant to the power

1Throughout the paper we use bold symbols for the � function as
well as its incomplete versions in order to avoid any confusion with
the coupling parameter �. The symbols H and S will be used to
denote hard and soft-disk cases, respectively.

�. The main purpose of this work is to obtain the excess energy
of the 2DOCP on a hard and a soft disk for even values of �.

To this aim, we will show that the approach of [11] applied
on the sphere may be used in the flat geometry to obtain
analytical results of the excess energy for � = 2,6,10, . . .,
reproducing the result obtained by Shakirov at � = 2 for
the Dyson gas as well as the energy of the finite 2DOCP
on the hard disk. The monomial expansion method may be
used to expand the Vandermonde determinant to the power
� in terms of monomial functions {mμi

(z1, . . . ,zN )}i=1,...,N ,
where z1, . . . ,zN are the particle’s complex positions and μi

are vectors with N integer entries called partitions. The main
idea of the method is to write the statistical averages of the
quantities as the energy as an average in terms of partitions.
We stress the fact that our results for the 2DOCP on a disk
are limited to odd values of �/2. This restriction comes from
the fact that counting is more easy for odd values of �/2
where partitions do not have repeated elements. However,
in the 2DOCP on a sphere, the problem may be solved for
� = 2,4,6 . . ., since the expansions do not mix partitions due
to the symmetry of the sphere.

In practice, the results for � = 4,6, . . . will also be limited
to small systems. However, it will be shown that our analytical
results are in good agreement with the ones obtained by
numerical simulations.

Mermin and Wagner [12] rigorously proved that long-
range positional order is not possible in two-dimensional
systems with continuous degrees of freedom and sufficiently
short-range interactions. Previously, it was demonstrated that
systems with long-range interactions such as the 2DOCP do
not have a strict long-range positional order at the thermody-
namic limit [13,14]. However, this feature does not imply the
absence of a solid phase with long-range orientational order
and approximate positional long-range order if the 2DOCP is
still far from the thermodynamic limit. Moreover, the finite
2DOCP not only crystallizes at vanishing temperature but
also exhibits transitions, as it was shown in several studies
[15–19]. Most recently, Monte Carlo (MC) simulations in
Ref. [20] confirmed that melting of the 2DOCP on the plane
with Coulomb interactions ν(r) ∼ 1/r includes three phases,
solid, hexatic, and fluid, according to the two-step scenario
proposed by the Kosterlitz-Thouless-Halperin-Nelson-Young
theory [21].

The 2DOCP has been considered as an ideally suited model
to study strongly coupled matter since it may mimic the
phase transitions of real systems, e.g., dusty plasmas [22–28],
where the first observations of crystals in the laboratory were
realized [22,23]. It is well known that the logarithmic Coulomb
interaction between particles comes from the solution of the
Poisson equation in two dimensions. However, the typical
experimental setup usually confines the particles in a quasibidi-
mensional arrangement. Even when particles may be trapped
in a monolayer, they do not have a logarithmic interaction
potential because the experimental layer usually has a finite
thickness and the electric field does not necessary exist in a
plane. Numerical simulations of the 2DOCP with alternative
potentials, not necessarily a logarithmic one, may be found in
the literature. Examples of these numerical studies on systems
with long-range interaction are [20,29,30] for the 1/r Coulomb
interaction and [31] for the 1/r3 dipolar interaction.

062145-2



EXACT MEAN-ENERGY EXPANSION OF GINIBRE’S . . . PHYSICAL REVIEW E 96, 062145 (2017)

The paper is organized as follows. The main results of this
work for the excess energy and two-body density function
will be summarized in the next section. The preliminary
material and the basics of the monomial expansion method
will be described in Sec. III. Although, the generalities of
the method may be also found in [9–11], this section is
included in order to introduce the notation used throughout
the present paper. The statistical average of the quadratic
contribution to the energy [the quadratic sum introduced by
the parabolic confining potential in Eq. (1) or (3)] is computed
in Sec. IV. This energy contribution may be found without
applying a monomial expansion even when � > 2. However,
Sec. IV is included because it shows appropriately how the
technique works and how several procedures described in the
computation of the quadratic contribution may be extended
to compute other quantities as the particle-particle interaction
energy. The excess energy computation for odd values of �/2 is
described in Secs. V–VIII. In particular, the N -finite expansion
of excess energy for the 2DOCP on the soft and hard disks at
� = 2 is presented in Sec. VII. Section IX is devoted to the
analytic determination of the two-point density function for
� = 2,6,10, . . . and a brief comparison between this function
in the strong-coupling regime and the structure of small Wigner
crystals.

II. SUMMARY OF RESULTS

The main value of a given observable g = g(�r1 . . . �rN ) of
the Dyson gas in the canonical ensemble is

〈g(�r1, . . . ,�rN )〉 = 1

ZS
N,�

1

N !

N∏
i=1

∫ ∞

0

∫ 2π

0
ridridφi

× e−βUS
inter(r1,...,rN )g(�r1, . . . ,�rN ),

where �r1 . . . �rN with ZS
N,� the partition function. The

Boltzmann factor is

e−βUS
inter(r1,...,rN ) = |	N (zi − zj )|�

× exp

(
−f S (N ) − ρbπ

N∑
i=1

r2
i

)
,

with 	N (zi − zj ) =∏1�i<j�N (zj − zi) the Vandermonde de-
terminant and z = r exp(iφ) the complex positions of the
particles. The method described in this paper is based on the
expansion of the Vandermonde determinant to even values
of � in terms of monomial functions mμ(z1, . . . ,zN ) and
coefficients C(N)

μ whose labels μ are called partitions.2 This
enables us to write the usual average 〈g(�r1 . . . �rN )〉 as an
average over partitions

〈g(�r1, . . . ,�rN )〉 = 〈G(μ1, . . . ,μN )〉N,

2In general, it is possible to use the multinomial theorem to
expand |	N (zi − zj )|� as a polynomial whose terms are of the form
z

n1
1 z

n2
2 · · · znN

N with (n1, . . . ,nN ) a set of N -integer numbers. In fact,
the method described here in some sense is a factorized version
of the multinomial theorem where coefficients C(N)

μ and partitions
μ = (μ1, . . . ,μN ) are not trivially related to the coefficients of the
multinomial theorem and the powers (n1, . . . ,nN ).

where

〈G(μ)〉N := 1∑
μ

1
(
∏

i mi !)

[
C

(N)
μ (�/2)

]2(∏N
j=1 
μj

)

×
∑

μ

1(∏
i mi!

)[C(N)
μ (�/2)

]2⎛⎝ N∏
j=1


μj

⎞
⎠

×G(μ1, . . . ,μN ),

with
∏

i mi! the multiplicity of the partition μ and 
μj

proportional to μi! or related to the incomplete � functions
depending on whether the system has a soft or a hard boundary.
Using this approach, we compute the excess energy of the
Dyson gas US

exc = 〈US
inter〉 for odd values of �/2 as

US
exc = 〈SEμ〉N + 〈SUμ〉N . (6)

The term 〈Eμ〉N in Eq. (6) is the partition average of

SEμ = Q2

⎧⎨
⎩−

∑
1�i<j�N

[
iμi
μj

μi − μj

+ j (μi,μj )

2

]

+ 1

4
N (N − 1) ln(ρbπ�/2)

+ 1

�

[
N + N (N − 1)

�

4

]
+ f S (N )

⎫⎬
⎭,

where iμi
μj

and j (μi,μj ) are functions of the partitions elements
defined by Eqs. (31) and (A6), respectively. The other
contribution of Eq. (6) is the partition average of

SUμ = Q2
∑
ν∈Dμ

R(N)
μ,ν(�/2)(−1)p+q+m+n 1

2
f

(
p,q

m,n

)
,

where Dμ := {ν|Dim(ν ∩ μ) = N − 2} corresponds to the
set of all partitions ν which share N − 2 elements with μ;
the term R(N)

μ,ν(�/2), which is equal to C(N)
ν (�/2)/C(N)

μ (�/2)
if C(N)

μ (�/2) �= 0 and 0 otherwise, is the ratio between
coefficients; and f

(
p,q

m,n

)
is a function of the unshared elements

between μ and ν, defined as (μp,μq) /∈ ν and (νm,νn) /∈ μ

[see Eq. (C3)]. For � = 2 there is only one partition μ = λ,
called the root partition, whose elements are λi = N − i and
〈SUμ〉N = 0 since Dμ = 0. Hence the excess energy is

US
exc =

�=2
SEλ = Q2

⎧⎨
⎩f S (N ) + N (N − 1)

4
[ln(ρbπ ) + 1]

+ N

2
−

∑
1�i<j�N

[
i(λi,λj )

|λi − λj | + j (λi,λj )

2

]⎫⎬
⎭.

This result coincides with the one found by Shakirov [3] plus
f S (N ) and the quadratic energy contribution 〈ρbπ

∑
i=1 r2

i 〉
by using the replica method. In particular, the excess energy
per particle at � = 2 is

lim
N→∞

SEλ

N
= −0.144 303 92 . . . with ρb = 1

π
,
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which is in agreement with the result Uexc
N

= −Q2

4 ln(ρbπL2) −
Q2

4 γ found by Jancovici [2] in the thermodynamic limit.
Similarly, the excess energy of the 2DOCP on the hard disk at
� = 2 is

UH
exc =

�=2
HEλ = Q2

⎡
⎣fH(N ) + 1

2

N∑
j=1


H
λj +1


H
λj

+
∑

1�i<j�N

4


H
λi


H
λj

(
J

λi,λj

H + J
λj ,λi

H − I
λj ,λi

H
|λi − λj |

)⎤⎦
for any number of particles, where 
H

λj
is related to the

incomplete � function (11). The functions I
λj ,λi

H and J
λi ,λj

H are
given by Eqs. (B1) and (B3). The excess energy per particle
for the hard disk HEλ/N is also in agreement with the result
found in [2] as N → ∞. In this limit the 2DOCP in the hard
or soft disk describes practically the same system because the
hard boundary goes to the infinity if the background density
ρb = N/πR2 is held constant as N grows.

In this paper we also study the two-body density function

ρ
(2)
N,�(�r,�r ′) =

〈
N∑

i=1

N∑
j=1,j �=i

δ(�r − �ri)δ(�r ′ − �rj )

〉
,

where we find the result for the hard-disk case

Hρ
(2)
N,�(r̃1,r̃2,φ12)

= (ρbπ )2
〈
Det
[
Hk(N)

μ (zi,zj )
]
i,j=1,2 + HSμ

〉
N
,

valid for odd values of �/2. The term
〈Det[Hk(N)

μ (zi,zj )]i,j=1,2〉N corresponds to the partition
average of the functions

Hk(N)
μ (zi,zj ) =

N∑
l=1

Hψμl
(zi)Hψ∗

μl
(zj ),

depending on the complex particle’s positions z =√
N

R
r exp(iφ) and partitions. It is built with the orthogonal

functions

Hψμl
(z) = zμl√

π
H
μl

exp(−|z|2�/4).

When the coupling parameter is � = 2 the function

Hk(N)
μ (zi,zj ) = Hk

(N)
λ (zi,zj ) coincides with the kernel of the

Ginibre ensemble [32,33]. It is remarkable to see that both the
excess energy and the two-body density function for � > 2
partially evoke their previous expressions for � = 2 but in
terms of partition averages of them. The second contribution
HSμ of Eq. (2) is given by

HSμ = exp
(−�

2

∑2
i=1 r̃2

i

)
π2

∑
ν∈Dμ

(−1)τμνR(N)
μ,ν


H
μp


H
μq

× {hμp+νm

μq+νn
(r̃1,r̃2) cos[(νm − μp)φ12]

−h
μq+νm

μp+νn
(r̃1,r̃2) cos[(νm − μq)φ12]

}
,

with hb
a(x,y) := xayb + yaxb. A similar result for the two-

density function of the soft disk in terms of the rescaled

complex positions u =
√

ρbπ�

2 r exp(iφ) is also found

Sρ
(2)
N,�(r1,r2,φ12)

=
(

ρbπ�

2

)2〈
Det
[
Sk(N)

μ (ui,uj )
]
i,j=1,2 + SSμ

〉
N
,

where Sk(N)
μ (ui,uj ) and Sμ are given by Eqs. (52) and (53).

In general, the two-body density function ρ
(2)
N,�(�r,�r ′) depends

on four parameters since (�r,�r ′) ∈ �2. For a homogeneous
system the two-body density function is a function of the
relative distance between particles ρ

(2)
N,�(|�r − �r ′|). This is not

case of the 2DOCP for a finite number of particles where
the soft or hard boundary does not allow a translational
symmetry. However, in this paper it is shown explicitly that
ρ

(2)
N,� depends on the radial positions of particles r1 and r2

and the angle difference φ12 = φ1 − φ2 between them, as
expected, because the finite system has azimuthal symmetry.
A mathematical consequence of this dependence on φ12 is
the mixture of partitions contributions in SSμ and SUμ and
the hard-disk version of these contributions.3 Even though
the translational should be recovered in the thermodynamic
limit, in the following sections it is shown that SSμ plays
an important role in the generation of small crystals as the
coupling parameter is increased and the two-body density
function reveals Gaussian-like functions on the expected lattice
positions at vanishing temperature. Finally, it was numerically
tested that Wigner crystals on the soft disk are bound by a
surface defined by

S := {(x,y) : x2 + y2 = (RS
N,�→∞

)2 ∀N ∈ Z+},
with

RS
N,� = 2

√
1

�ρbπ

[
(N − 1)

�

4
+ 1

]
.

III. PARTITION FUNCTION

Our first objective is to evaluate the configurational partition
function. For the hard disk it takes the form

ZH
N,� = 1

N !

N∏
j=1

∫
disk

dSj exp
(−βUH

inter

)
,

with ∫
disk

dSi =
∫ R

0

∫ 2π

0
ridridφi.

3Such a mixture of partitions in the energy as well as the two-
body density function for the 2DOCP on the sphere never appeared
since in the sphere we are always free to put one particle in the
north pole because of the symmetry of the system. As a result, the
two-body density function depends on only one parameter ρ

(2)
N,�(θ ),

with θ the usual azimuthal angle of spherical coordinates. Hence,
the function ρ

(2)
N,�(θ ) describes rings on the sphere as the coupling

constant is increased. Such rings are related to the Wigner crystal,
which corresponds to the solution of the Thomson problem.
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It is convenient to use the following change of variables r̃i =√
N

R
ri , keeping ρb = N/πR2 constant:

ZH
N,� = e−�fH(N)

N !(ρbπ )N
Z̃H

N,�, (7)

with

Z̃H
N,� =

N∏
j=1

∫ √
N

0

∫ 2π

0
r̃idr̃idφie

−�r̃2
i /2

∏
1�i<j�N

|zi − zj |�,

where zi = r̃i exp(iφi) are related to the particles’ positions in
the complex xy plane. It is possible to evaluate the partition
function for even values of � [9,10] by using the expansion∏

1�i<j�N

(zj − zi)
�/2 =

∑
μ

C(N)
μ (�/2)mμ(z1, . . . ,zN ). (8)

The set of indices μ := (μ1, . . . ,μN ) is a partition of �N(N −
1)/4 with the condition (N − 1)�/2 � μ1 � μ2 · · · � μN �
0 for even values of �/2 and a partition of �N(N − 1)/4
with the condition (N − 1)�/2 � μ1 > μ2 · · · > μN � 0 for
odd values of �/2. The terms mμ(z1, . . . ,zN ) are the monomial
symmetric or antisymmetric functions, depending on the parity
of �/2,

mμ(z1, . . . ,zN ) = 1∏
i mi!

∑
σ∈SN

sgn(σ )b(�)
N∏

i=1

z
μσ (i)

i ,

where
∑

σ∈SN
denotes the sum over all label permutations of a

given partition μ1, . . . ,μN , the variable mi is the frequency of
the index i in such a partition (one for the odd values of �/2),
and b(�) is defined as

b(�) =
{

1 if �/2 is odd

0 if �/2 is even.

Hence, the product
∏

1�i<j�N |zi − zj |� takes the form

∏
1�i<j�N

|zi − zj |� =
∑
μν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2
×

∑
σ,ω∈SN

sgn�(σ,ω)
N∏

j=1

r̃
μσ (j )+νω(j )

j

× exp[i(μσ (j ) − νω(j ))φj ], (9)

where we have defined sgn�(σ,ω) := [sgn(σ )sgn(ω)]b(�).
Substituting Eq. (9) into Eq. (7) and simplifying yields

ZH
N,� = e−�fH(N)

ρN
b

∑
μ

[
C(N)

μ (�/2)
]2∏

i mi!

N∏
i=1


H
μi

, (10)

where


H
μi

= 2
∫ √

N

0
exp(−r̃2�/2)r̃μi+1dr̃

=
(

2

�

)2μi+1

[μi! − �(1 + μi,N�/2)], (11)

with �(a,x) the lower incomplete Gamma function. Similarly,
the partition function of the Dyson gas

ZS
N,� = e−�f S (N)

N !
Z̃S

N,�, (12)

with

Z̃S
N,� =

N∏
j=1

∫ ∞

0

∫ 2π

0
ridridφie

−ρbπ�r2
i /2

∏
1�i<j�N

|ui − uj |�,

where ui = ri exp(iφi) is

ZS
N,� = e−�f S (N)

∑
μ

[
C(N)

μ (�/2)
]2∏

i mi!

N∏
i=1


S
μi

, (13)

where


S
μi

= 2
∫ ∞

0
exp(−ρbπr2�/2)rμi+1dr =

(
2

ρbπ�

)μi+1

μi!.

(14)

Finally, the statistical average of any function g =
g(�r1, . . . ,�rN ) with explicit dependence on the particles’ po-
sitions will be computed in the standard form

〈g(�r1, . . . ,�rN )〉 = 1

ZH
N,�

1

N !

1

(ρbπ )N

N∏
i=1

∫ √
N

0

∫ 2π

0
r̃idr̃idφi

× e−βUH
inter(z1,...,zN )g(�r1, . . . ,�rN )

on the hard disk and

〈g(�r1, . . . ,�rN )〉 = 1

ZS
N,�

1

N !

N∏
i=1

∫ ∞

0

∫ 2π

0
ridridφi

× e−βUS
inter(u1,...,uN )g(�r1, . . . ,�rN )

for the Dyson gas.

IV. THE QUADRATIC POTENTIAL CONTRIBUTION

The quadratic contribution to the excess energy of the hard
disk is

UH
quad = Q2

2

〈
N∑

i=1

(√
N

R
ri

)2〉
= N

Q2

2

〈(√
N

R
rN

)2〉
.

(15)

The integrals included in UH
quad may be evaluated by using the

expansion of Eq. (9),

UH
quad = NQ2

2ZH
N,�

e−�fH(N)

N !(ρbπ )N
∑
μν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2
×
∑

σ,ω∈SN

sgn�(σ,ω)πN

N−1∏
j=1


H
μσ (j )


H
μσ (N)+1

N∏
l=1

δμσ (l),νω(l),

where 
H
μi

is given by Eq. (11). For odd values of �/2
each partition μ will not have repeated elements and the δ

product
∏N

l=1 δμσ (l),νω(l) may be replaced by δμ,ν

∏N
l=1 δσ (l),ω(l).

This implies that the double sum over partitions and their
permutations is zero if μ �= ν or μ = ν, but their permuted
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elements are not organized in the same way. Therefore, for
nonzero contributions on the sum of permutations the sign
function is sgn�(σ,ω) = 1 independently of the parity of �/2.
In consequence, the sums will collect nonzero terms if μ = ν

but generating (N − 1)!
∏

i mi! times the same result because
partitions may repeat elements for even values of �/2 and the
δ product. Hence

UH
quad = Q2

2

1

ZH
N,�

e−�fH(N)

ρN
b

∑
μ

1(∏
i mi!

) [C(N)
μ (�/2)

]2

×
⎛
⎝ N∏

j=1


H
μj

⎞
⎠ N∑

j=1


H
μj +1


H
μj

.

If the previous result for the partition function (10) of the hard
disk is used, then it is possible to simplify UH

quad as

UH
quad = Q2

2

〈
N∑

i=1

(√
N

R
ri

)2〉
= Q2

2

〈
N∑

j=1


H
μj +1


H
μj

〉
N

, (16)

where we have defined

〈G(μ)〉N := 1∑
μ

1
(
∏

i mi !)

[
C

(N)
μ (�/2)

]2(∏N
j=1 
μj

)

×
∑

μ

1(∏
i mi!

) [C(N)
μ (�/2)

]2⎛⎝ N∏
j=1


μj

⎞
⎠

×G(μ1, . . . ,μN ) (17)

for any function G = G(μ1, . . . ,μN ) with explicit dependence
on the partitions elements. Throughout the paper we adopt 〈g〉
for statistical averages and 〈G〉N (with the subindex N ) for
averages on the partitions elements. Hereafter, our intention
will be to change the average on the phase space of the excess
energy Uexc for its equivalent version in terms of a permutation
average as we have done with UH

quad in Eq. (16).
The quadratic potential contribution for the Dyson gasUS

quad
may be obtained by using an analogous procedure and the
result is

US
quad = Q2

2

〈
ρbπ

N∑
i=1

r2
i

〉
= Q2

2
ρbπ

〈
N∑

j=1


S
μj +1


S
μj

〉
N

,

where 
S
μ is given by Eq. (14). It is possible to evaluate the

average on partitions for the soft case because 
μ is propor-
tional to the complete � function. Therefore, 
S

μj +1/
S
μj

is

simply 2(μj + 1)/ρbπ� and 〈∑N
j=1 
S

μj +1/
S
μj

〉N = 2(N +
〈∑N

j=1 μj 〉N )/ρbπ�. Since the partitions elements are built

holding the sum
∑N

j=1 μj =∑N
j=1 λj = N (N − 1)�/4 con-

stant with λj = (N − j )�/2 the root partition, then

US
quad = Q2

2

〈
ρbπ

N∑
i=1

r2
i

〉
= Q2

�

[
N + N (N − 1)

�

4

]
. (18)

An alternative but more standard way to compute this
contribution for the Dyson gas and obtain an identical result is

FIG. 2. Quadratic potential contribution. The solid line corre-
sponds to 2US

quad/Q
2 with ρb = 1/π of Eq. (18) and black points

correspond to the Metropolis method.

by using [34]

US
quad = − Q2ρb

�Z̃S
N,�

∂Z̃S
N,�

∂ρb

,

with

Z̃S
N,� =

(
1

ρbπ

)N(N−1)�/4+N N∏
j=1

∫ ∞

0

∫ 2π

0
r ′
idr ′

idφie
−�r ′2

i /2

×
∏

1�i<j�N

|u′
i − u′

j |�.

This is Eq. (12) with r ′ = √
ρbπr and u′ = √

ρbπu. Unfortu-
nately, it is not easy to use the same trick for the quadratic
contribution of the hard disk. However, it is still possible
to evaluate UH

quad from Eq. (16). A comparison between
the quadratic energy contribution of Eq. (18) and numerical
simulations with the Metropolis method [35] is shown in Fig. 2.

By definition, the 2DOCP on the hard disk is completely
confined in RH

N = {(x,y)|x2 + y2 � R2}. In contrast, the
Dyson gas is partially bounded by the quadratic potential.
In fact, US

quad is more confining as the coupling parameter
is increased, but US

quad cannot indefinitely compress the gas
because of the repulsion among charges. It is expected that the
2DOCP on the soft disk in its crystal phase occupies on average
a finite circular region RS

N , which depends on the number of
particles. Numerically, the region occupied by the crystal will
have small variations due to the initial conditions used in the
Metropolis simulation as well as the chain of random numbers
generated. We remark that the mean square radius

rSN,� =
√

2

�ρbπ

[
(N − 1)

�

4
+ 1

]

extracted from Eq. (18) in the strong-coupling regime
rSN,�→∞ = √

(N − 1)/2ρbπ defines a region of area
π (rSN,�→∞)2 which tends to grow proportionally to the
expected area RS

N at least for a large number of particles. In
order to find the radius RS

N = RS
N,�→∞ of the circular region

RS
N = {(x,y)|x2 + y2 � R2} we may begin with an extremely

crude approximation of the crystal, considering it as a flat
disk of uniformly distributed charge. In this scenario the mass
density would be a constant σ = dm

dA
= M

π(RS
N )2 with M the total
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FIG. 3. Bound radius of the Dyson gas at � = 1000 and ρb =
1/π . (a) Bound radius vs the number of particles. (b) The bound
radius defines a surface S := {(x,y) : x2 + y2 = (RS

N,�→∞)2 ∀ N ∈
Z+}, which contains the Wigner crystal for the soft disk.

mass; then

rSN,� ≈
√

1

M

∫
disk

dmr2 =
√

2πσ

M

∫ RS
N,�

0
r3dr

∴ RS
N,� = 2

√
1

�ρbπ

[
(N − 1)

�

4
+ 1

]
(19)

and RS
N,�→∞ = √

(N − 1)/ρbπ . A plot of RS
N,� for � = 1000

is shown in Fig. 3. Numerical simulations for ρb = 1/π and
� = 1000 show that the corresponding Wigner crystal of the
Dyson gas tends to occupy a well-defined portion of the plane
depending only on the number of particles for a fixed value of
the background density (see Fig. 4).

If the background density is set as ρb = N/πR2 then
the radius of the 2DOCP on the hard disk would be RH

N =√
N/ρbπ . Therefore, in the strong-coupling regime we have

RS
N,�→∞ < RH

N and thus the Wigner crystal in the hard case
will never touch the hard boundary because it is completely
bounded by the quadratic potential. In contrast, particles
are effectively bounded by the hard frontier in the fluid

phase � = 2 because RS
N,�=2 = √

(N + 1)/ρbπ > RH
N . In this

situation, even the Dyson gas in the fluid phase is not necessary
in the region RS

N because of the thermal fluctuations.

V. THE U pp ENERGY CONTRIBUTION

We have written the excess energy contribution as Uexc =
Q2f (N ) + Uquad + Upp. For the hard-disk Upp contribution is
given by

UH
pp = −Q2

〈 ∑
1�i<j�N

ln

(√
N

R
rij

)〉
. (20)

If the Vandermonde term is expanded according to Eq. (9),
then UH

pp takes the form

UH
pp = N (N − 1)Q2e−�fH(N)

2ZH
N,�N !ρN

b

∑
μν

C(N)
μ (�/2)C(N)

ν (�/2)

(
∏

i mi!)2

×
∑

σ,ω∈SN

sgn�(σ,ω)2�
μσ (1),μσ (2)
νω(1),νω(2)

N∏
j=3

δμσ (j ),νω(j )

H
μσ (j )

,

where we have defined

�μ1,μ2H
ν1,ν2

:= 1

2π2

2∏
j=1

∫ 2π

0
dφje

i(νj −μj )φj

×
∫ √

N

0
r̃

μj +νj +1
j dr̃j e

−�r̃2
j /2(− ln |z1 − z2|).

In principle, if N (N,�) is the number of partitions for
a given value of the coupling parameter then the double
sum over partitions and their corresponding permutations
would have a large number of terms

∑
μν

∑
σ,ω∈SN

1 =
N (N,�)2[N (N,�)]!2. Fortunately, many of these terms are
zero because of the incomplete δ product

∏N
j=3 δμσ (j ),νω(j ) . In

FIG. 4. Dyson gas at � = 1000 and ρb = 1/π for (a) 50, (b) 100, and (c) 150 particles. The radii of the dashed circles are given by Eq. (19).
Each crystal was obtained after 106 MC cycles starting at a random initial configuration.
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the previous computation of UH
quad the complete δ product∏N

j=1 δμσ (j ),νω(j ) selected only one partition ν for a given μ and
it was ν = μ. A similar situation appears in the computation
of the excess energy of the 2DOCP on the sphere [11] because
the symmetry of the system enables us to write the correlation
function in terms of a single parameter instead of two as
happens in the hard- and soft-disk cases. The computation of
UH

pp may be particularly difficult in comparison with the one
done forUH

quad because in the current procedure the δ product is
not complete and the term �μ1,μ2

ν1,ν2
for a given μ tends to select

nonzero contributions of partitions ν not necessarily equal to
μ. In order to deal with this potential task it is possible to split
into two parts the logarithmic term of �μ1,μ2

ν1,ν2
as

− ln |z1 − z2| =
∞∑

n=1

1

n

(
r̃<

r̃>

)n

cos[n(φ2 − φ1)] − ln r̃>,

where r̃< = min(r̃1,r̃2) and r̃> = max(r̃1,r̃2). This also enables
us to split the whole computation into two parts

UH
pp = UH

ppL + UH
ppR, (21)

where the subindices L and R denote left and right, respec-
tively, evoking each contribution of − ln |z1 − z2|, and we have
defined

UH
ppL = N (N − 1)Q2e−�fH(N)

2ZH
N,�N !ρN

b

∑
μν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2
×
∑

σ,ω∈SN

sgn�(σ,ω)2�
μσ (1),μσ (2)H
νω(1),νω(2)L

N∏
j=3

δ
μσ (j )
νω(j ) 
H

μσ (j )
,

(22)

UH
ppR = N (N − 1)Q2e−�fH(N)

2ZH
N,�N !ρN

b

∑
μν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2
×

∑
σ,ω∈SN

sgn�(σ,ω)2�
μσ (1),μσ (2)H
νω(1),νω(2)R

N∏
j=3

δ
μσ (j )
νω(j ) 
H

μσ (j )
,

�
μ1,μ2H
ν1,ν2L := 1

2π2

∞∑
n=1

1

n

2∏
j=1

∫ 2π

0
dφje

i(νj −μj )φj cos[n(φ2 − φ1)]

×
∫ √

N

0
r̃

μj +νj +1
j dr̃j e

−�r̃2
j /2

(
r̃<

r̃>

)n

, (23)

and

�
μ1,μ2H
ν1,ν2R := 1

2π2

2∏
j=1

∫ 2π

0
dφje

i(νj −μj )φj

×
∫ √

N

0
r̃

μj +νj +1
j dr̃j e

−�r̃2
j /2(− ln r>).

The angular integrals of �
μ1,μ2H
ν1,ν2R are proportional to the

Kronecker δ’s which complete the product
∏N

j=3 δ
μσ (j )
νω(j ) in

Eq. (23). This enables us to simplify UH
ppR as (see Appendix A)

UH
ppR = Q2

〈 ∑
1�i<j�N

4
J

μi,μj

H + J
μj ,μi

H

H

μi

H

μj

〉
N

, (24)

where J
μj ,μi

H is given by Eq. (B3). The analogous formula for
the soft disk is

US
ppR = −Q2

2

〈 ∑
1�i<j�N

j (μi,μj )

〉
N

+ Q2

4
N (N − 1) ln(ρbπ�/2), (25)

with j (μi,μj ) given by Eq. (A6). Although, the reduction of
US

ppR in terms of the partition average is possible, the procedure
for US

ppL is less evident because for a given partition μ it is
possible to find another partition ν which may contribute in
the expansion, as will be pointed out in the next section.

VI. COMMENTS ABOUT U ppL

If the angular part of the integral �
μ1,μ2H
ν1,ν2L is evaluated, then

�
μ1,μ2H
ν1,ν2L = δμ1+μ2,ν1+ν2

|μ1 − ν1|μ1 �=ν1

�̃
μ1,μ2H
ν1,ν2L

where

�̃
μ1,μ2H
ν1,ν2L =

2∏
j=1

∫ √
N

0
dr̃j r̃

μj +νj +1
j exp

(−�r̃2
j /2
)( r<

r>

)|μ1−ν1|

and the UppL contribution for the hard disk may be written as

UH
ppL = N (N − 1)Q2e−�fH(N)

ZH
N,�N !ρN

b

∑
μν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2 BH
μν,

(26)

with

BH
μν =

∑
σ,ω∈SN

sgn�(σ,ω)
δμσ (1)+μσ (2),νω(1)+νω(2)

|μσ (1) − νω(1)|μσ (1) �=νω(1)

�̃
μσ (1),μσ (2)H
νω(1),νω(2)L

×
N∏

j=3

δ
μσ (j )
νω(j ) 
H

μσ (j )
. (27)

Our first task is to identify which elements of BH
μν are not zero.

It is expected that many of the matrix elements in BH
μν should

be zero because of the product δμσ (1)+μσ (2),νσ (1)+νσ (2)

∏N
j=3 δ

μσ (j )
νω(j ) .

For simplicity, we study the case �/2 = (odd value) where
each partition μ does not have repeated elements. Defining

nμ,ν := Dim[(μ1, . . . ,μN ) ∩ (ν1, . . . ,νN )]

as the number of common elements between μ and ν, then
for a given partition μ only a partition ν with nμ,ν � N − 2
or nμ,ν = N will generate a nonzero value of BH

μν . Note that∏N
j=3 δ

μσ (j )
νω(j ) may be replaced by

∏N
j=3 δ

σ (j )
ω(j ) for odd values of

�/2 where a change of subindex in a given partition element
means strictly a change of partition value, that is, μi �= μj

if i �= j . As a result,
∏N

j=3 δ
μσ (j )
νω(j ) is not zero only if μ and

ν share N − 2 or more elements placed in correct order
after permutations. The possibilities for BH

μν �= 0 are reduced
by noting that the case nμ,ν = N − 1 is forbidden because
partitions are obtained by applying squeezing operations on
the root partition and these types of operations do not allow
nμ,ν = N − 1. Finally, the case nμ,ν = N must be taken into
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account because it is possible to permute labels to give a
nonzero value of BH

μμ. Summarizing, we know that

BH
μν �= 0 if nμν = N − 2 or nμν = N

= 0 otherwise (28)

for odd values of �/2. The analysis is far from trivial when the
term �/2 adopts even values because partitions may repeat
elements and a simple condition on nμν is not enough to
identify the nonzero contributions because the multiplicity of
each partition plays an important role.

It is instructive to obtain explicitly UppL for the simplest
case � = 2 before continuing with � = (even value). So the
plan for the next section is to compute UppL and excess energy
for � = 2 on the hard disk and the Dyson gas, comparing with
the previous results of other authors and then jumping to the
most general case.

VII. EXCESS ENERGY FOR � = 2

The easiest case is � = 2 because there is only one partition
μ = ν = λ and therefore we only have to find Bλλ with
λ the root partition. In this section Bμμ (where μ is any
partition) for the case �/2 = (odd value) will be computed
because it contains Bλλ. Since the sign term is sgn�(σ,ω) =
(εσ (1)σ (2)···σ (N)εω(1)ω(2)···ω(N))b(�) with εω(1)ω(2)···ω(N) the Levi-
Cività symbol, then

BH
μμ =

∑
σ,ω∈SN

(εσ (1)σ (2)···σ (N)εω(1)ω(2)···ω(N))
b(�)

× δμσ (1)+μσ (2),μω(1)+μω(2)

|μσ (1) − μω(1)|μσ (1) �=μω(1)

�̃
μσ (1),μσ (2)H
μω(1),μω(2)L

N∏
j=3

δ
μσ (j )
μω(j ) 


H
μσ (j )

.

We may use the property μi �= μj if i �= j for odd values of
�/2 to obtain

BH
μμ = −

∑
σ∈SN

δμσ (1)+μσ (2),μσ (1)+μσ (2)

|μσ (1) − μσ (1)|σ (1) �=σ (1)
�̃

μσ (1),μσ (2)H
μσ (1),μσ (2)L

× 1


H
μσ (1)


H
μσ (2)

N∏
j=1


H
μj

.

Here the sum over permutations will generate (N − 2)! times
the same result for a given value of (σ (1),σ (2)). At the same
time σ (1) and σ (2) will take integer values from 1 to N ,
therefore

BH
μμ = −(N − 2)!

⎛
⎝ N∏

j=1


H
μj

⎞
⎠

×
∑

1�i<j�N

1

|μi − μj |
�̃

μi ,μjH
μj ,μiL


H
μi


H
μj

∣∣∣∣∣∣
μi �=μj

(29)

for odd values of �/2. The version of Bμμ for the Dyson gas is

obtained by changing 
H
μi

and �̃
μi ,μjH
μj ,μiL with 
S

μi
and �̃

μi ,μjS
μj ,μiL,

BS
μμ = −(N − 2)!

⎛
⎝ N∏

j=1


S
μj

⎞
⎠

×
∑

1�i<j�N

(
1

|μi − μj |
)

μi �=μj

�̃
μi ,μjS
μj ,μiL


S
μi


S
μj

for odd values of �/2, where

�̃
μi ,μjS
μj ,μiL =

i<j
2I

μiμj

S ,

I
m,n
S :=

∫ ∞

0
dy

∫ y

0
dx x2m+1y2n+1e−(x2+y2)ρbπ�/2

= 1

4

(
2

ρbπ�

)m+n+2

Im,n.

Hence, the BS
μμ term takes the form

BS
μμ = −(N − 2)!

⎛
⎝ N∏

j=1


S
μj

⎞
⎠ ∑

1�i<j�N

i(μi,μj )

|μi − μj |
∣∣∣∣
μi �=μj

(30)

for odd values of �/2, where

i(k1,k2) = i
k1
k2

= Ik1,k2

k1!k2!
= 1

2k1+1

k2∑
l=0

(k1 + 1)l
l!

(
1

2

)l

. (31)

For � = 2 the sum of Eq. (26) has only one term with
the coefficient C

(N)
λ (�/2) = 1 and multiplicity

∏
i mi! = 1

corresponding to the root partition λ; then

UH
ppL =

�=2

N (N − 1)Q2e−�fH(N)

ZH
N,�=2N !ρN

b

BH
λλ

= −Q2
∑

1�i<j�N

1

|λi − λj |
�̃

λi ,λjH
λj ,λiL


H
λi


H
λj

,

where the partition function of the hard disk and the result
of Eq. (29) were replaced. The UH

ppR contribution and the
quadratic energy contribution UH

quad for � = 2 are obtained
from Eqs. (16) and (A3). Therefore,

UH
ppR =

�=2
Q2

∑
1�i<j�N

4
J

λi,λj

H + J
λj ,λi

H

H

λi

H

λj

,

UH
quad =

�=2

Q2

2

N∑
j=1


H
λj +1


H
λj

.

As a result, the excess energy UH
exc = Q2f S (N ) +

UH
quad + UH

ppL + UH
ppR of the hard disk for
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FIG. 5. Excess energy per particle and squared charge of the hard
disk for � = 2 and setting ρb = 1/π . The black points correspond
to Eq. (32). The red dashed line is the value of UH

exc/NQ2 in the
thermodynamic limit obtained by Jancovici [2] and the blue solid
curve is the interpolation according to the ansatz of Eq. (33).

� = 2 is

UH
exc =

�=2
Q2

⎡
⎣fH(N ) + 1

2

N∑
j=1


H
λj +1


H
λj

+
∑

1�i<j�N

4


H
λi


H
λj

(
J

λi,λj

H + J
λj ,λi

H − I
λj ,λi

H
|λi − λj |

)⎤⎦.

(32)

A plot of the excess energy for the disk at � = 2 is shown
in Fig. 5. It is possible to propose the expansion

UH
exc = HK1

�N + HK2
�

√
N + HK3

� + HK4
�/N + O(1/N2)

(33)

for large values of N . A fitting of Eq. (32) with the ansatz
of Eq. (33) gives us the result UH

exc/Q
2 =

�=2
−0.144 103N +

0.137 482
√

N − 0.178 439 + 0.019 528 8/N , where
HK1

�=2/Q
2 = −0.144 103 is in agreement with

the expected value in the thermodynamic limit
limN→∞ UH

exc/NQ2 = −0.144 304 . . . with ρb = 1/π

computed in [2]. Similarly, for the Dyson gas at � = 2 we
have, from Eqs. (A7) and (18), the results

US
ppR = −Q2

2

∑
1�i<j�N

j (μi,μj ) + Q2

4
N (N − 1) ln(ρbπ ),

US
quad = Q2

2

[
N + N (N − 1)

1

2

]
.

Hence, the excess energy of the Dyson gas is

US
exc =

�=2
Q2

⎧⎨
⎩f S (N ) + N (N − 1)

4
[ln(ρbπ ) + 1] + N

2

−
∑

1�i<j�N

[
i(λi,λj )

|λi − λj | + j (λi,λj )

2

]⎫⎬
⎭, (34)

where i(λi,λj ) and j (λi,λj ) are given by Eqs. (31) and (A6),
respectively. A plot of the excess energy according to Eq. (34)
is shown in Fig. 6. This result is consistent with the one found
in [3] by using the replica method. In fact, Eq. (34) provides the
same result of the sum of the energy contributions of Q2f S (N )

0 20 40 60 80 100

0.15

0.10

0.05

0.00

0.05

0.10

0.15

N

U
N
Q

FIG. 6. Excess energy per particle and squared charge of the
Dyson gas for � = 2 and ρb = 1/π . The black points correspond to
Eq. (34) and the green diamond symbols are the quadratic potential
contribution given by Eq. (18) plus Shakirov’s result (5) and the term
Q2f S (N ). The red dashed line is the result obtained by Jancovici for
the 2DOCP on the disk in the thermodynamic limit and the blue solid
curve is the interpolation with the ansatz of Eq. (35).

[Eqs. (18) and (5)] by setting the background density as ρ =
1/π . The expansion

US
exc = SK1

�N + SK2
�

√
N + SK3

� + SK4
�/N + O(1/N2)

(35)

has been proposed also for the soft disk, obtaining
US

exc/(Q2) =
�=2

−0.144 358N + 0.377 118
√

N − 0.109 725 +
0.001 571 09/N + O(1/N2). Here the bulk coefficient
SK1

�=2/Q
2 = −0.144 358 is in agreement with the expected

value in the thermodynamic limit [2]. In principle, the
coefficients HK1

�=2 and SK1
� should be equal since they

correspond to the bulk energy of the 2DOCP. On the other
hand, the coefficients HK1

� and SK1
� are different because

they are associated with the surface tensions of the 2DOCP
on hard and soft disks.

Previously, Téllez and Forrester [9] studied the N -finite
expansion of the form

βF exc
N,� = βf�N + B�

√
N + k� ln N + C� + D�/N

for the excess free energy βF exc
N,� , where f�N , B� , k� , C� ,

and D� are coefficients depending on �. These coefficients
were computed exactly by Jacovici et al. [36] at � = 2 (see
Table I). Note that in the ansatz of Eqs. (33) and (35) for the
internal energy there is not a ln N term as in the free energy,
because the study of [9] suggests that this term is a universal
finite-size correction for the free energy, independent of the
temperature. Since U exc

N,� = Q2∂�(βF exc
N,�), this ln N correction

is not present in U exc
N,� . We must also remark that the coefficient

associated with the
√

N dependence of βF exc
N,�=2 is zero at

� = 2 only for the soft disk; this is SB�=2 = 0. However, the

TABLE I. Coefficients of βF exc
N,� at � = 2. Here HB�=2 =

−0.477 535 3 . . . and ζ (x) is the Riemann zeta function.

Coefficient Hard disk Soft disk

βf�=2 ln(ρb/2π 2)/2 βf2

B�=2

√
2
∫∞

0 ln[(1 + erfy)/2]dy 0
k�=2 1/12 1/12
C�=2 0 −ζ ′(−1)
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coefficient is activated for SB� > 0 at � > 2 since SK2
� =

∂�B� = 0.377 118 . . . at � = 2. Similarly, HK2
� > 0 ensures

that HB� will tend to grow around � = 2 as the coupling
parameter is increased, which is consistent with the results of
[9].

VIII. EXCESS ENERGY OF THE SOFT DISK
FOR ODD VALUES OF �/2

TheUS
ppL energy contribution for the soft disk may be found

by following an analogous procedure to get Eq. (26). Then the
expansion may be split into two sums

US
ppL = N (N − 1)Q2e−�fH(N)

ZS
N,�N !ρN

b

{∑
μ

[
C(N)

μ (�/2)
]2BS

μμ

+
∑

μ

∑
ν∈Dμ

C(N)
μ (�/2)C(N)

ν (�/2)BS
μν

⎫⎬
⎭,

one for μ = ν, where diagonal terms of the BS
μν matrix are

given by Eq. (30), and the other sum for the nonzero diagonal
terms of BS

μν , where

Dμ := {ν|dim(μ ∩ ν) = N − 2}

implies that μ and ν necessarily differ in two elements,
say, (μp,μq) /∈ ν and (νm,νn) /∈ μ, with (p,q,m,n) the index
positions of the unshared elements. The nonzero diagonal
terms of BS

μν are given by (see Appendix C)

BS
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

⎛
⎝ N∏

j=1


S
μj

⎞
⎠1

2
f

(
p,q

m,n

)
(36)

for odd values of �
2 and dim(μ ∩ ν) = N − 2, where f

(
p,q

m,n

)
is a function defined in Eq. (C3) depending on the position of
the indices of the unshared elements between partitions μ and
ν. The sign (−1)τμν is related to the number of transpositions
required to accommodate the unshared elements of ν in the
same index positions of the unshared elements of μ or vice
versa (see Appendix D). Therefore, the US

ppL energy takes the
form

US
ppL = Q2∑

μ

[
C

(N)
μ (�/2)

]2 ∑
μ

[
C(N)

μ (�/2)
]2⎧⎨⎩−

∑
1�i<j�N

iμi
μj

μi − μj

+
∑
ν∈Dμ

C(N)
ν (�/2)

C
(N)
μ (�/2)

(−1)τμν
1

2
f

(
p,q

m,n

)⎫⎬
⎭.

If the notation defined in Eq. (17) and the result of Eq. (D1) are used, then

US
ppL = Q2

〈
−

∑
1�i<j�N

iμi
μj

μi − μj

+
∑
ν∈Dμ

R(N)
μ,ν(�/2)(−1)p(μ)+q(μ)+m(ν)+n(ν) 1

2
f

(
p,q

m,n

)〉
N

, (37)

where

R(N)
μ,ν(�/2) =

⎧⎨
⎩

C(N)
ν (�/2)

C
(N)
μ (�/2)

if C(N)
μ (�/2) �= 0

0 otherwise.

The result of Eq. (37) is identical to the one obtained from

US
ppL = Q2

〈 ∑
1�i<j�N

∞∑
n=1

1

n

(
min(ri,rj )

max(ri,rj )

)n

cos[n(φj − φi)]

〉
, (38)

but using an average on partitions instead of computing it on the phase space. In theory, it is possible to use the Monte Carlo
method to evaluate the term in angular brackets of Eq. (38) to find its thermodynamic average. However, it is more practical to
evaluate the excess energy and subtract from it the contribution US

ppL. A comparison between analytical and numerical results
for the US

ppL energy is shown in Fig. 7. Now the particle-particle energy is US
pp = US

ppL + US
ppR, with US

ppR given by Eq. (A7).
Hence, the US

ppR contribution takes the form

US
pp = Q2

〈
−

∑
1�i<j�N

[
iμi
μj

μi − μj

+ j (μi,μj )

2

]
+
∑
ν∈Dμ

R(N)
μ,ν(�/2)(−1)p+q+m+n 1

2
f

(
p,q

m,n

)〉
N

+ Q2

4
N (N − 1) ln(ρbπ�/2).

(39)

Finally, the excess energy US
exc = Q2f S (N ) + US

quad + US
pp is

US
exc = Q2

〈
−

∑
1�i<j�N

[
iμi
μj

μi − μj

+ j (μi,μj )

2

]
+
∑
ν∈Dμ

R(N)
μ,ν(�/2)(−1)p+q+m+n 1

2
f

(
p,q

m,n

)〉
N

+ Q2

4
N (N − 1) ln(ρbπ�/2) + Q2

�

[
N + N (N − 1)

�

4

]
+ Q2f S (N ), (40)
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FIG. 7. Three different energy contributions for the 2DOCP on a soft disk. Comparison between numerical and analytical results for the
(a) US

ppL, (b) US
pp , and (c) US

exc energy contributions on the soft disk given by Eqs. (37), (39), and (40), respectively. Yellow symbols correspond
to analytical results and black points to the Metropolis method. The solid lines are drawn to guide the eye.

with US
quad given by Eq. (18).

IX. PAIR CORRELATION FUNCTION FOR ODD VALUES OF �/2

A. Hard disk

The density function associated with the probability of finding n particles in the differential area
∏n

j=1 dSj is given as

ρ
(n)
N,�(�r1, . . . ,�rn) = 1

(N − n)!

1

ZN,�

N∏
j=n+1

∫
R

exp(−βUexc)dSj ,

where R = {(x,y)|x2 + y2 � R2} for the hard disk or the real plane R = �2 for the soft disk. This function is also known as the
n-body density function and it takes the form

Hρ
(n)
N,�(�z1, . . . ,�zn) = N !

(N − n)!

(ρbπ )n

ZH
N,�

exp

(
−�

2

2∑
i=1

r̃2
i

) N∏
j=n+1

∫ 2π

0
dφj

∫ √
N

0
r̃j dr̃j exp

(−�r̃2
j /2
) ∏

1�i<j�N

|zi − zj |�

for the hard-disk case, where

Z̃H
N,� =

N∏
j=1

∫ ∞

0

∫ 2π

0
r̃idr̃idφie

−ρbπ�r2
i /2

∏
1�i<j�N

|zi − zj |�

is the rescaled partition function, zi = r̃i exp(iφi) is the complex position on the plane of the ith particle, and r̃i = √
Nri/R.

In order to evaluate the integrals on the n-body density function, it is possible to expand the Vandermonde determinant term
according to Eq. (8), as it was done with the particle-particle interaction energy in previous sections. The result is

Hρ
(n)
N,�(z1, . . . ,zn) = ρn

b exp
(−�

2

∑2
i=1 r̃2

i

)
HZ

˜ N,�

(N − n)!

∑
μ,ν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2
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×
∑

σ,ω∈SN

sgn�(σ,ω)
n∏

j=1

r̃
μσ (j )+νω(j )

j ei(νω(j )−μσ (j ))φj

N∏
j=n+1

δμσ (j )νω(j )

H
μσ (j )

,

with

HZ
˜ N,�

:=
∑

μ

[
C(N)

μ (�/2)
]2∏

i mi!

N∏
i=1


H
μi

= 1

N !π
Z̃H

N,�. (41)

In particular, for n = 2 we may write

Hρ
(2)
N,�(z1,z2) = ρn

b exp
(−�

2

∑2
i=1 r̃2

i

)
HZ

˜ N,�

(N − n)!

∑
μ,ν

C(N)
μ (�/2)C(N)

ν (�/2)

(
∏

i mi!)2
B•
H
μν, (42)

where

B•
H
μν :=

∑
σ,ω∈SN

sgn�(σ,ω)
2∏

j=1

r̃
μσ (j )+νω(j )

j ei(νω(j )−μσ (j ))φj

N∏
j=3

δμσ (j )νω(j )

H
μσ (j )

, (43)

which is practically a nonintegrated version of the matrix BH
μν given by Eq. (27). The underdotted symbol on B•

H
μν is used only to

avoid confusion with the previous notation BH
μν , which together share the following properties.

(i) BH
μν and B•

H
μν have a nonzero contribution if nμν = dim(μ ∩ ν) = N . In general, BH

μμ and B•
H
μμ are real for any partition μ.

(ii) The case nμν = N − 1 is impossible due to the restrictions on the partitions construction. Hence, for this case we may set
BH

μν = 0 and B•
H
μν = 0.

(iii) BH
μν and B•

H
μν may have a nonzero contribution if nμν = dim(μ ∩ ν) = N − 2. However, B•

H
μν is in general a complex

function.
(iv) As it will be shown later, another property of B•

H
μν is its dependence only on the angle difference δφ12 = φ1 − φ2 instead

of both angles φ1 and φ2 separately because of the rotational symmetry of the system. On the other hand, BH
μν is by definition

independent of the angle.
This matrix may be written as (see Appendix E)

B•
H
μν =

⎧⎨
⎩

(−1)τμν (N − 2)!
(∏N

i = 1
i �= p,q


H
μi

)(
z
μp

1 z
μq

2 − z
μq

1 z
μp

2

)∗(
z
νm

1 z
νn

2 − z
νn

1 z
νm

2

)
if μ �= ν ∈ Dμ otherwise 0

(N − 2)!
(∏N

i=1 
H
μi

)
Det [HK (N)

μ (ziz
∗
j )]i,j=1,2 if μ = ν,

where we defined

HK (N)
μ (z) :=

N∑
l=1

zμl


H
μl

.

Now splitting the two-body density function of Eq. (42) in two parts corresponding to μ = ν and μ �= ν, we obtain

Hρ
(2)
N,�(r̃1,r̃2,φ12) = ρ2

b exp

(
−�

2

2∑
i=1

r̃2
i

)⎧⎨
⎩〈Det

[
HK (N)

μ (ziz
∗
j )
]
i,j=1,2

〉
N

+
〈∑

ν∈Dμ

(−1)τμνR(N)
μ,ν

(
z
μp

1 z
μq

2 − z
μp

2 z
μq

1

)∗(
z
νm

1 z
νn

2 − z
νm

2 z
νn

1

)〉
N

⎫⎬
⎭, (44)

valid for odd values of �/2. The hard-disk one-body density function Hρ
(1)
N,� (or simply the density function) may be found by

applying the same technique

Hρ
(1)
N,�(r̃1) = ρbe

−(�/2)r̃2
i

〈
N∑

i=1

r̃
2μi

1


H
μi

〉
N

.

Therefore, the hard-disk pair correlation function would be, according to its definition,

Hg
(2)
N,�(r̃1,r̃2,φ12) = Hρ

(2)
N,�(r̃1,r̃2,φ12)

Hρ
(1)
N,�(r̃1)Hρ

(1)
N,�(r̃2)

.
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For � = 2 there is only one partition μ = λ with λi = (N − i)�/2. It implies that Dλ = 0 and the average on partitions has only
one term corresponding to the root partition. Hence

Hρ
(2)
N,�=2(r̃1,r̃1,φ12) = ρ2

b exp

(
−

2∑
i=1

r̃2
i

)
Det
[
HK

(N)
λ (ziz

∗
j )
]
i,j=1,2,

where

HK
(N)
λ (ziz

∗
j ) =

N∑
l=1

(ziz
∗
j )λl


H
λl

is related to the usual kernel Hk
(N)
λ (zi,zj ) of the Ginibre ensemble but in terms of the partition μ = μ(�/2) as

Hk(N)
μ (zi,zj ) = 1

π
exp

(
−

2∑
i=1

r̃2
i �/4

)
HK (N)

μ (ziz
∗
j ),

where

Hk(N)
μ (zi,zj ) =

N∑
l=1

Hψμl
(zi)Hψ∗

μl
(zj ),

with

Hψμl
(z) = zμl√

π
H
μl

exp(−|z|2�/4)

orthogonal functions since they satisfy ∫
|z|<√

N
Hψμl

(z)Hψμm
(z)d2z = δμl,μm.

The determinant of the kernel

Det
[
Hk(N)

μ (zi,zj )
]
i,j=1,2 = 1

π2
exp

(
−

2∑
i=1

r̃2
i �/2

)
Det
[
HK (N)

μ (ziz
∗
j )
]
i,j=1,2

depends only on the radial positions r̃1 and r̃2 of the particles on the disk and the difference of their angular positions φ12 = φ1 − φ2

since

Det
[
HK (N)

μ (ziz
∗
j )
]
i,j=1,2 =

N∑
i=1

N∑
j=1

1


H
μi


H
μj

{
r̃

2μi

1 r̃
2μj

2 − (r̃1r̃2)μi+μj cos[(μj − μi)(φ1 − φ2)]
}

and it is real. Therefore,

Hρ
(2)
N,�(r̃1,r̃2,φ12) =

{
(ρbπ )2

〈
Det
[
Hk(N)

μ (zi,zj )
]
i,j=1,2

〉
N

+ ρ2
b exp

(
−�

2

2∑
i=1

r̃2
i

)

×
〈∑

ν∈Dμ

(−1)τμν


H
μp


H
μq

R(N)
μ,ν

(
z
μp

1 z
μq

2 − z
μp

2 z
μq

1

)∗(
z
νm

1 z
νn

2 − z
νm

2 z
νn

1

)〉
N

⎫⎬
⎭.

It is important to remark that crystals in the hard or soft disk do not have translational symmetry except in the thermodynamic
limit where the crystal is filling the whole plane. This feature appears in the two-body density function as an explicit dependence
on the angle difference Hρ

(2)
N,� = Hρ

(2)
N,�(r̃1,r̃2,φ12) and a mixture of partitions on the term

HSμ(r̃1,r̃2,φ12) = 1

π2
exp

(
−�

2

2∑
i=1

r̃2
i

) ∑
ν∈Dμ

(−1)τμν


H
μp


H
μq

R(N)
μ,ν

(
z
μp

1 z
μq

2 − z
μp

2 z
μq

1

)∗(
z
νm

1 z
νn

2 − z
νm

2 z
νn

1

)
.

Although, the function HSμ(r̃1,r̃2,φ12) is complex, its average over partitions is real

〈HSμ〉N = 1

π2
exp

(
−�

2

2∑
i=1

r̃2
i

)〈∑
ν∈Dμ

(−1)τμν


H
μp


H
μq

R(N)
μ,νRe

[(
z
μp

1 z
μq

2 − z
μp

2 z
μq

1

)∗(
z
νm

1 z
νn

2 − z
νm

2 z
νn

1

)]〉
N

.
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Now it may be simplified by using (z
μp

1 z
μq

2 − z
μp

2 z
μq

1 )∗(zνm

1 z
νn

2 − z
νm

2 z
νn

1 ) = f
p,q
m,n (r̃1,r̃2,φ12) + f

p,q
m,n (r̃2,r̃1,φ21). As a result, the

two-body density function of the hard disk for odd values of �/2 takes the form

Hρ
(2)
N,�(r̃1,r̃2,φ12) = (ρbπ )2〈Det

[
Hk(N)

μ (zi,zj )
]
i,j=1,2 + HSμ

〉
N
, (45)

where

Hk(N)
μ (zi,zj ) =

N∑
l=1

Hψμl
(zi)Hψ∗

μl
(zj )

is built with the orthogonal functions

Hψμl
(z) = zμl√

π
H
μl

exp(−|z|2�/4),

the term HSμ := Re[HSμ] is given by

HSμ = exp
(−�

2

∑2
i=1 r̃2

i

)
π

∑
ν∈Dμ

(−1)τμνR(N)
μ,ν


H
μp


H
μq

{
h

μp+νm

μq+νn
(r̃1,r̃2) cos[(νm − μp)φ12] − h

μq+νm

μp+νn
(r̃1,r̃2) cos[(νm − μq)φ12]

}

with hb
a(x,y) := xayb + yaxb, and the average over partitions is defined according to Eq. (17) with 
μj

replaced by 
H
μj

.

B. Soft disk

The n-body density function of the soft disk is

Sρ
(n)
N,�(z1, . . . ,zn) = exp

(−ρbπ
�
2

∑n
i=1 r2

i

)
SZ̃N,�(N − n)!

∑
μ,ν

C(N)
μ (�/2)C(N)

ν (�/2)

(
∏

i mi!)2

×
∑

σ,ω∈SN

sgn�(σ,ω)
n∏

j=1

r
μσ (j )+νω(j )

j ei(νω(j )−μσ (j ))φj

N∏
j=n+1

δμσ (j )νω(j )

S
μσ (j )

,

where SZ̃N,� is defined in Eq. (12). It is convenient to write 
S
μi

= ( 2
ρbπ�

)μi+1μi! explicitly in terms of the partitions’

elements factorial [see Eq. (14)] so the product
∏N

j=n+1 δμσ (j )νω(j )

S
μσ (j )

may be written as (ρbπ�/2)n(2/ρbπ�)N(N+1)�/4+1∏n
j=1(ρbπ�/2)μσ (j )

∏N
j=n+1 δμσ (j )νω(j )μσ (j )! and the n-body density function takes the form

Sρ
(n)
N,�(z1, . . . ,zn) = (ρb�/2)n exp

(−ρbπ
�
2

∑n
i=1 r2

i

)
SZ

˜ N,�

(N − n)!

∑
μ,ν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2

×
∑

σ,ω∈SN

sgn�(σ,ω)
n∏

j=1

(
ρbπ�

2

)μσ (j )

r
μσ (j )+νω(j )

j ei(νω(j )−μσ (j ))φj

N∏
j=n+1

δμσ (j )νω(j )μσ (j )!,

with

Z̃N,� =
(

2

ρbπ�

)N(N+1)�/4+1

Z
˜ N,�

, SZ
˜ N,�

:=
∑

μ

[C(N)
μ (�/2)]2∏

i mi!

N∏
i=1

μi!. (46)

The two-body density function may be written as

Sρ
(2)
N,�(z1,z2) = ρ2

b exp
(−ρbπ

�
2

∑2
i=1 r2

i

)
SZ

˜ N,�

(N − n)!

∑
μ,ν

C(N)
μ (�/2)C(N)

ν (�/2)

(
∏

i mi!)2
B•
S
μν

, (47)

where

B•
S
μν

:=
(

�

2

)2 ∑
σ,ω∈SN

sgn�(σ,ω)
2∏

j=1

(
ρbπ�

2

)μσ (j )

r
μσ (j )+νω(j )

j ei(νω(j )−μσ (j ))φj

N∏
j=3

δμσ (j )νω(j )μσ (j )!, (48)
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as we have done with the hard case [see Eqs. (42) and (43)]. The δ product
∏N

j=3 δμσ (j )νω(j ) in Eq. (48) ensures that μσ (1) + μσ (2) =
νσ (1) + νσ (2) and several of the permutations (νσ (1),νσ (2)) are just squeezing operations on the partition μ. Hence,

2∏
j=1

(
ρbπ�

2

)μσ (j )

=
2∏

j=1

(
ρbπ�

2

)νσ (j )

=
2∏

j=1

(√
ρbπ�

2

)μσ (j )+νσ (j )

enables us to write the two-body density function in terms of the dimensionless complex variable u =
√

ρbπ�

2 r exp(iφ) as

Sρ
(2)
N,�(u1,u2) = ρ2

b exp
(−∑2

i=1 |ui |2
)

SZ
˜ N,�

(N − n)!

∑
μ,ν

C(N)
μ (�/2)C(N)

ν (�/2)(∏
i mi!

)2 B•
S
μν

(u1,u2), (49)

where

B•
S
μν

:=
(

�

2

)2 ∑
σ,ω∈SN

sgn�(σ,ω)
2∏

j=1

|uj |μσ (j )+νω(j )ei(νω(j )−μσ (j ))φj

N∏
j=3

δμσ (j )νω(j )μσ (j )!. (50)

A similar argument may be used to write the n-body density function of the soft disk in terms of u1, . . . ,un. We may simplify
B•
S
μν

as it was done for B•
H
μν to obtain the result

B•
S
μν

(�/2)2
=

⎧⎪⎨
⎪⎩

(−1)τμν (N − 2)!
(∏N

i = 1
i �= p,q

μi!
)(

u
μp

1 u
μq

2 − u
μq

1 u
μp

2

)∗(
u

νm

1 u
νn

2 − u
νn

1 u
νm

2

)
if μ �= ν ∈ Dμ otherwise 0

(N − 2)!
(∏N

i=1 μi!
)
Det
[
SK (N)

μ (uiu
∗
j )
]
i,j=1,2 if μ = ν,

where

SK (N)
μ (uiu

∗
j ) :=

N∑
l=0

(uiu
∗
j )μl

μl!
.

Therefore,

Sρ
(2)
N,�(r1,r2,φ12) =

(
ρbπ�

2

)2〈
Det
[
Sk(N)

μ (ui,uj )
]
i,j=1,2 + SSμ

〉
N
, (51)

where the average over partitions is defined according to Eq. (17) with 
μj
replaced by μj !,

Sk(N)
μ (ui,uj ) =

N∑
l=1

Sψμl
(ui)Sψ∗

μl
(uj ), Sψμl

(u) = uμl

√
πμl!

exp

(
−1

2
|u|2
)

, (52)

with Sψμm
(u) orthogonal functions ∫

R2
Sψμl

(u)Sψμm
(u)d2z = δμl,μm

2μ+1

and

SSμ = e−(|u1|2+|u2|2)

π2

∑
ν∈Dμ

(−1)τμνR(N)
μ,ν

μp!μq!

(
h

μp+νm

μq+νn
(|u1|,|u2|) cos[(νm − μp)φ12] − h

μq+νm

μp+νn
(|u1|,|u2|) cos[(νm − μq)φ12]

)
. (53)

We have checked that Eq. (51) fulfills the normalization condition

2∏
j=1

∫
R

dSj Sρ
(2)
N,�(r1,r2,φ12) = N (N − 1),

which ensures that, for any measurement, it is possible to find N (N − 1) pairs of particles in the total area (the real xy plane).
On the other hand, the limit

Sρ
(2),I I
N,� (r,φ12) := lim

r1→r2=r
Sρ

(2)
N,�(r1,r2,φ12)
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FIG. 8. (a) Probability density Sρ
(2),I I

N,� (r,φ12). (b) Small crystals. The first 14 configurations are at vanishing temperature of the 2DOCP on
the soft disk obtained with the Metropolis method with their corresponding Delaunay triangulation. The radius of the red dashed circles are
given by Eq. (19).

is the density function related to the probability to find a particle in the differential element dS1 = rdrdφ1 at (r,φ1) and another
particle in dS2 = rdrdφ2 located at (r,φ2) [see Fig. 8(a)]. Explicitly, the function Sρ

(2),I I
N,� (r,φ12) is

Sρ
(2),I I
N,� (r,φ12) =

(
ρb�

2

)2

e−2|u|2
{〈

2
N∑

m=1

N∑
l=m+1

|u|2(μl+μm)

μl!μm!
{1 − cos[(μl − μm)φ12]}

〉
N

+
〈∑

ν∈Dμ

(−1)τμνR(N)
μ,ν

μp!μq!
2|u|μp+μq {cos[(νm − μp)φ12] − cos[(νm − μq)φ12]}

〉
N

⎫⎬
⎭. (54)

Note that, independently of N and �, the probability density

Sρ
(2),I I
N,� (r,0) for φ12 = 0 is zero because it is not possible to

find in the equilibrium state two charged particles located at
the same position. Similarly, the limit

lim
r→∞ Sρ

(2),I I
N,� (r,φ12) = 0

because the partition average terms generate a polynomial
PN,� for finite values of N and �. The number of terms of
the polynomial PN,� becomes large but finite as the number of
particles or the coupling parameter is increased. Therefore, the
product e−2|u|2PN,� goes to zero as |u| → ∞. It obeys the fact
that the radial parabolic potential generated by the background
tends to confine the charges and the probability to find a pair
of particles far from the origin becomes negligible.

A plot of Eq. (54) for three particles and several values
of the coupling parameter is shown in Figs. 9 and 10. When
the coupling parameter is � = 2 the function Sρ

(2),I I
N,� (r,φ12) is

reduced to

Sρ
(2),I I
N,�=2(r,φ12) = ρ2

be
−2|u|2 2

N∑
m=1

N∑
l=m+1

|u|2(λl+λm)

λl!λm!

×{1 − cos[(m − l)φ12]}.
In theory, if we would perform a measurement finding a
particle in the position (r,φ1) and another at (r ′,φ2), then
it is possible to rotate the system −φ1 due to the rotational
invariance. The result of several measurements yields that the
first particle should be somewhere in the line {(r,φ = 0)|r � 0}
and the second particle at (r ′,φ2 − φ1). Hence, it is not a
surprise that plots of Sρ

(2),I I
N,� (r,φ12) vanish around the line

{(r,φ = 0)|r � 0}. As the coupling constant is increased the
plot of Sρ

(2),I I
N=3,�(r,φ12) for three particles splits into two

Gaussian-like functions and the locations of the peaks of

these Gaussian-like functions are related to the minimal energy
configuration: three point charges located at the vertices of an
equilateral triangle (see Fig. 8). In fact, if we set φ = 0 for one
of the three particles of the Wigner crystal by a rotation, then
the corresponding positions of the other two particles coincide
with maximum locations of Sρ

(2),I I
N=3,�(r,φ12) as � increases.

Even when small systems of N � 5 particles do not
exhibit phase transitions, they show crystallization features
(localization of the ρ

(2),I I
N,� around the particle’s positions at

vanishing temperature) for � � 14. Numerical simulations
performed on the 2DOCP with logarithmic interactions [16,17]
expected a liquid-solid phase transition at � � 130–140 in
the thermodynamic limit, which is far from � � 14. This
difference may be attributed to the shifting of the critical
coupling constants �c = �c(N ) for finite systems where
�c(N1) < �c(N2) if N1 < N2, as it is shown numerically in
2DOCP with Coulomb interactions [20].

Roughly speaking, the 2DOCP mimics some properties of
the dusty plasmas realized in the laboratory. Commonly, there
is more interest in the generation of dusty plasmas with a
large number of particles, which enables measurements in the
thermodynamic limit. However, monolayer plasma systems
with a low number of particles have also been obtained
experimentally. In particular, Goree et al. [28] reported small
plasma crystals with N ∈ (1,19). The experiment and the
2DOCP plasma have in common a radial parabolic potential
which confines the microspheres. In the laboratory the charged
particles are microspheres of diameter 9 μm with charge
Q = −12.3e which tend to arrange essentially in the same
configurations as in Fig. 8 up to a scale factor because the
interparticle repulsion for the experiment practically comes
from a Yukawa potential instead of a logarithmic one. In fact,
Goree et al. [28] expected a Yukawa interaction potential since
the positions of particles for small crystals are accurately
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(a)

(b) (c) (d)

FIG. 9. Analytical probability density Sρ
(2),I I

N=3,�(r,φ12) for three particles computed from Eq. (54). Shown, from left to right, are plots of

Sρ
(2)
N=3,� setting the coupling parameter as (a) � = 2, (b) � = 6, (c) � = 10, and (d) � = 26. The radius of the red circle on the density plots is

given by Eq. (19).

(a)

(b) (c) (d)

(e)

(f) (g) (h)

FIG. 10. Analytical probability density Sρ
(2),I I

N,� (r,φ12) for (a)–(d) N = 4 particles and (e)–(h) N = 5 particles computed from Eq. (54). The

probability density Sρ
(2)
N=4,� has been plotted by setting the coupling parameter as (a) � = 2, (b) � = 6, (c) � = 10, and (d) � = 26. The plots

of Sρ
(2)
N=5,� correspond to the coupling parameters (e) � = 2, (f) � = 6 (g) � = 10, and (h) � = 14.

062145-18



EXACT MEAN-ENERGY EXPANSION OF GINIBRE’S . . . PHYSICAL REVIEW E 96, 062145 (2017)

modeled by simulations performed with Yukawa molecular
dynamics. Previously, Šamaj and Percus [37] performed
numerically exact expansions of the free-energy and kinetic
pressure for the 2DOCP on the hard disk with a small number
of particles with � ranging from 2 to 14 which agree reasonably
well with MC simulations.

It is possible to continue an exploration of the radial
dependence of the two-body density function by looking
for the density function related to the probability to find a
particle in the origin and another particle at (r2,φ2). Hence, the
following limit must be considered:

Sρ
(2),I
N,� (r2,φ12) := lim

r1→0
Sρ

(2)
N,�(r1,r2,φ12).

This limit is simplified because

lim
r1→0

SSμ = 0

and the only contribution on Sρ
(2),I
N,� (r2,φ12) comes from the

kernel’s determinant

Det
[
Sk(N)

μ (uiu
∗
j )
]
i,j=1,2

= e−|u1|2−|u2|2

π2

N∑
m=1

N∑
n = 1
n �= m

1

μm!μn!
{|u1|2μm |u2|2μn

− (|u1||u2|)μm+μn cos[(μn − μm)φ12]}. (55)

Now the term (|u1||u2|)μm+μn in the limit r1 → 0 is always
zero because μm �= μn once a partition is selected. However,
one term of the kernel’s determinant may contribute

lim
r1→0

|u1|2μm = δμm,0

since the partitions restriction μ1 > μ2 > · · · > μN implies
that δμm,0 = δμm,μN=0 where only partitions whose last element
is zero would contribute. Therefore,

lim
r1→0

Det
[
Sk(N)

μ (uiu
∗
j )
]
i,j=1,2 = δμN ,0

N∑
n = 1
n �= N

1

μN !μn!
|u2|2μn .

As a result, the limit limr1→0 Sρ
(2)
N,�(r1,r2,φ12) does not depend

on φ12 and

Sρ
(2),I
N,� (r2) =

(
ρbπ

�

2

)2

exp

(
−ρbπ�

2
r2

2

)

×
〈

N−1∑
n=1

1

μn!

(
ρbπ�

2
r2

2

)μn

〉
N−1

. (56)

Here the subscript N − 1 on the average means that only parti-
tions with μN = 0 must be considered. Since the contribution
of SSμ for this case vanishes, then there is not a mixture
of partitions on the average computations and the result of
Eq. (56) remains valid for � = 2,4,6, . . ., not only odd values
of �/2. A plot of this function for several values of N and
� is shown in Fig. 11. The behavior of the radial two-body
density function vanishes as r�

2 for short distances because of
the direct repulsion between particles. Šamaj and Percus [38]

FIG. 11. Exact probability function Sρ
(2),I
N,� (r2). The solid line,

dashed line and black points correspond to � = 2, 4, and 6,
respectively.

found the property

ρ
(2)
N,�(χ ) = (−1)�/2e−χ2

ρ
(2)
N,�(iχ ), (57)

with χ = √
ρbπ�/2r , valid for an arbitrary value of the

coupling parameter in the thermodynamic limit where the
correlations functions are translationally invariant. In order
to check the property of Eq. (57) it is necessary to evaluate
Eq. (56) and

Sρ
(2),I
N,� (iχ ) =

(
ρbπ

�

2

)2

exp(χ2)

〈
N−1∑
n=1

(−1)μn

μn!
(χ2)μn

〉
N−1

(58)

at N → ∞. At � = 2 we have

lim
N→∞

Sρ
(2),I
N,�=2(iχ )

Sρ
(2),I
N,�=2(χ )

= eχ2 ∑∞
n=1

(−1)n

n! χ2n

e−χ2 ∑∞
n=1

1
n!χ

2n

= eχ2
(1 − e−χ2

)

e−χ2 (1 − eχ2 )
= −e−χ2

,

where the partition averages of Eqs. (56) and (58) only have a
term corresponding to the root partition μn = N − n. A plot of
the ratio Sρ

(2),I
N,� (iχ )/Sρ

(2),I
N,� (χ ) for N = 4 and 6 at � = 8 and

10 is shown in Fig. 12. Surprisingly, we observed that the ratio

Sρ
(2),I
N,� (iχ )/Sρ

(2),I
N,� (χ ) converges quickly to the exponentially

decaying e−χ2
with the appropriate branch of (−1)�/2 for small

values of N too far from the thermodynamic limit.

C. Numerical computation of Sρ
(2),I I
N,� (r,φ12)

It is possible to use the data from the MC simulation to
build Sρ

(2)
N,�(r1,r2,φ12) as it is typically done for the radial

distribution function for systems in the fluid phase or with
translational symmetry. We start by defining a circular region
A of radius R where Sρ

(2)
N,�(r1,r2,φ12) will be numerically

computed. Since the pair correlation function is small outside
the bound radius (19), then we may choose R ≈ 1.5RS

N,� .
Once the system is equilibrated, M configurations c(n) =

{�r (n)
i |i = 1, . . . ,N} are selected from the simulation for each

MC cycle

�(M) = {c(n)|n = 1, . . . ,M}.
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(a () b)

FIG. 12. Ratio Sρ
(2),I
N,� (iχ )/Sρ

(2),I
N,� (χ ). The red dashed and blue solid curves are the plots of (−1)�/2e−χ2

for even and odd values of �/2,

respectively. Circles and triangles represent the values of Sρ
(2),I
N,� (iχ )/Sρ

(2),I
N,� (χ ) for � = 8 and 10 computed from Eqs. (56) and (58), respectively.

(a) N = 4 and (b) N = 6.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

FIG. 13. Numerical computation of Sρ
(2),I I

N,� (r,φ12) for (a), (d), (g), and (j) N = 3, (b), (e), (h), and (k) N = 4, and (c), (f), (i), and (l) N = 5
and (a)–(c) � = 2, (d)–(f) � = 6, (g)–(i) � = 10, and (j)–(l) � = 22. The radius of the red circle is given by Eq. (19) in the strong-coupling
regime � → ∞.
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(a) (b) (c)

FIG. 14. Comparison of HN=5,�(�(M)) for five particles with (a) � = 2, (b) � = 6, and (c) � = 14. Histograms correspond to MC
simulations and the surface corresponds to Eq. (54). The volume below each plot has been set to one.

Then A is divided in N∼ circular regions of spatial step

δr∼ = R/N∼ in order to count the particles whose radial

distance is between r∼
s
− δr∼ and r∼

s
+ δr∼, with r∼

s
= sδr∼ and

s = 1, . . . ,N∼ , to build

ωs := {�r (n)
i ∈ �(M) : |r∼

s
− �r (n)

i | < 2δr ∀ n = 1, . . . ,M ∧ i

= 1, . . . ,N
}
.

The next step is to compute the sets from ωs ,

Ws := {(rs cos(φij ),rs sin(φij )) : �ri,�rj ∈ ωs ∀ i �= j},
which keeps the angle difference φij := φi − φj between pair
of particles. Finally, a two-dimensional histogram is computed
from {Ws : s = 1, . . . ,N∼ }.

Figure 13 shows the numerical computation of

Sρ
(2),I I
N,� (r,φ12), where HN,�(�(M); r1,r2,φ12) is the bin height

of the histogram obtained from {Ws : s = 1, . . . ,N∼ }. Each

histogram in Fig. 13 is normalized to one and it is expected
that

Sρ
(2),I I
N,� (r,φ12) = BN,� lim

M→∞
HN,�(�(M); r,φ12),

with BN,� a proper normalization parameter depending on N

and � rather than N (N − 1) as occurs with Sρ
(2)
N,�(r1,r2,φ12).

The normalization parameter BN,� is given by

BN,� =
∫ ∞

0
rdr

∫ 2π

0
dφ12Sρ

(2)
N,�(r1,r2,φ12)

and it corresponds to the volume of below the surface of

Sρ
(2),I I
N,� (r,φ12). The result in terms of partition averages

BN,� =
(

ρb�

2

)〈 N∑
m=1

N∑
n=m+1

(μm + μn)!

μm!μn!

1

2μm+μn

〉
N

is obtained by solving the corresponding integrals and it
reduces to

BN,�=2 = ρb

[
2N − 6√

π (N − 1)!
�

(
N + 1

2

)]

for the particular case � = 2. A comparison between the
numerical histograms and the exact probability density given
by Eq. (54) is shown in Fig. 14.

X. CONCLUSION

In this paper a finite-N expression for the excess energy of
the 2DOCP on the hard and soft disks (32) and (34) for � = 2
were obtained. Finite expansions of the excess energy of the
soft disk are essentially the same as those found in [3] with the
replica method. We have also computed the finite expansion of
the excess energy at � = 2 for the hard-disk case (32), testing
that the result of the excess energy per particle would be in
agreement with that found in [2].

The excess energy and the two-body density functions of
the 2DOCP on the soft and hard disks for odd values of
�/2 in terms of the expansions (40), (45), and (51) were
also provided. The formulas found for the excess energy
throughout the paper for � = 2,6,8 . . . are in good agreement
with the results obtained with Monte Carlo simulations. In
particular, we have studied the analytical density function
ρ

(2),I I
N,� (r1,r2,φ12) associated with the probability to find a pair

of particles located at two differential area elements dS1 and
dS2 located at the same radius but different polar angle (54).
The density function ρ

(2),I I
N,� (r1,r2,φ12) was used to explore

analytically the generation of small crystals and a comparison
of the analytical results of Eq. (54) with histograms obtained
via MC simulations was performed, finding good agreement
between them.

It may be concluded that the monomial expansion approach
enables us to perform exact numerical computations of some
thermodynamic quantities of the 2DOCP. Unfortunately, the
number of terms of this expansions grows quickly as the
number of particles or the coupling parameter is increased.
This feature limits drastically the practical application of the
method, e.g., in the analytical study with phase transitions
where the system is large as well as the typical critical values
of the coupling constant. Nevertheless, for systems far from
the thermodynamic limit, it is possible to use the monomial
expansion approach to study analytically the generation of
small crystals, as we did throughout the paper with the Dyson
gas. It was found that the two-point density function for
� � 2 inherited not only the well-known kernel determinant
of the Ginibre ensemble averaged under partitions, but also an
additional contribution which appears only for � > 2 since this
term is responsible for mixing partitions. Both contributions
contain the structural information of the system, especially in
the strong-coupling regime.
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APPENDIX A: COMPUTATION OF U ppR

If the angular integral of �
μ1,μ2H
ν1,ν2R is evaluated, then

�
μ1,μ2H
ν1,ν2R = 2

⎛
⎝ 2∏

j=1

δ
μj

νj

⎞
⎠�̃H

μ1,μ2R, (A1)

with

�̃H
μ1,μ2R :=

∫ √
N

0
dr̃1

∫ √
N

0
dr̃2r̃

2μj +1
1 r̃

2μ2+1
1 e−(r̃1+r̃2)�/2(− ln r>).

Substituting Eq. (A1) into Eq. (23), then it is possible to complete again the δ product in order to simplify the expansion of UppR
as

UH
ppR = N (N − 1)Q2e−�fH(N)

2ZH
N,�N !ρN

b

∑
μν

C(N)
μ (�/2)C(N)

ν (�/2)

(
∏

i mi!)2

∑
σ,ω∈SN

sgn�(σ,ω)4
�̃H

μσ (1),μσ (2)R


μσ (1)
μσ (2)

N∏
j=1

δ
μσ (j )
νω(j ) 
H

μσ (j )
.

As a result, for a given partition μ only partitions ν = μ with elements strictly organized in the same order [which implies
sgn�(σ,ω) = 1] will give a nonzero contribution reducing the sum

∑
μν

∑
σ,ω∈SN

to
∑

μ

∑
σ∈SN

(
∏

i mi!). Taking into account
that ∑

σ∈SN

4
�̃H

μσ (1),μσ (2)R


μσ (1)
μσ (2)

= (N − 2)!
∑

1�i<j�N

8
�̃H

μi,μj R


μi

μj

,

then

UH
ppR = Q2e−�fH(N)

2ZH
N,�ρN

b

∑
μ

[
C(N)

μ (�/2)
]2(∏

i mi!
)
⎛
⎝ N∏

j=1


H
μj

⎞
⎠ ∑

1�i<j�N

8
�̃H

μi,μj R


H
μi


H
μj

,

or most compactly

UH
ppR = Q2

2

〈 ∑
1�i<j�N

8
�̃H

μi,μj R


H
μi


H
μj

〉
N

.

It is useful to write �̃H
μi,μj R as

�̃H
μi,μj R = J

μi,μj

H + J
μj ,μi

H ,

where we defined

J
μi,μj

H :=
∫ √

N

0
dy

∫ y

0
dx x2μi+1y2μj +1(− ln y)e−(x2+y2)�/2, (A2)

and hence

UH
ppR = Q2

〈 ∑
1�i<j�N

4
J

μi,μj

H + J
μj ,μi

H

H

μi

H

μj

〉
N

. (A3)

An analogous computation for the Dyson gas gives the result

US
ppR = Q2

〈 ∑
1�i<j�N

4
J

μi,μj

S + J
μj ,μi

S

S

μi

S

μj

〉
N

,

with

J
μi,μj

S :=
∫ ∞

0
dy

∫ y

0
dx x2μi+1x2μj +1(− ln y)e−(x2+y2)ρbπ�/2. (A4)
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This integral may also be written as

J
m,n
S = −1

8

(
2

ρbπ�

)m+n+2[
J m,n − ln

(
ρbπ�

2

)
Im,n

]
,

with

J m,n =
∫ ∞

0

∫ ∞

0
t1<t2

tm1 tn2 ln(t2) exp(−t1 − t2), Im,n =
∫ ∞

0

∫ ∞

0
t1<t2

tm1 tn2 exp(−t1 − t2). (A5)

For the Dyson gas it is advantageous to write J
μi,μj

S in terms of the factor ( 2
ρbπ�

)μi+μj +2 because the same factor is in


S
μi


S
μj

= ( 2
ρbπ�

)μi+μj +2μi!μj !. Additionally, the integral Iμi,μj has the property

Iμi,μj + Iμj ,μi = μi!μj ! ∴ US
ppR = −Q2

2

〈 ∑
1�i<j�N

J μi,μj + J μj ,μi

μi!μj !
− ln(ρbπ�/2)

∑
1�i<j�N

1

〉
N

.

Now the sum J μi,μj + J μj ,μi may be written in terms of the factorial product μi!μj ! as J μi,μj + J μj ,μi = k1!k2!j (k1,k2),
where

j (k1,k2) = ln 2 − γ + Hk1 + Hk2 − 1

2k1+1

k2∑
l=0

(k1 + 1)l
l!

(
1

2

)l

Hk1+l − 1

2k2+1

k1∑
l=0

(k2 + 1)l
l!

(
1

2

)l

Hk2+l . (A6)

Here Hn =∑n
i=1

1
i

are the harmonic numbers and (n)l =∏l
i=1(n + i − 1) is the Pochhammer symbol (n)l = (n + l − 1)!/

(n − 1)!. As a result, the UppR contribution on the Dyson gas is

US
ppR = −Q2

2

〈 ∑
1�i<j�N

j (μi,μj )

〉
N

+ Q2

4
N (N − 1) ln(ρbπ�/2). (A7)

APPENDIX B: HARD-DISK INTEGRALS

We are interested in the evaluation of the integral

I
m,n
H = HIm

n =
∫ √

N

0
y2n+1 exp(−y2�/2)F(m,�/2,y)dy,

where

F(m,�/2,y) =
∫ y

0
x2m+1 exp(−x2�/2)dx = 2m

�m+1
[�(m + 1) − �(m + 1,y2�/2)].

If m is an integer then �(m + 1) = m!. On the other hand, the incomplete � function may be expanded as

�(m + 1,y2�/2) = m! exp(−y2�/2)
m∑

k=0

1

k!

(
y2 �

2

)k

.

As a result,

I
m,n
H = 2m

�m+1
m!

[
F(m,�/2,

√
N ) −

m∑
k=0

1

k!
(�/2)kF(n + k,�/2,

√
N )

]
, (B1)

with

F(a,b,c) = 2a

(2b)a+1
a!

[
1 − exp(−c2b)

a∑
k=0

1

k!
(c2b)k

]
, (B2)

where a is a positive integer. The second integral included in the energy computations is

J
μ1,μ2
H :=

∫ √
N

0
dy

∫ y

0
dx x2μ1+1y2μ2+1(− ln y)e−(x2+y2)�/2.

It may be written as

J
μ1,μ2
H =

∫ √
N

0
dy y2μ2+1(− ln y)e−y2�/2F(μ1,�/2,y)
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and replacing Eq. (B2) we obtain

J
μ1,μ2
H =

(
2

�

)μ1 μ1!

�

[
G(μ2,�/2,

√
N ) −

μ1∑
k=0

1

k!

(
�

2

)k

G(μ2 + k,�,
√

N )

]
, (B3)

with

G(a,b,c) :=
∫ c

0
dy[− ln(y)]y2a+1e−by2 = c2(a+1)

4(a + 1)2 2F2(a + 1,a + 1; a + 2,a + 2,−bc2) − ln(c)

2ba+1
[a! − �(a + 1,bc2)].

APPENDIX C: THE Bμν MATRIX FOR ODD VALUES OF �/2

1. The Bμν matrix for the hard disk

In this section we will exclude the zero terms of Eq. (27) for odd values of �/2. If the partitions included in Bμν are not equal,
then Bμν �= 0 only if they share N − 2 elements nμ,ν = N − 2. Let us suppose that (μp,μq) are the elements of μ which are
not in ν, that is, (μp,μq) ∩ ν = 0 and (νm,νn), the elements of ν such that (νm,νn) ∩ μ = 0 with (νm,νn) �= (μp,μq). Then for a
given partition μ �= ν the matrix Bμν would be different from zero only if ν is of the form

ν = (μ2,μN, . . . ,νm, . . . ,νn, . . . ,μ1).

We define

ν̃ = (μ1,μ2, . . . ,μp−1,νm,μp+1, . . . ,μq−1,νn,μq+1, . . . ,μN ),

that is,

ν̃i =
⎧⎨
⎩

νm if i = p

νn if i = q

μi otherwise.

Since ν̃ is a permutated version of the original ν, then a permutation of the same indices of ν and ν̃ will not necessarily have the
same sign. However, it is always possible to go from ν to ν̃ by permutating, for instance, τμν times the labels of ν. Therefore,

εω(1)ω(2)···ω(N)F (μ,ν) = (−1)τμν εω(1)ω(2)···ω(N)F (μ,ν̃)

for a given function F = F (μ,ν). Hence, the BH
μν may be written as

BH
μν =

∑
σ,ω∈SN

(−1)τμν sgn�(σ,ω)
δμσ (1)+μσ (2),ν̃ω(1)+ν̃ω(2)

|μσ (1) − ν̃ω(1)|μσ (1) �=ν̃ω(1)

�̃
μσ (1),μσ (2)H
ν̃ω(1),ν̃ω(2)L

N∏
j=3

δ
μσ (j )

ν̃ω(j )

H

μσ (j )

or

BH
μν = (−1)τμν

(
N∏

i=1


H
μi

) ∑
σ,ω∈SN

[εσ (1)σ (2)···σ (N)εω(1)ω(2)···ω(N)]
b(�)L

μσ (1),μσ (2)

ν̃ω(1),ν̃ω(2)

N∏
j=3

δ
μσ (j )

ν̃ω(j )

with

L
μσ (1),μσ (2)

ν̃ω(1),ν̃ω(2)
= δμσ (1)+μσ (2),ν̃ω(1)+ν̃ω(2)

|μσ (1) − ν̃ω(1)|μσ (1) �=ν̃ω(1)

�̃
μσ (1),μσ (2)H
ν̃ω(1),ν̃ω(2)L


H
μσ (1)


H
μσ (2)

, ν̃ω(j ) =
⎧⎨
⎩

ν̃p if ω(j ) = p

ν̃q if ω(j ) = q

μω(j ) if ω(j ) �= p, ω(j ) �= q.

The double sum of permutations will add a zero contribution for ω(j ) = p or ω(j ) = q for j � 3 because of
the δ product

∏N
j=3 δ

μσ (j )

ν̃ω(j )
. Therefore, for nonzero contributions it is only possible to locate the indices (p,q) at

ω(1),ω(2) and σ (1),σ (2). Consequently, the term [εσ (1)σ (2)···σ (N)εω(1)ω(2)···ω(N)]b(�)L
μσ (1),μσ (2)

ν̃ω(1),ν̃ω(2)

∏N
j=3 δ

μσ (j )

ν̃ω(j )
may be written as

[εσ (1)σ (2)εω(1)ω(2)]b(�)L
μσ (1),μσ (2)

ν̃ω(1),ν̃ω(2)

∏N
j=3 δ

μσ (j )

ν̃ω(j )
. As a result, the sum

∑
σ,ω∈SN

will generate (N − 2)! times the same nonzero

contribution term built from the different permutations of p and q on (εσ (1)=p,σ (2)=qεω(1)=p,ω(2)=q )b(�)L
μp,μq

ν̃p,ν̃q
,

BH
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

(
N∏

i=1


H
μi

)[
(εpqεpq)b(�)L

μp,μq

ν̃p,ν̃q
+ (εpqεqp)b(�)L

μq,μp

ν̃p,ν̃q
+ (εqpεqp)b(�)L

μq,μp

ν̃q ,ν̃p
+ (εqpεpq)b(�)L

μp,μq

ν̃q ,ν̃p

]
.

Now εpqεpq = εqpεqp = −εqpεpq = −εpqεqp = 1 and δμσ (1)=p+μσ (2)=q ,ν̃ω(1)=p+ν̃ω(2)=q
= 1, as well as the other δ terms, since μp +

μq = ν̃p + ν̃q ; therefore

BH
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

⎛
⎝ N∏

i=1,i �=p �=q


H
μi

⎞
⎠( �̃

μpμqH
νmνnL

|μp − νm| + �̃
μqμpH
νnνmL

|μq − νn| − �̃
μpμqH
νnνmL

|μp − νn| − �̃
μqμpH
νmνnL

|μq − νm|

)
,
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where we have used ν̃p = νm and ν̃q = νn. Now the terms

�̃
μpμqH
νmνnL = HI

(μp+νm+|μp−νm|)/2
(μq+νn−|μp−νm|)/2 + HI

(μq+νn+|μp−νm|)/2
(μp+νm−|μp−νm|)/2

may be simplified by using the constraint μp + μq = νm + νn on the partition elements; then |μp − μn| = μp − νm if μp > νm

and |μp − μn| = −μp + μn if μp < νm. Hence �̃
μpμqH
νmνnL /|μp − νm| + �̃

μqμpH
νnνmL /|μq − νn| is

2
�̃

μpμqH
νmνnL

|μp − νm| = 2

|μp − νm| ×
{

[HI
μp

μq
+ HI νn

νm
] if μp > νm

[HI
μq

μp
+ HI νm

νn
] if μp < νm

and

BH
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

⎛
⎝ N∏

i=1,i �=p �=q


H
μi

⎞
⎠2 ×

[(
HI

μp

μq
+ HI νn

νm

μp − νm

if μp > μm or
HI

μq

μp
+ HI νm

νn

νm − μp

otherwise

)

−
(

HI
μp

μq
+ HI νm

νn

μp − νn

if μp > μn or
HI

μq

μp
+ HI νn

νm

νn − μp

otherwise

)]
.

An alternative way to write the matrixBH
μν is by defining (μ,ν)± := (μ + ν ± |μ − ν|)/2 and taking into account that |μp − νm| =

|μq − νn|; hence

BH
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

⎛
⎝ N∏

i=1,i �=p �=q


H
μi

⎞
⎠2

⎡
⎣HI

(μp,νm)+
(μq,νn)− + HI

(μq,νn)+
(μq,νm)−

|μp − νm| − HI
(μp,νn)+
(μq,νm)− + HI

(μq,νm)+
(μp,νn)−

|μp − νn|

⎤
⎦, (C1)

valid for odd values of �/2 and μ ∩ ν = N − 2.

2. The Bμν matrix for the soft disk

The corresponding Bμν matrix for the soft disk may be found by following the same procedure described in the preceding
section for the hard disk. The result is

BS
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

⎛
⎝ N∏

i=1,i �=p �=q


S
μi

⎞
⎠2

⎡
⎣SI

(μp,νm)+
(μq,νn)− + SI

(μq,νn)+
(μq,νm)−

|μp − νm| − SI
(μp,νn)+
(μq,νm)− + SI

(μq,νm)+
(μp,νn)−

|μp − νn|

⎤
⎦,

which may be simplified by expressing the integral and product terms as

SI
(μp,νm)+
(μq,νn)− = 1

4

(
2

ρbπ�

)μp+μq+2

I (μp,νm)+
(μq,νn)− ,

N∏
i=1,i �=p �=q


S
μi

= 1

μp!μq!
(

2
ρbπ�

)μp+μq+2

N∏
i=1


S
μi

,

where we have used the property

(μp,νm)+ + (μq,νn)− = (μq,νn)+ + (μp,νm)− = (μp,νn)+ + (μq,νm)− = (μq,νm)+ + (μp,νn)− = μp + μq.

As a result, the BS
μν matrix takes the form

BS
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

(
1

μp!μq!

N∏
i=1


S
μi

)
2

4

⎡
⎣I (μp,νm)+

(μq,νn)− + I (μq,νn)+
(μq,νm)−

|μp − νm| −
I (μp,νn)+

(μq,νm)− + I (μq,νm)+
(μp,νn)−

|μp − νn|

⎤
⎦

or

BS
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

(
1

μp!μq!

N∏
i=1


S
μi

)
1

2

[(
Iμp

μq
+ Iνn

νm

μp − νm

if μp > νm or
Iμp

μq
+ Iνm

νn

νm − μp

otherwise

)

×
(
Iμp

μq
+ Iνm

νn

μp − νn

if μp > νn or
Iμq

μp
+ Iνn

νm

νn − μp

otherwise

)]
.

The soft disk offers an additional advantage since it is possible to factorize the product μp!μq! from Iμq

μp
as we did before

for 1
μp!μq !I

μq

μp
= i

μp

μq
. We may also try to do the same with 1

μp!μq !Iνn
νm

= νm!νn!
μp!μq ! i

μp

μq
by writing μp! = νm!

∏μp

i=νm+1 i for the case

μp > νm. Since μp + μq = νm + νn, then μp > νm implies that νn > μq and hence νp! = νn!
∏νn

i=μq+1 i; therefore

1

μp!μq!
Iνn

νm
= π (μq,νn)

π (νm,μq)
iνn

νm
for μp > νm ⇔ νn > μq,
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with

π (a,b) :=
b∏

i=a+1

i for a < b,(a,b) ∈ Z+.

Proceeding in a similar way, the other terms are then

1

μp!μq!
Iνm

νn
= π (μp,νm)

π (νn,μq)
iνm

νn
for μp < νm ⇔ μq > νn,

1

μp!μq!
Iνm

νn
= π (μq,νm)

π (νn,μp)
iνm

νn
for μp > νn ⇔ νm > μq,

1

μp!μq!
Iνn

νm
= π (μp,νn)

π (νm,μq)
iνn

νm
for νn > μp ⇔ μq > νm.

As a result, the BS
μν matrix takes the form

BS
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

⎛
⎝ N∏

j=1


S
μj

⎞
⎠1

2
f

(
p,q

m,n

)
for odd values of

�

2
, dim(μ ∩ ν) = N − 2, (C2)

where we defined

f

(
p,q

m,n

)
:=
⎡
⎣ i

μp

μq
+ π(μq,νn)

π(νm,μp) i
νn
νm

μp − νm

if μp > νm or
i
μq

μp
+ π(μp,νm)

π(νn,μq ) i
νm
νn

νm − μp

otherwise

⎤
⎦

−
⎡
⎣ i

μp

μq
+ π(μq,νm)

π(νn,μp) i
νn
νm

μp − νn

if μp > νn or
i
μq

μp
+ π(μp,νn)

π(νm,μq ) i
νn
νm

νn − μp

otherwise

⎤
⎦. (C3)

APPENDIX D: THE SIGN (−1)τμν

The sign (−1)τμν is required to compute Eq. (C1) or (C2). According to Eq. (28), for nonzero and nondiagonal values of the
Bμν matrix the partitions μ and ν must share all the elements except two, located at the positions (p,q) and (m,n). In general, the

sign depends on how these positions are indexed, that is, (−1)τμν = (−1)τμν(p,q

m,n). If we suppose that ν ∈ Dμ, then these partitions
may be, for instance, of the form

μ = (μ1,μ2,μp, . . . ,μq,μN ), ν = (μ1,νm,μ3, . . . ,νn, . . . ,μN ).

We will also define the partition μ′ defined as μ′ = (μp,μq,μ3,μ4, . . . ,μN ) by permuting the elements of the original partition
μ = (μ1,μ2,μp, . . . ,μq,μN ). To this aim it is necessary to move the element μp from the pth place to the first place by
applying p − 1 movements to the left. Similarly, the element μq needs q − 2 movements to occupy the second place once μp

is in the first place. So the total number of required transpositions from μ to μ′ is Tμ = p + q − 3. Similarly, if we would
like to build ν ′ = (νm,νn,μ3,μ4, . . . ,μN ) it is necessary to apply Tν = m + n − 3 transpositions. Therefore, the total number
of transpositions to change the order of the original partitions μ and ν to μ′ and ν ′ is Tν,μ = p + q + m + n − 6. This would

introduce the change of sign (−1)Tν,μ = (−1)p+q+m+n on the computation of BH
μν(p,q

m,n). Starting from μ′ we may return to μ by
reversing the Tμ = p + q − 3 transpositions used in the other direction

μ′ = (μp,μq,μ3,μ4, . . . ,μN ) �−→
Tμ

μ = (μ1,μ2, . . . ,μp, . . . ,μq, . . . μN ).

Since ν ′ only differs from μ′ in the first two elements, it is also necessarily Tμ = p + q − 3 transpositions to build ν̃,

ν ′ = (νm,νn,μ3,μ4, . . . ,μN ) �−→
Tμ

ν̃ = (ν1 = μ1,ν2 = μ2, . . . ,νp = νm, . . . ,νq = νn, . . . ,νN = μN ).

Fortunately, Tμ′ν ′ = 2Tμ is always an even number. Hence, if we go simultaneously from μ′ to μ and ν ′ to ν̃, then this procedure
does not affect the sign. As a result,

(−1)τμν(p,q

m,n) = (−1)Tν,μ+2Tμ = (−1)p+q+m+n. (D1)
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APPENDIX E: THE UNDERDOTTED Bμν MATRIX FOR ODD VALUES OF �/2

1. Computation of •B
H
μν for μ �= ν

Nonzero contributions of B•
H
μν for μ �= ν are restricted specifically to dim(μ ∩ ν) = N − 2. Hence, we must focus on a pair

of partitions which shares N − 2 elements. If μp,μq,νm,νn are the unshared elements of μ and ν [that is, (μp,μq) ∩ ν = 0 and
(νm,νn) ∩ μ = 0], then the condition μp + μq = νm + νn is expected as a consequence of the squeezing operations behind the
construction of any partition μ or ν from the root partition. This condition may be found by recalling that

∑N
i=1 μi =∑N

i=1 νi or

μp + μq +
N∑

i = 1
i �= p,q

μi = ν̃p + ν̃q +
N∑

i = 1
i �= p,q

ν̃i ,

where we have used the fact that it is always possible to go from ν = (. . . νm, . . . ,νn . . .) to a partition ν̃ = (. . . νp, . . . ,νq . . .)
whose unshared elements are placed in the same positions of μ = (. . . μp, . . . ,μq . . .) by applying τμν transpositions on ν without
changing the value of

∑N
i=1 νi . Since (ν̃p,ν̃q) = (νm,νn) and ν̃i = μi if i �= p,q, then μp + μq = νm + νn. It is convenient to

write B•
H
μν in terms of ν̃ by applying τμν transpositions on the partition ν. Thus Eq. (43) takes the form

B•
H
μν := (−1)τμν

(
N∏

i=1


H
μi

) ∑
σ,ω∈SN

[εσ (1)σ (2)···σ (N)εω(1)ω(2)···ω(N)]
b(�)L•

μσ (1),μσ (2)

ν̃ω(1),ν̃ω(2)

N∏
j=3

δ
μσ (j )

ν̃ω(j )
,

where we defined

L•
μσ (j ),μσ (j )

ν̃ω(j ),ν̃ω(j )
=

2∏
j=1

r̃
μσ (j )+ν̃ω(j )

j


H
μσ (j )

exp[i(μσ (j ) − ν̃ω(j ))φj ].

This may be simplified as

B•
H
μν

(
p,q

m,n

)
= (−1)τμν (N − 2)!

(
N∏

i=1


H
μi

)(
L•

μp,μq

νm,νn
+ L•

μq,μp

νn,νm
− L•

μq,μp

νm,νn
− L•

μp,μq

νn,νm

)
. (E1)

All the L• matrices have a dependence on φ12 = φ1 − φ2 and φ2 because of the restriction μp + μq = νm + νn on the unshared

elements of μ and ν:

L•
μp,μq

νm,νn
= 1


μp

μq

[
r̃

μp+νm

1 r̃
μq+νn

2 ei(νm−μp)φ12
]
.

This situation also persists on the other terms L•
μq,μp

νn,νm
, L•

μq,μp

νm,νn
, and L•

μp,μq

νn,νm
. As a result, B•

H
μν may be written as a function of the

radial positions and the angular difference as

B•
H
μν

(
p,q

m,n

)
= (−1)p+q+m+n(N − 2)!

⎛
⎜⎜⎜⎝

N∏
i = 1

i �= p,q


H
μi

⎞
⎟⎟⎟⎠[f• p,q

m,n(r̃1,r̃2,φ12) + f
•

p,q
m,n(r̃2,r̃1,φ21)

]
,

where

f
•

p,q
m,n(r̃1,r̃2,φ12) := r̃

μp+νm

1 r̃
μq+νn

2 ei(νm−μp)φ12 − r̃
μq+νm

1 r̃
μp+νn

2 ei(νm−μq )φ12 .

Note that Eq. (E1) for b(�) = 1 may be written more compactly as

B•
H
μν := (−1)p+q+m+n(N − 2)!

⎛
⎜⎜⎜⎝

N∏
i = 1

i �= p,q


H
μi

⎞
⎟⎟⎟⎠(zμp

1 z
μq

2 − z
μq

1 z
μp

2

)∗(
z
νm

1 z
νn

2 − z
νn

1 z
νm

2

)
, (E2)

which also implies that the product(
z
μp

1 z
μq

2 − z
μq

1 z
μp

2

)∗(
z
νm

1 z
νn

2 − z
νn

1 z
νm

2

) = f
•

p,q
m,n(r̃1,r̃2,φ12) + f

•
p,q
m,n(r̃2,r̃1,φ21)

depends on the angle difference φ12.
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2. Computation of •B
H
μν

Equation (43), in terms of the matrix L• , is

B•
H
μμ :=

(
N∏

i=1


H
μi

) ∑
σ,ω∈SN

[εσ (1)σ (2)···σ (N)εω(1)ω(2)···ω(N)]
b(�)L•

μσ (1),μσ (2)

μ̃ω(1),μ̃ω(2)

N∏
j=3

δ
μσ (j )

μ̃ω(j )
.

Replacing explicitly L• , we obtain

B•
H
μμ := (N − 2)!

(
N∏

i=1


H
μi

)
N∑

i=1

N∑
j = 1
j �= i

1


H
μi


H
μj

{
r̃

2μi

1 r̃
2μj

2 − (r̃1r̃2)μi+μj exp[i(μi − μj )φ12]
}
,

which may be written most concisely as

B•
H
μμ := (N − 2)!

(
N∏

i=1


H
μi

)
Det
[
HK (N)

μ (ziz
∗
j )
]
i,j=1,2, (E3)

with

HK (N)
μ (z) :=

N∑
l=1

zμl


H
μl

.
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