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Narrow log-periodic modulations in non-Markovian random walks
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What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model?
Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and
negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role
of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that
small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their
very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we
use consist of discrete-time random walks with strong memory correlations where the decision process is taken
from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive
behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the
models parameters.
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I. INTRODUCTION

The first observations of diffusion were reported by Jan
Ingen-Housz in 1784 by observing the erratic motion of
powdered charcoal floating on an alcohol surface [1]. The phe-
nomenon, however, was named Brownian motion (BM) after
Robert Brown’s investigations in 1828 [2] on the movements
of fine particles, including pollen, dust, and soot, on a water
surface. Diffusion models were later used to describe transport
phenomena, starting with the seminal work of Einstein [3]
and von Smoluchowski [4], establishing the theoretical basis
for the study of the diffusion processes and its relation to
the underlying microscopic particle dynamics [5]. Since then,
the statistical description of diffusion processes have often
been studied by the use of random walks (RW) [3,4,6–8]
and/or stochastic differential equations. These approaches are
different but complementary. The first approach, based on the
theory of random walks [9,10], is a concept that is closely
related to the development of Brownian motion [3] (see history
and references in Refs. [5,11–17]). The second approach relies
on the use of stochastic differential equations [16] which
includes the use of the Langevin equation [18] along with
the generalized Langevin equation [19–21], continuous-time
random walks (CTRWs) [10,13,22,23], and the fractional
Fokker-Planck method [24,25].

Transport dynamics in complex systems is governed by
anomalous diffusion. Such anomalous transport processes are
associated with a diffusing particle for which the variance
spreads in nonlinear fashion with time [26], i.e., 〈 x2 〉 −
〈 x 〉2 ∼ t2H . The Hurst exponent H is then associated to
subdiffusive (H < 1/2) and superdiffusive (H > 1/2) dy-
namics (H = 1/2 corresponds to normal diffusion). For the
RW models we consider in this paper, the mean squared
displacement (MSD) satisfies 〈 x2(t) 〉 ∼ 〈 x2 〉 − 〈 x 〉2 ∼ t2H .
Anomalous diffusion is exhibited by many systems in nature
such as, physics, chemistry, geophysics, biology, and economy
[12,24,27–38]. Another interesting class of diffusion behavior
is the ultraslow diffusion, also termed strong anomalous
diffusion, in which the MSD grows logarithmically with time,

i.e., 〈 x2 〉 ∼ (ln t)κ , with κ > 0. Examples of this behavior can
be found, for example, in the Sinai model [39], diffusion on
random structures with a topological bias [40], random walks
on bundled structures [41], diffusion in periodic iterated maps
[42] and in non-Markovian random walk with pauses [43].

Theoretical models describing anomalous diffusion often
incorporate memory effects [13,23,29,44], like the elephant
random-walk (ERW) model [45], which consists of a random
walker whose decisions depend on its entire history of previous
decisions. Several modifications and reformulations of the
ERW have been proposed in the literature [46–50]. The model
in this study follows closely the same dynamics of the ERW
model but uses a memory profile that restricts the memory
available to the walker. Restricted memory impersonates
memory damage in the sense that only part of the memory
is used for decision making. The use of damaged memory
has been shown to give rise to new interesting phenomena
such as negative feedback persistence and log-periodicity [46].
The latter is directly associated with a breakdown of the
continuous scale-invariance (CSI) symmetry into a discrete
scale invariance (DSI) symmetry [51]. The diffusive behavior
at large times depends entirely on the details of the memory
pattern governing the decision process. In this paper we
consider a non-Markovian random walk driven by a binomially
distributed discrete memory profile. Several reasons led us to
choose this particular memory pattern. First, with this choice
the memory profile can be fully controlled by an internal
parameter, which simplifies the overall analysis of the diffusion
processes. External parameters can be used to characterize
the memory function but they are often very cumbersome
to deal with. An inherent and easily controllable memory
size, for example, is very convenient for analytical studies,
being especially useful for analyzing the asymptotic limit.
Besides, with the binomial function, the time position of
the most probable memory accessed by the walker is also
regulated internally by the same parameter that fixes the size
of the memory. Second, the binomial distribution provides
an effective memory size that shortens as time progresses,
leading to a δ function in the asymptotic limit. This kind of
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dynamical behavior of the memory size is somewhat unusual,
which makes the binomial memory an interesting case to
study. Besides, continuous-time results for the δ memory
profile are already known [52], which we use as an aid
in the large time analysis of the binomial model. Finally,
another reason for using the binomial function to model
the memory profile is due to the fact that it is discrete.
Therefore, once normalized, there is no need to use a cutoff
to avoid the function to spread outside the time interval [0,t].
Although we do not provide a general analytic solution for
the binomial profile memory model, we do provide an exact
solution for the first moment in the asymptotic limit. The
results indicate the presence of log-periodic oscillations, both
in the normal and superdiffusive regimes, within regions of the
phase diagram associated with negative and positive feedback.
The oscillations associated with positive feedback are of very
small amplitude and totally nonexpected. Small relative log
periodic corrections have been reported before [53–55] and
renormalization group approaches have been used to study
their appearance in critical behavior [56,57]. As far as we
know they have never been reported before in non-Markovian
random walks with an explicit memory dependence. In this
paper we provide an exact discrete-time solution to explain the
origin of the oscillations. This study allows us to enhance our
understanding about the source of log-periodic modulations
in random-walk transport phenomena and their relations with
long-range memory-correlated models. In Sec. II we describe
the models and the corresponding memory profiles. A discrete-
time solution for the first moment of the δ memory profile is
also derived. Section III presents the results and in Sec. IV we
discuss and conclude.

II. THE MODELS

We consider a one-dimensional random walker initially
positioned at X0 = 0 at time t = 0 and at position Xt at time t .
At time t + 1 the walker moves to the left or right with a unitary
step, i.e., Xt+1 = Xt + σt+1, where σt+1 = ±1. The choice
of σt+1 depends on the decision taken at a randomly chosen
earlier time t ′ which is chosen, a priori, from a distribution
that characterizes the memory pattern (or memory profile) of
the model. We make use of two memory profiles, namely
the binomial memory profile and the δ memory profile, as
described below.

A. The binomial memory profile

In the binomial memory profile model a random earlier
time t ′ is chosen, a priori, from a binomial distribution, i.e.,

Pr (t ′,t) =
(

t

t ′

)
rt ′(1 − r)t−t ′ (1)

for r > 0. We fix t ′ = 0 for r = 0 and t ′ = t for r = 1.
The parameter r represents the probability of success in the
binomial distribution. In the model, r is associated with the
geometric center of the distribution of available memory, since
〈 t ′ 〉 = rt . Note that in the ERW model [45] t ′ is chosen
from a uniform distribution, with 0 � t ′ � t . The binomial
profile model allows better control of the memory size and its
position in the chain of past events. Besides, past events are
no longer equivalent, some being more promptly remembered

than others. The rest of the dynamics follows the same steps
defined in the ERW model. At time t + 1, the walker chooses to
repeat the previous decision taken at time t ′ with probability p

(in which case we set σt+1 = σt ′) or to refuse it with probability
1 − p (in this case we set σt+1 = −σt ′ ).

According to these rules the parameter p governs the
dynamics and provides positive (negative) feedback for p >

1/2 (p < 1/2). The traditional random walk (or Brownian
motion) with normal diffusion is also recovered for p = 1/2,
as usual. The binomial model incorporates a very convenient
bonus, namely that distant and recent memories are readily
distinguished by the parameter r , i.e., for r close to 1 recent
memories are accessed more often than distant memories. The
opposite occurs when r is close to zero, in which case distant
memories are more common. This is a distinctive property
of the model that immediately allows the study of either the
distant or recent memory cases by simply switching a single
parameter of the model.

The binomially distributed memory model does not have yet
a known exact solution. However, we can find an approximate
solution by mapping the model onto an equivalent rectangular
memory profile model [58–60]. We assume that such a
mapping can be done, which is supported by the numerical
results below. The rectangular memory profile model has
an effective rectangular memory of size L ≡ L(r,t) and
is centered in the most probable value of t ′. Since the
distribution is discrete we have to go to the continuum limit
by interpolation. The probability of choosing a previous t ′ is
now given by 1/L. The memory that can be recalled is within
a rectangle of size L centered in t ′.

The mapping now proceeds as follows. In the continuum
asymptotic case the memory’s effective length L is given by
(see Eq. (7) in Ref. [59])

L =
∫ t

0
[Pr (t ′,t)/Pmax(t)]dt ′, (2)

where Pmax(t) is the maximum value of Pr (t ′,t). We prefer to
work with the discrete version of Eq. (2), which reads

L =
t∑

t ′=0

Pr (t ′,t)
Pmax(t)

, (3)

where Pr (t ′,t) is given by Eq. (1). We can now infer Peff(t ′),
namely the effective distribution of t ′, for large t . Note that
Pmax(t) is obtained for t ′ = �(t + 1)r�, i.e., the largest integer
smaller than (t + 1)r {or, alternatively, t ′ = 	(t + 1)r
 − 1}.
For large t , the most probable memory value accessed is then
given by t ′ = rt . In what follows we simply write t ′ = �(t +
1)r� = (t + 1)r to avoid the use of cumbersome notation. It is
easy, although burdensome, to show that

Pmax = 1√
2πr(1 − r)

t−1/2, (4)

valid for large t . Using Eq. (3) we can now show that
L = √

2πr(1 − r)t1/2 in the asymptotic limit. Hence, the
fraction of memory L/t that is effectively used, goes to zero for
large t .
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B. The δ memory profile

In the asymptotic limit, the effective distribution of t ′ in the
binomial model, therefore tends to a δ function, i.e., Peff(t ′) =
δ(t ′ − rt). In this case the walker remembers only a single
point that moves with time. A continuous-time solution for
the first moment of the δ memory pattern has already been
provided before [52] along with an analytic expression for the
Hurst exponent. As a function of the pair (p,r) an expression
for H reads

H = ln(|2p − 1|)
ln(r−1)

+ 1, (5)

valid only in the superdiffusive regime. It was also shown
that, in the asymptotic limit, the phase space (p,r) is divided
in two regions separated by a parabola r = 4p2 − 4p + 1,
with two distinct regimes: superdiffusive below the parabola
and normally diffusive above it. The δ memory profile model
shows log-periodic oscillations for p < 1/2 (for any t), but no
oscillations were found for p > 1/2. However, as we shall see
below, the binomial memory model provides strong numerical
evidence of log-periodic oscillations of small-amplitude for
p > 1/2 and large times. We found out that the discrepancy
between these two results relies on the fact that some of
the fine structure of the discrete-time solution is lost in the
continuous-time solution. We therefore carried out discrete-
time calculations for the δ memory profile model. This is done
below.

The δ memory model is simply defined by Peff(t ′) = δ(t ′ −
rt), with t ′ set to an integer, as time is discrete. It is therefore
convenient to set t ′ = �rt�, i.e., the largest integer smaller
than rt . We look for a solution by writing down and solving
the discrete-time equations. The walker’s position at time t can
be written as

X(t) =
t∑

j=0

σ (j ), (6)

where σ (j ) = ±1 is the speed at time j , representing a
stochastic noise containing two-point memory correlations.
The initial condition is set by σ (t = 0) = 1. An effective
velocity at time t can be defined by σeff(t) = P +(t) − P −(t),
where P +(t) and P −(t) are the probabilities of moving to the
right and to the left, respectively, at time t . We now write

P +(t) = pP +(rt) + (1 − p)P −(rt)

P −(t) = pP −(rt) + (1 − p)P +(rt),

which sets σeff(t) = (2p − 1)[P +(rt) − P −(rt)] = ασeff(rt),
with α = 2p − 1. As stated above, in this equation rt must
actually be set as �rt�, i.e., the largest integer smaller than rt .
A set of recursive relations can now be written as

σeff(t) = ασeff(rt)

σeff(rt) = ασeff(r
2t) ⇒ σeff(t) = α2σeff(r

2t)

σeff(r
2t) = ασeff(r

3t) ⇒ σeff(t) = α3σeff(r
3t),

(7)

and so on. Note that this solution of the form σeff (t) ∼ ασeff(rt)
may lead to periodic solutions in ln(t) with period ln(1/r)
[52,54]. From Eqs. (7) we can see that

σeff(t) = αN−1σeff(r
N−1t), (8)

valid for some integer N . Using the initial condition σ (0) = 1
we can write σeff(1) = ασeff(0) = α and determine N , since
σeff(t) = ασeff(rt). Therefore the maximum integer N that
solves Eq. (8) and satisfies the initial condition can be obtained
by solving rN−1t = 1.

From Eq. (6) we can write the first moment as

〈 X(t) 〉 =
t∑

t ′=0

〈 σ (t ′) 〉.

Just as we did for N in Eqs. (7) and (8), we can write a
recurrence result for each t ′ as σeff(t ′) = α(nt ′ −1)σeff(r (nt ′−1)t ′)
such that r (nt ′−1)t ′ = 1, and since σeff(1) = ασeff(0) = α, we
get σeff(t ′) = αnt ′ . Therefore we can write the exact discrete-
time solution for the first moment in the form

〈 X(t) 〉 =
t∑

t ′=0

αnt ′ (9)

valid for any t . The asymptotic limit of Eq. (9) can be
approached by defining at ′ = ln t ′/ ln(1/r) for t ′ � 1 and
nt ′ = �at ′ � + 1. For t ′ = 1 we get a1 = 0 and n1 = 1. Note that
nt ′ is constant within intervals m, with nt ′ = m. Therefore nt ′

is a stepwise function that depends on ln t ′. This is, ultimately,
the source of the log-periodic behavior for α > 0 (or p > 1/2)
as seen in Fig. 2(c). For example, for r = 0.1 and any p, the
sum in Eq. (9) writes

〈X(t) 〉 = 1 + 9α + 99α2 + 999α3 + O(α4), (10)

where the unity represents t ′ = 0 and the α terms correspond,
respectively, to t ′ within the intervals 1 � t ′ < 10, 10 � t ′ <

100, and 100 � t ′ < 1000. Note that if α < 0 (p < 1/2)
the terms alternate in sign giving rise to stronger oscillating
behavior as in Fig. 2(b) (see below).

We can now use Eq. (9) to find the separating line
between log-periodic and non-log-periodic behavior for
α > 0 (p > 1/2). As discussed in Ref. [52] the asymp-
totic behavior can be written as 〈X(t) 〉 ∼ t δ , where δ =
ln(|α|/r)/ ln(1/r). Therefore we can write 〈X(t) 〉/tδ =
log periodic correction terms. If |α|/r < 1, then δ < 0 and
the log-periodic behavior of 〈X(t) 〉 disappears for large t . We
conclude that, below the line |α| = r or r = 2p − 1 (p > 1/2),
there is sustainable log-periodic behavior.

The discrete-time solution for the first moment unequivo-
cally reveals the log-periodic modulations for p > 1/2, thus
agreeing with the numerical results for the binomial memory
model at large t .

III. RESULTS

Figure 1 shows the second moment 〈 x2(t) 〉 as a function
of time for the binomial model. Note that small and large
values of the feedback parameter p favor superdiffusion
(persistence) and small values for the pair (p,r) lead to strong
log-periodicity. We can also determine the asymptotic value
of the Hurst exponent using Eq. (5). For (p,r) = (0.1,0.10) or
(p,r) = (0.9,0.10) we get H ≈ 0.903, in excellent agreement
with the numerical result shown in the figure. According to
the figure, there is no explicit indication of log-periodicity
for p > 1/2. In fact, as we shall see below, there are no
log-periodic oscillations for (p,r) = (0.6,0.80), but a more

062143-3



DINIZ, CRESSONI, DA SILVA, MARIZ, AND DE ARAÚJO PHYSICAL REVIEW E 96, 062143 (2017)

FIG. 1. Second moment as a function of time (106 runs with 106

total time units each) for several values for the Hurst exponent for
the binomial model. Note that small and large values of the feedback
parameter p favor superdiffusion (persistence). Negative feedback
(p < 1/2) is known to lead to log-periodicity when the memory
is damaged, as suggested by the steady oscillations in the (p,r) =
(0.1,0.10) curve. There is no log-periodic behavior associated with
the pair (p,r) = (0.6,0.80), as correctly implied by the corresponding
straight line curve. However, the pair (p,r) = (0.9,0.10) does lead
to log-periodicity, contrariwise to what is indicated by the red solid
circles straight line curve [see also Fig. 2(c) below].

careful analysis concludes that the second moment versus time
curve for (p,r) = (0.9,0.10) hides log-periodic modulations
that are carried out to infinitely large t , as discussed below.

Figures 2(a)–2(d) show the behavior of the first moment
〈 x(t) 〉 for suitable choices of the model parameters and large
t . It is worthwhile to note that persistent (superdiffusive)
regimes for p � 1/2 are expected because large p implies that
earlier decisions are repeated very often, ultimately leading to
superdiffusion. Damaged memory, as in denying access to
recent memories, also leads to superdiffusion, this time for
p � 1/2. Log-periodicity is, in fact, expected for p < 1/2
according to previous results [46]. Note also that normal
diffusion is always favored for p ≈ 1/2. On the other hand,
large values of r are associated to recent memories which are
related to normal diffusion. Therefore, different pairs (p,r)
represent competitive effects with respect to the resulting type
of diffusion obtained in the asymptotic limit. These comments
can be fully appreciated in Figs. 2(a)–2(d). According to
Fig. 2(a), the binomial model exhibits log-periodicity within
the negative feedback region (p < 1/2), as discussed above.
Notice the large values for the Hurst exponent, due to the
small values of the pair (p,r). Figures 2(b) and 2(c) show
〈 x 〉/tH curves for large p. Here we notice a totally unexpected
log-periodic behavior appearing in a positive feedback region
(p > 1/2). Notice, in particular, the oscillating curve 〈 x 〉/tH

for (p,r) = (0.9,0.10) depicted in Fig. 2(c). This should be
compared with the straight line for the second moment shown
in Fig. 1. Here, when divided by tH , we can see the oscillations
more clearly. However, in some cases it can be misleading,
even with the normalization factor tH , as can be seen in the
top curves of Figs. 2(b) and 2(c). Note the small amplitude of

the oscillations for p > 1/2. These oscillations represent log-
periodic corrections to the coefficient of the time expansion of
the first moment. Despite their small amplitude, the oscillations
are real and do not disappear for large times. In fact, we carried
out exhaustive computing experiments with different random
number generators for larger time ensembles, showing that
these oscillations are not an artifact of numerical noise. In order
to prove that the oscillations are sustained even for large times,
we consider the pair (p,r) = (0.9,0.05) represented by the
solid black squares in Fig. 2(c) and treated the data separately
in Fig. 2(d). The main figure shows the first moment for the
binomial memory profile model, obtained by careful numerical
analysis and normalized by t1/2. This normalization factor
is enough to uncover log-periodic oscillations in this case.
However, the curve is still a monotone increasing function of
ln(t) with no signs of oscillations. The same data are shown at
the top of the inset, this time properly normalized by tH using
the numerical value for the Hurst exponent, i.e., H = 0.92565,
from Fig. 2(c). The inset also shows the exact first moment
for the δ memory profile model obtained using Eq. (9) and
properly normalized by tH [with H = 0.92551 from Eq. (5)].
We see that the binomial model tends to the δ memory model
for large times, as noted above. The figures are adjusted so that
the two first peaks coincide. It is seen that both first moments
oscillate with the same frequency. Since the oscillations for
the δ memory model never disappear, we conclude that the
oscillations in the binomial model are sustained indefinitely.

Figure 3 shows the phase diagram r versus p exhibiting
the values for the Hurst exponent H . The parabola r =
4p2 − 4p + 1, shown as a thick solid black line, separates the
superdiffusive (H > 1/2, below the parabola) regime from the
normally diffusive (H = 1/2, above the parabola) regime in
the asymptotic limit. Apart from the parabola, derived from
the continuous-time solution for the δ memory pattern [52],
all regions were obtained numerically. This diagram provides a
good representation of the regime transitions that occur as one
crosses over regions with different values of H . The numerical
results indicating H > 1/2 above the parabola are just finite-
size effects, possibly representing a transient superdiffusive
regime that must disappear for large t [60,61]. Log-periodic
oscillations occur below the black dashed line (see text). Note
that log-periodicities occur even for H = 1/2, as in the region
between the dashed line and the parabola. As emphasized
above, the modulations are somewhat expected for strongly
correlated damaged memory systems when associated with
negative feedback regimes [61]. However, their appearance
within the positive feedback region (p > 1/2) of the phase
diagram could not be foreseeable beforehand. As far as we
know, they are totally unknown and unexpected.

Although the general conditions for the onset of log-
periodicity are still unclear, one can understand their origin
reasonably well in stochastic random-walk memory models.
For these models, the emergence of log-periodic modulations
are associated with the loss of memory of the recent past
and have only been reported for p < 1/2. The loss of
memory of the recent past characterizes an inability to create
new memories and is a medical condition known in the
specialized literature as anterograde amnesia. In the stochastic
model, the modulations appear because, when only the long
distant memories are available to the walker, the effect of
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FIG. 2. Behavior of the first moment for suitably chosen pairs (p,r) within regimes displaying log-periodic oscillations (numerical
simulations with 106 runs and 106 total time units each). (a) shows superdiffusive regimes (H > 1/2) for small values of p and r for the
binomial model. The normalization factor t1/2 is usually fine to expose log-periodicity as seen in the main figure. The inset shows the effect
of a more convenient normalization factor, namely tH , along with another pair (p,r). Panels (b) and (c) exhibit the expected superdiffusive
behavior for p � 1/2 for the binomial model. The small amplitude oscillations against ln t indicate nonexpected log-periodic modulations.
(d) compares the oscillations for the first moment for both the binomial model (numerical) and the δ memory model (exact).

the action taken at the present time t only enters into the
range of the accessible memory after a time delay [46].
This leads to superdiffusion, even for p < 1/2, and generates
alternate persistence windows in the first moment (i.e., steps
predominantly in a given direction) that grow exponentially in
time and ultimately producing log-periodicity. Log-periodic
modulations are a signature of DSI [51] while classical,
non-log-periodic, persistence is indicative of CSI. DSI is
associated with discrete values of the magnification factor
[62,63] and is characterized by complex scaling exponents.
The presence of log-periodicity therefore implies that CSI
in the binomial memory model can be spontaneously bro-
ken. It is therefore an important practical problem to be
able to acknowledge their presence and understand their
origins.

Another important point to emphasize is the difference
between the discrete-time solution and the continuous-time
solution (CTS) for the δ memory profile model. As discussed
above, the CTS we provide reproduces correctly the log-
periodicities for α < 0, but it is not capable of displaying
the small-amplitude log-periodic oscillations for α > 0. The
discrete-time solution does not suffer from this limitation. It
is important to emphasize that the continuous-time “solution,”

as derived before [52], was obtained by taking the continuous-
time limit of a discrete time equation, namely the derivative
of the first moment of the δ memory model. This solution was
not meant to represent a continuous-time “model” solution,
as if it were derived from, say, the CTRW or similar model
(see Ref. [64] for a CTRW formulation of the original ERW
model). Note, however, that the binomial or δ memory models
use a microscopic approach to model memory, which is not
immediately translated into correlated random noise terms to
be used in continuous-time models (CTRW, Langevin and
Fokker-Planck equations, etc.). This would be an interesting
contribution to the study of these RW models, a task that is
greatly complicated by the strong non-Markovian nature of
these processes.

IV. DISCUSSION AND CONCLUSION

We employed a binomial distribution to characterize a
memory profile to study the effect of long-time memory
correlations in random-walk diffusion. Log-periodic correc-
tions to scaling were found in the negative feedback region
of the phase diagram, in accordance with previous studies.
However, log-periodic oscillations were also found, this time in
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FIG. 3. Phase diagram r versus p, showing several regions
depicting the values for the Hurst exponent H and separating regions
where log-periodic behavior occurs. The colored regions represent
numerical results obtained with 106 runs with 106 total time units
each. The parabola r = 4p2 − 4p + 1 separates the superdiffusive
regime (H > 1/2) from the normally diffusive regime (H = 1/2) in
the asymptotic limit. The values for 0.52 < H < 0.60 found above
the parabola are due to finite-size effects. The region below (above)
the parabola is superdiffusive (normally diffusive). The region below
(above) the black dashed line is log-periodic (non-log-periodic).

a nonexpected positive feedback region of the phase diagram.
Nonetheless, these oscillations are of very small amplitude,
almost indistinguishable from numerical size effects, thus
raising the question of whether they are real and/or sustained in
the large-time limit. Fortunately, the binomial profile tends to
a δ memory pattern for large times. Therefore, in the absence
of an analytical solution for the binomial memory profile

model, we settle to establish the existence of the oscillations
by examining the asymptotic behavior of the δ memory profile
model. It was then shown that, as a result of discrete-time
effects, log-periodic modulations of very small amplitude
emerge in the positive feedback region of the phase diagram
of the δ memory, which are then carried out to the asymptotic
limit, never disappearing. This result unmistakably eliminates
any doubts on the existence of large-time positive feedback
log-periodic modulations as displayed by the binomial model.
We also conclude that, while negative feedback enhances the
oscillation amplitudes and clearly exposes the log-periodic
behavior, positive feedback may lead to oscillations of very
small amplitude, which can easily be mistaken for finite-size
numerical effects. For superdiffusive regimes it is advisable
to plot 〈Xt 〉/tH against ln t in order to be able to spot these
oscillations. We are confident that such subtle log-periodic
oscillations appear in many other systems with damaged
memories. Some previously published papers might need to
be reviewed. On the other hand, it becomes also clear from
this study that continuous-time solutions may hide oscillations
due to memory damage, since they interpolate between the
successive time windows that are incorporated into memory
as time evolves.
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