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Emergent dynamic structures and statistical law in spherical lattice gas automata
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Various lattice gas automata have been proposed in the past decades to simulate physics and address a host
of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model
defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors
in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement
of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures
not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the
collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained
speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in
the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by
mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical
lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics.
It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore

geometrically driven nonequilibrium physics.

DOI: 10.1103/PhysRevE.96.062139

I. INTRODUCTION

Lattice gas models are powerful and flexible tools to
address a host of fundamental problems arising in equilibrium
and nonequilibrium statistical physics [1-7], hydrodynamics
[8-15], pattern formation [16-21], and dynamical systems
[22-25]. Tracking the evolution of many identical agents
under a few prescribed rules in computer programs, i.e., the
idea of cellular automata [7,26-28], represents an alternative
to, rather than an approximation of, differential equations
in modeling the natural world [28-30]. A major goal of
physics is to build the bridge between a microscopic (level
1) and a macroscopic (level 2) description of reality [4,31].
To this end, various lattice gas automaton models have been
proposed. At level 1, the particles follow a few well-defined
rules and hop over the lattice. One obtains level 2 phenomena
by coarse-graining concerned physical quantities like velocity
and particle number. The first fully deterministic lattice gas
model, which was defined on the square lattice known as the
HPP model, was proposed by Hardy, de Pazzis, and Pomeau
to simulate flow phenomena [8,9]. Its variant version FHP
model for the triangular lattice was later introduced by Frisch,
Hasslacher, and Pomeau [11,12]. These lattice gas models
are able to simulate the Navier-Stokes equation in the regime
of incompressible fluid [11,12], and reproduce featured flow
behaviors in real fluids like vortices and wave propagation
[3,10]. For the simplicity of the rules and the capability of sim-
ulating physics, these lattice gas models are reliable tools for
establishing the connection between the two levels of reality.

We generalize the FHP model to the spherical lattice,
and explore the emergent dynamic structures and equilibrium
properties at level 2 arising from the microscopic motion of
many identical constituents. Here, the spherical lattice refers
to a two-dimensional triangular lattice that covers the entire
sphere. We choose the spherical lattice based on the following
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considerations. First, extensive studies in the community of
active matter physics have shown that curvature can create rich
dynamic structures not found in the planar geometry [32-34].
The spherical lattice is naturally curved, and provides an
ideal environment to explore the lattice-guided nonequilibrium
dynamic structures. In addition, due to the compactness of
the spherical geometry, the subtle influence of the boundary
condition can be avoided. In our model, the particles hop
over the lattice according to a few well-defined collision and
propagation rules. In short, the particles propagate along the
lattice unless two particles of opposite velocities occupy the
same vertex or three particles move into the same vertex whose
total velocity is zero; binary and triple collisions occur in these
cases.

In this work, we first show that any orbit of a single particle
over the spherical lattice, regardless of its initial position and
velocity, is closed and has the identical period. Consequently,
a cluster of particles with quasi-uniform initial velocity is
observed to separate and merge as a whole with the alternating
convergence and divergence of the lattice. In addition to
the periodic global morphological transformations, we also
discover featured nonequilibrium dynamic modes, including
deforming bubbles in their propagation, and localized vortex
structures. The presence of the disclinations in the spherical
lattice, in combination with the compactness of the spherical
geometry, is responsible for all these emergent dynamic
structures. The accumulation of the collision effect ultimately
brings the system in equilibrium, which is signified by the con-
vergence of the collision frequency curves. Statistical analysis
reveals that the number of particles in each coarse-grained
cell is subject to the Gaussian-type fluctuation. For modest
population fluctuation in the coarse-grained cells, the coarse-
grained speed still conforms to the two-dimensional Maxwell-
Boltzmann distribution. These results are well rationalized by
mapping our system to a generalized random walk model.
We further discuss the collision-driven randomization of the
coarse-grained particle velocity, by which the application
of the random walk model to our system is well justified.

©2017 American Physical Society
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FIG. 1. Illustration of the generalized FHP lattice gas automaton
model on the sphere. (a) A spherical lattice where the red dots
represent the five-fold disclinations with five nearest neighbors. There
are 12 five-fold disclinations over the entire spherical lattice as a
topological requirement. The green and blue arrows are to explain
the propagation rule on a regular and disclinational vertex. (b) The
rules for the head-on binary and triple collisions.

Simulations show that either binary or triple collisions between
particles, even at arate as low as 0.06%, is sufficient to produce
the Maxwell-Boltzmann distribution. This work demonstrates
that the spherical lattice gas automaton is capable of sim-
ulating the geometrically driven nonequilibrium structures
and the geometry-independent equilibrium properties. Our
model may be generalized to other curved surfaces as well
as the almost-planar lattices with a designed mix of five- and
seven-fold disclinations to explore the geometrically driven
nonequilibrium physics.

II. MODEL

We generalize the FHP model to the spherical lattice to
study the particle dynamics over the sphere. The FHP model
was originally designed on the planar triangular lattice. By
generalizing it to the spherical lattice, the model is modified
accordingly. In the spherical lattice, the point crystallographic
defects called disclinations are inevitable [35]. An n-fold
disclination in a triangular lattice refers to a vertex whose
coordination number n is deviated from six. According to
the Euler’s theorem [37], the total topological charge in a
triangular lattice is a topological invariant:

> g =6x. (1)

ieV
where ¢; = 6 — z; is the topological charge of the vertex
i, z; is the coordination number of the vertex i, the sum
is over all the vertices V in the spherical lattice, and
is the Euler’s characteristic. For the spherical topology,
x = 2. It indicates that the total topological charge in the
spherical lattice is 12. The presence of the disclinations
therein is therefore a topological requirement. The simplest
spherical lattice contains uniformly distributed 12 five-fold
disclinations. We adopt such a spherical lattice in our work.
The red dots in Fig. 1(a) represent the five-fold disclinations.
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In the original FHP model, each vertex accommodates up to
six particles. In the spherical lattice, each five-fold disclination
can accommodate up to five particles. The exclusion rule in
the original FHP model is inherited in our model. That is, a
vertex cannot accommodate two or more particles of the same
velocity.

In our model, the states of the particles are simultaneously
updated by the following collision and propagation rules.
There are two types of collisions: the head-on binary and triple
collisions. The head-on binary collision occurs when a vertex is
only occupied by two particles of opposite velocities. In a triple
collision, three particles meet at the same vertex whose total
velocity is zero. The updated particle states after the two kinds
of collisions are shown in Fig. 1(b). For the head-on binary
collision, the two final states occur with equal probability.
The propagation rule is straightforward for a planar triangular
lattice: a particle moves along the lattice by the direction of
its velocity as shown in Fig. 1(a). On a spherical lattice, all
of the particles must turn either left or right uniformly when
passing through the disclinations to obey the exclusion rule.
Without loss of generality, we require any particle passing
a disclination to turn left, as shown in Fig. 1(a). Otherwise,
two velocity vectors pointing to a disclination may merge to a
single velocity vector after a time step if one of them turns left
and the other turns right, which violates the exclusion rule.

Here we note that in the planar FHP lattice gas model, the
momentum of the system is conserved in both propagation
and collision operations. However, by generalizing the model
to the spherical lattice, the direction of a velocity vector is
changed in its propagation, which requires a force on the
particle. Furthermore, the bonds in the spherical lattice are
generally not of the same length except the special case of
the icosahedron. Consequently, the total momentum of two
or three particles changes slightly after the binary or triple
collision. Therefore, unlike that on a planar lattice, an energy
input is required to realize the propagation and collision of the
particles on the sphere. Such a system may be realized in a
group of active agents confined on the sphere [33].

We employ the Casper and Klug scheme to construct the
spherical lattice as shown in Fig. 1(a) [36]. Starting from
a regular icosahedron with 12 vertices, we introduce n — 1
points evenly on each edge to divide each face into a number of
triangles. The total number of vertices in the resulting spherical
lattice is N = 10n> + 2. To perform the coarse-graining
procedure, we introduce another set of triangular lattice on
the sphere with the Casper and Klug scheme, and name it
the coarse-grained lattice. The sphere is therefore equipped
with two sets of lattices: the original lattice where the particles
live, and the auxiliary coarse-grained lattice for calculating the
coarse-grained quantities. The coarse-grained lattice consists
of N, vertices and 2N, faces, each face containing N /(2N,,)
vertices in the original spherical lattice. Summing over all the
velocity vectors within a triangular face in the coarse-grained
lattice gives rise to the associated coarse-grained velocity.

III. RESULTS AND DISCUSSION

We first consider the motion of a single particle on the
spherical lattice. We map the spherical lattice in the three-
dimensional Euclidean space to the plane of the spherical
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FIG. 2. Closed orbits (in red dots) of a single particle with
different initial velocity directions on the spherical lattice plotted
in the spherical coordinates. All the orbits of the particle with varying
initial velocity directions are closed and have the same period. The
horizontal and vertical axes are for 8 and ¢, respectively. The green
dots represent the five-fold disclinations. N = 1002.

coordinates {0,¢}. 6 € [0,7]. ¢ € [0,27). In the rectangular
box in Fig. 2, the short and long sides are the axes of 0
and ¢, respectively. The black dots are the vertices in the
spherical lattice, and the green dots represent the 12 five-fold
disclinations. The trajectory of the single particle is shown in
red dots. We see that the trajectory is always closed whether the
particle passes through a disclination or not. In particular, if the
particle passes through a disclination, as shown in Fig. 2(b), it
also passes through other four disclinations, forming a closed
loop over the sphere. We notice that the period of any closed
orbit is the same regardless of the initial position and velocity
of the particle.

The combination of the identical period of the closed
orbit and the spherical geometry may lead to the periodic
morphological transformation of a collectively moving cluster
of particles. We create a moving cluster of particles on the
spherical lattice to test this conjecture. We first select all
the vertices in the spherical lattice whose distance from any
reference vertex is smaller than r., and then put particles on
these vertices. The initial velocity of these particles is along
one of the six (or five, if a particle sits at a disclination)
discrete directions that makes the minimum angle with either
the local é4 or &y directions. Thus the cluster is equipped
with a quasi-uniform velocity distribution. The evolutions of
typical clusters along €, and & are shown in Fig. 3. For
visual convenience, we work in the coarse-grained lattice;
the size of the colored dots indicates the number of particles
in each coarse-grained cell. The tempospatial patterns of the
clusters are shown by different colors from red at = 1 [see
the lower parts in Fig. 3] to purple at + = 180 [at the top
in Fig. 3]. A salient feature in the cluster evolution is their
periodic separation and merging as a whole. The periodic
morphological change of the clusters is guided by the curved
lattice that converges and diverges periodically around the
disclinations. This observation suggests that the curvature
may be exploited to control the morphology of the moving
clusters. For example, in a two-dimensional active matter
system realizable by a group of swimming bacteria or other
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FIG. 3. Periodic separation and merging of the moving clusters.
The morphologies of the cluster at different time steps are shown
in different colors: from below to above, t = 1 (red), 30 (orange),
60 (yellow), 90 (cyan), 120 (light green), and 180 (purple). The size
of the colored dots indicates the number of particles in the coarse-
grained cells. The green dots represent the disclinations in the original
spherical lattice. The sizes of the clusters are (a,c) r. = 0.2R and (b,d)
0.5R. N =16002. N, = 1002.

active agents, one may create various geometric structures like
Gaussian bumps to control the collective motion [33]. Note that
the motions of the clusters in Fig. 3 are collision free for the
small size of the clusters.

When the particles occupy the entire spherical lattice, all
quasi-uniformly moving along é4, their collective movement
gives rise to multiple bubble structures, as shown in Fig. 4. A
frame-by-frame examination shows that, prior to the appear-
ance of these bubbles, local velocity vectors are found to move
in and out along multiple directions. The irregularity of these
velocity vectors leads to the emergence of void areas embedded
in the coarse-grained velocity field. In other words, the bubble
structures emerge to avoid singularity in the coarse-grained ve-
locity field. Here, we emphasize that the bubbles are still filled
with particles, but the coarse-grained velocity field vanishes
therein. Note that in a larger system of N = 64 002, where half
of the bonds are occupied by particles, a few coarse-grained ve-
locity vectors are scattered inside some bubbles. It is observed
that the bubble size can grow up to about 20 coarse-grained
cells fromt = 1tot = 30. In Figs. 4(a) and 4(b), we also show
the collective progression and deformation of the bubbles.

For quasi-uniformly moving particles along &y over the
entire spherical lattice, each occupying one vertex, we observe
vortex structures in addition to the bubble structures, as
shown in Fig. 4(b). Vortices are interesting emergent structures
in macroscopic hydrodynamic systems. A salient feature
of two-dimensional turbulence is the emergence of isolated
coherent vortices [38]. Our model allows one to observe the
formation of the vortices at the microscopic level. We track
the evolution of the coarse-grained velocity vectors and find
that the vortices start to form when the group of particles
moving quasi-uniformly along &; meet those that have passed
through the south pole and are moving along —é,. A typical
vortex structure is shown in the dashed ellipse in the last inset
in Fig. 4(b). The vortex turns out to be rather robust. It is
largely anchored at the same place in the evolving velocity
field for a period up to At = 10. It is worth pointing out that
the emergence of the nonequilibrium dynamic structures of
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FIG. 4. The bubble and vortex structures developed in the evolution of the coarse-grained velocity field. Each vertex is occupied by a

With the accumulation of the collision effect, both the
bubble and vortex structures are ultimately destroyed. We track
the collision events in the propagation of the particles and plot

zoom-in plot is shown below) in addition to the bubbles. The snapshots in (a) and (b) are at (a) ¢
the frequencies of the binary and triple collisions versus time

particle in the initial state, and all the particles move quasi-uniformly along (a) &, and (b)

disclinations instead of the disclinations themselves. Figure 4
shows no correlation between the locations of the disclinations

bubbles and vortices results from the bent lattice around the
and the sites of the bubbles and vortices.

respectively. The green dots represent the disclinations. (a) N
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in Fig. 5 for the case where the particles move quasi-uniformly
along &,. Here the collision frequency refers to the number of
the collision events rescaled by the total number of particle
movements in a time step. Figure 5 shows that both the binary
and triple collision curves exhibit the oscillation behaviors.
The period of the oscillation is the same as that of the closed

b)

(

time

(a)

time
FIG. 5. Plot of the frequencies of the binary and triple collisions

versus time. Both curves exhibit the oscillation behaviors. The insets
are the zoom-in plots of the curves in the red rectangles. Each vertex

is occupied by a particle in the initial state and all the particles move

quasi-uniformly along ;. N = 16 002.
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binary collision between particles becomes more frequent at a
an upper bound. In contrast, the oscillation amplitude of the

large time scale, and the curve ultimately converges
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FIG. 6. Roles of the binary and triple collisions on the equilibrium
distribution of the tempo-spatially coarse-grained speed. The solid
red fitting curves have the common functional form of fy;(u) =
au exp(—bu?). (a) Both the binary and triple collision rules are shown.
(b) The collision free case. (c) Only the binary collision rule. (d) Only
the triple collision rule. The time average is over ¢ € [100,110]. The
speed is scaled by the maximum coarse-grained speed. Each bond has
50% probability to be occupied by a unit velocity vector in the initial
state. The values for the parameters in the fitting function are ob-
tained from the quasi-Newton method. (a) a = 2014.18, b = 10.52;
(b) a =2898.48, b = 17.1363; (c) a = 1827.16, b = 9.55697; (d)
a =1918.49. b = 10.0383. N = 64002. N, = 1002.

Now we analyze the equilibrium property of the spherical
lattice gas model. Consider a spherical lattice where each
bond in the original lattice has 50% probability to be occupied.
It turns out that the influence of the initial state of the system
is significantly diminished after tens of time steps. Statistical
analysis of the tempospatially coarse-grained velocity field
1u(X) reveals a stable distribution f(u), as shown in Fig. 6(a).
Here u is rescaled by its maximum value. #(X) is defined at
the center of each triangular coarse-grained cell, and it is the
sum of the velocities of the particles within the coarse-grained
cell. f(u)Au is the number of the coarse-grained cells
whose associated coarse-grained speed falls between u and
u + Au. The data in Fig. 6(a) can be well fitted by the
function f;;(u) = au exp(—bu?). It is recognized as the two-
dimensional Maxwell-Boltzmann distribution by expressing b
asb = m/(2kpT), where kp is the Boltzmann constant, 7 is the
temperature, and m is the total mass of the particles contained
in each coarse-grained cell. Since both m and T are linear to the
average number of particles (N¢) in the coarse-grained cells,
b is expected to be independent of the degree of the coarse
graining. To check this expectation, we simulate systems with
varying N. N = {25002,36002,49002,64002,81002}, and
(Neen) = {36,48,67,88,112}, respectively. It is found that
b = 10.81 £ 0.43 in all these systems, which is indeed almost
an invariant.

To understand the emergent statistical law, we regard each
coarse-grained cell as a virtual particle. For convenience
in later discussions, the particles in the original spherical
lattice are named molecular particles. The movement of the
molecular particles into and out of the cells results in the
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transfer of momentum among neighboring virtual particles. A
virtual particle’s momentum varies in a “quantum” manner.
The minimum momentum change of a virtual particle is the
momentum of an individual molecular particle. The effect
of the collisions among molecular particles within a virtual
particle is to fully randomize the N unit velocity vectors ;
(i € [1,Ncen]) such that these velocity vectors are statistically
independent. The velocity of a virtual particle i is the sum of
the associated molecular particles’ velocities:

Neen
i=Y . @)
i=l1

It is recognized that u# is essentially the sum of N
independent and identically distributed random unit vectors ;
(i € [1,Ncenl). Our problem is therefore mapped to a random
walk model defined on a triangular lattice. According to the
central limit theorem, the end-to-end distance r of a random
walker in a triangular lattice asymptotically conforms to the
Rayleigh distribution after a large number of steps [39]

r r? 3
N &P [——} 3)

2
cell 21§ Neenl

P1(r; Neent) = Ay

where ry is the lattice spacing of the triangular lattice and
A is the normalization coefficient. Note that Eq. (3) and
frir(u) in Fig. 6(a) share the same functional form, and both of
them correspond to the two-dimensional Maxwell-Boltzmann
distribution.

However, we find that N, the number of particles in
the coarse-grained cells, is subject to the Gaussian-type
fluctuation, which will be discussed later. This population
fluctuation must be taken into account in the random walk
model. In other words, the random walk model shall be
generalized to allow the fluctuation in the number of steps.
The probability density for N can be written as

_ 2
_(Ncell <Nce11)) :| (4)

pZ(Ncell) - AZ exp |: 2
a;

In the following, we discuss if the population fluctuations in the
coarse-grained cells will influence the statistical law governing
the speed distribution of the virtual particles. From Egs. (3)
and (4), we have the probability density for u:

pu) = / P1(u; Neet) X pa(Neei)d Neenr, o)
0

where the integration is over all possible values for N.;. We
notice that the dominant contribution to the integral is from
the domain near N = (Neenn), Which is at the peak of the
P2(Neenn) curve. Eq. (5) can be evaluated by the saddle point
method [40]

)~ Ao [_ u? } ©)
PR Ny P L 262 (Nea) |

where A is the normalization coefficient and u is the
magnitude of the molecular velocity vector. By comparing
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Eq. (6) with the numerical evaluation of Eq. (5), we find
that Eq. (6) is a good approximation even when the standard
deviation in N is as large as about 30% around its average
value. To conclude, modest population fluctuation in a virtual
particle does not change the nature of the statistical law for the
distribution of the coarse-grained speed u.

In mapping our problem to the generalized random walk
model, an important assumption is the collision-driven ran-
domization of the molecular velocity vectors. Now we analyze
the specific roles of the binary and triple collisions in achieving
the regular statistical distribution. We first remove both types
of collisions from our model and examine the consequence.
Figure 6(b) shows the distribution of the coarse-grained speed
u without any collision. We see that the simulation data
are deviated from the two-dimensional Maxwell-Boltzmann
distribution. The peak on the curve in Fig. 6(b) is due
to the random initial state of the molecular particles. The
result presented in Fig. 6(b) indicates that the randomness
brought by the initial condition is insufficient to establish a
Maxwell-Boltzmann distribution.

To clarify if the solo binary collision suffices to establish the
statistical regularity in the speed distribution, we remove the
triple collision from the model and keep only the binary colli-
sion rule. In Fig. 6(c), we show that the binary collision seems
sufficient to destroy the statistical correlation of molecular
particles’ velocities, and produce the result of the random walk
model. We further find that only retaining the triple collision
rule in our model also suffices to randomize the velocities, as
suggested by the curve in Fig. 6(d). Note that the triple collision
typically occurs at a much lower rate than the binary collision.
We observe 50% more binary collision events than the triple
collision events in the system of about 30000 molecular
particles. These observations suggest that even a relatively rare
collision rate between particles can randomize the molecular
particles and produce a regular statistical distribution. We
also study systems of higher particle densities. It turns out
that the collision rate is even lower. In the spherical lattice
where 80% of the bonds are occupied and N = 100002,
fo.e. = 0.06% and f; . = 0.15%, which are only 4% and 15%
of the corresponding collision frequencies for the case of 50%
occupation rate. Even at such a low collision rate, we still
observe that the statistics of the coarse-grained speed obeys
the Maxwell-Boltzmann distribution.

Collisions between molecular particles are also found
to be responsible for the regular statistical distribution of
Ncen1, the number of molecular particles in the coarse-grained
cells. Statistical analysis of N in each coarse-grained cell
reveals that the distribution of N, approaches the Gaussian
distribution by adding the collision rules, as illustrated in
Fig. 7(a). In Fig. 7(b), we show the linear relation between
Neellmax [the value of N at the peak of the f(Nce) curve]
and the total number of molecular particles which is half of
N. Simulations show that the distribution of the speed u of
the virtual particles is well fitted by the Maxwell-Boltzmann
distribution when (N;) is larger than about 40.

Finally, we exploit the fact that the emergent statistical law
of the virtual particles’ speed is independent of the number of
molecular particles N within each virtual particle once N
is sufficiently large. The coarse-graining procedure maps the
molecular particles into a collection of virtual particles. The
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FIG. 7. Analysis of the population fluctuation in the triangular
cells of the coarse-grained spherical lattice. (a) The distribution of
the number of particles Ny in each cell. The square blue dots are for
the collision free case, and the black dots are for the case with both
the binary and triple collision rules. The black dots, especially those
near the maximum Ny, are fitted by the Gaussian distribution func-
tion. The time average is over At = 10. N = 64002. N, = 1002.
(b) Shows the linear dependence of the maximum N on the number
of vertices N in the spherical lattice. The total number of molecular
particles is half of N. Both the binary and triple collision rules are
applied.

velocity of an arbitrary virtual particle labeled j is

i) = > i (7

: (1)
zEQj

v; is the velocity of the molecular particle labeled i within the
virtual particle j. It is a random unit vector whose orientation
can take one of the six discrete directions in the triangular
lattice with the same probability. The sum in Eq. (7) is over all

the molecular particles in the coarse-grained cell Q;l) that is
named as the virtual particle j. The superscript “(1)” in ﬁy) and

Qy) denotes the first round coarse-graining procedure from the
original molecular particles to the virtual particles. We have
shown that the magnitude of the resulting random variable
uV conforms to the two-dimensional Maxwell-Boltzmann
distribution. One can perform further coarse graining by
classifying all the virtual particles in the newly built coarse-
grained cells denoted as Q,(cz). Summing over all the virtual

. ) .. 2 .
particles’ velocities in Qi ) returns a new random variable:

iy = i, ®)
ieQ?

The comparison of Egs. (7) and (8) shows that the magnitude
of #» also obeys the two-dimensional Maxwell-Boltzmann
distribution. The coarse-graining procedure can be further ex-
tended to higher levels. On the premise that there are sufficient
virtual particles in the coarse-grained cells, the statistical law
always holds. The transferable statistical law from the original
molecular particle system to any coarse-grained system is
essentially attributed to the statistical independence of the
molecular particles at the very bottom level; no statistical
correlation can be built up in the coarse-graining process itself.

IV. CONCLUSION

In summary, based on the spherical lattice gas automaton
with the well-defined propagation and collision rules, we
reveal several emergent dynamic structures resulting from
the geometric frustration of the collectively moving clusters,
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including the periodic global morphological transformations,
the bubble and vortex structures embedded in the coarse-
grained velocity field. With the accumulation of the colli-
sion effect, statistical analysis shows that the coarse-grained
speed conforms to the two-dimensional Maxwell-Boltzmann
distribution despite the modest population fluctuations. A
generalized random walk model is proposed to account for the
observed regular statistical behaviors. This work demonstrates
the capability of the spherical lattice gas automaton in reveal-
ing the nonequilibrium dynamic structures and in producing
the statistical law of the real gas. For its simplicity and the
capability of simulating physics, the lattice gas automaton
model may be generalized to other curved surfaces to explore
geometrically driven nonequilibrium physics. Furthermore,

PHYSICAL REVIEW E 96, 062139 (2017)

considering that the emergent dynamic structures like the
bubbles and vortices in our system are largely driven by
the disclinations in the lattice, it is of interest to explore the
potential collective dynamics regulated by a designed mix of
five- and seven-fold disclinations on an almost-planar lattice.
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