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Two-dimensional dynamics of a trapped active Brownian particle in a shear flow
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We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap
subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring
force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette
flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle’s displacements
parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational)
and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach
to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to
investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in
confined geometries.
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I. INTRODUCTION

Specially designed synthetic microparticles are capable
of propelling themselves by harvesting kinetic energy from
an active environment [1–3]. Unlike bacteria [4,5], self-
propulsion of inorganic microswimmers is fueled by external
nonequilibrium processes, like directional mechanical im-
pulses from catalytic chemical reactions or self-phoresis by
short-scale (electric [6], thermal [7], or chemical [8]) gradients
generated by the particles themselves through some built-in
functional asymmetry [9]. In a quiescent suspension fluid such
“active” swimmers undergo time-correlated Brownian motion,
also termed active Brownian motion.

In shear flows, effects due to the intrinsically hydrodynamic
nature of Brownian motion [10] may become prominent
[11,12]. This statement is all the more true when it comes
to characterizing the diffusion of sheared active swimmers
in confined geometries. The interplay of shear gradients and
self-phoretic propulsion is a topic of current investigation [13],
as it is expected to advance our understanding of the collective
dynamics of active swimmers [14,15] and their diffusion
along confining walls and other fixed obstacles [16,17].
Indeed, recent progresses in the optical-tweezer technology
[18] made particle fluctuations at the mesoscale accessible to
experimental observation [19].

In this paper we focus on the the dynamics of a single active
swimmer subjected to either a linear shear flow (Couette flow)
or to a planar Poiseuille flow at low Reynolds numbers. More-
over, we assume that the particle freely diffuses at a distance
from any obstacle so as its hydrodynamic interactions with the
flow boundaries can be neglected [20]. The stochastic motion
of a free particle moving along the streamlines of a viscous
sheared fluid and the motion of the same particle trapped in a
harmonic well swept through by the shear flow are immediately
related. Of course, from an experimental viewpoint trapped
particles (e.g., in an optical tweezer) offer a way more
convenient setup for an accurate statistical analysis of sheared

Brownian motion. This strategy has been adopted recently by
a number of authors to investigate the Brownian motion of
both passive [11,12,21] and passive particles [22–24].

The present study should be regarded as a preliminary work
in preparation for a full-scale investigation of the hydrodynam-
ics of two or more closely confined active swimmers. Data
from numerical simulations will be then compared with the
corresponding analytical results in the absence of hydrody-
namic effects reported here. Our investigation confirms that
active microswimmers tend to perform closed orbits, which
are perturbed not only by the ubiquitous thermal fluctuations
already considered in Ref. [11], but also by angular fluctuations
intrinsic to their self-propulsion mechanism. The effects of
these two sources of noise on the diffusion of the trapped
swimmers are clearly separable. Similarly to the regular
Brownian particles (i.e., passive swimmers) investigated in
Ref. [11], as a consequence of the torque exerted by the shear
gradient on the self-propelled swimmers [25–28], the ensuing
random trajectories follow (quasi-) elliptical paths inclined at
an angle with respect to the flow. Another remarkable property
of trapped active swimmers is the chiral nature of their motion,
also controlled by the shear gradient, which reflects in the
oscillating time dependence of the cross-correlations between
the particle displacements parallel and orthogonal to the
flow.

This paper is organized as follows. In Sec. II we extend the
standard two-dimensional (2D) model for a pointlike active
Brownian particle of the Janus type we already investigated
recently [29,30]. Additional features are the linear restoring
force modeling the harmonic trap, the drag force exerted by
the flow, and, finally, the torque associated with the shear
gradient (constant in the Couette flow, linearly dependent on
the transverse coordinate in a Poiseuille flow). Restricting our
discussion to a 2D model greatly simplifies our calculations
without a substantial loss of generality. In Sec. III we first study
the dynamics of a trapped Janus particle subject to a Couette
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flow. We prove that, in the noiseless regime, its planar orbits
are elliptical and rotated with respect to the flow (Sec. III A).
We then characterize the stochastic dynamics of the trapped
particle by investigating its probability density function (p.d.f.)
and the time dependence of its correlation functions Cij (t) =
〈xi(t)xj (0)〉, where i,j = 1,2 and x1 = x and x2 = y denote,
respectively, the longitudinal and transversal coordinates of the
Cartesian plane. This analysis has been carried out separately
in the presence of either thermal noise (Sec. III B) or angular
noise (Sec. III C) alone. The extension of our analysis to the
Poiseuille flow is discussed in Sec. IV, where the outcome of
numerical simulation is compared with approximate analytical
predictions based on the exact results of Sec. III. Finally, in
Sec. V we physically interpret the different effects of the two
noise sources on the dynamics of the trapped active particle.

II. THE MODEL

As anticipated in the Introduction, to avoid unnecessary
complications, we limit this report to the case of 2D flows
and pointlike active Brownian particles. The extension of
our conclusions to 3D flows and finite-size particles will
be discussed in a forthcoming paper. The simplest active
particle realized so far is the two-faced Janus particle [2].
“Artificial swimmers” of this class get a continuous push from
the suspension fluid, which in the overdamped regime is well
modeled by a single self-propulsion velocity vector, v0, with
constant modulus v0.

In the absence of shear, the direction of v0 varies ran-
domly with time constant τφ , under the combined action of
thermal noise and fluctuations intrinsic to the self-propulsion
mechanism. A shear flow us(r) affects the dynamics of a
pointlike particle of coordinates r by forcing its self-propulsion
velocity to rotate under the action of the local torque � =
−(1/2)∇ × us . As a consequence, the particle free trajectories
tend to bend with curvature radius inverse proportional to �

[31,32].
A particle trapped in a symmetric harmonic potential well

centered at r0 is subjected to an additional linear restoring
force, −k(r − r0), which confines its motion in the center of
the trap. By employing an optical tweezer is thus possible to
record the random motion of a trapped active particle over long
observation time intervals and with high time resolution [19].

The 2D stochastic dynamics of a harmonically trapped
active particle of the Janus type is thus modeled by the
following set of Langevin equations [28–30]:

ẋ = v0 cos φ − kx + us(y) + ξx(t),

ẏ = v0 sin φ − k(y − y0) + ξy(t), (1)

φ̇ = �(y) + ξφ(t),

where the particle’s center of mass is confined to the plane
(x,y), subject to equilibrium thermal fluctuations repre-
sented by the Gaussian noises ξi(t) with 〈ξi(t)〉 = 0 and
〈ξi(t)ξj (0)〉 = 2D0δij δ(t) for i = x,y. The assumption that
for i �= j 〈ξi(t)ξj (0)〉 = 0 is surely correct in a quiescent
suspension fluid where orthogonal fluctuations are separable
but has been challenged in a shear flow. Thermal noise
cross-correlations, if any, are small [33,34] and, therefore, can
be safely ignored in this presentation.

The flow is directed along the x axis with shear gradient
oriented along the y axis and the shear torque, �(y) =
−(1/2)u̇s(y), orthogonal to the diffusion plane. The orientation
of the self-propulsion velocity, φ, is given with respect to
flow direction; see Fig. 1(b). The sign of � determines
the positive (levogyre) or negative (dextrogyre) chirality of
the particle. The fluctuations of the propulsion velocity are
modeled here by the Gaussian noise ξφ(t) with 〈ξφ(t)〉 = 0 and
〈ξφ(t)ξφ(0)〉 = 2Dφδ(t), where Dφ = 1/τφ . In the bulk, self-
propulsion contributes an additional amount Ds = v2

0/2Dφ to
the thermal diffusivity, D0 [31,32]. We treated all noise sources
in Eq. (1) as independently tunable, although, strictly speaking,
thermal and orientational fluctuations may be statistically
correlated [35]. More importantly, the parameters used in
our simulations are experimentally accessible, as apparent on
expressing times in seconds and lengths in micrometers (see
Ref. [36] for a comparison).

We integrated numerically and, when possible, analytically
the set of Langevin equations (1) for two types of stationary
shear flows, both delimited by the symmetric planes y =
±yL/2, − yL/2 � y � yL/2, namely, the Couette flow

us(y) = −2u0y/yL, (2)

u0

-u0
v0 φ

v0
yL

us(y) x

y

u0

-u0
(a) (b)

FIG. 1. Trapped Janus particle in a Couette flow: (a) ideal experimental setup. A Janus particle diffusing in a planar Couette cell is trapped
by an optical tweezers directed orthogonally to the diffusion plane. v0 represents the instantaneous self-propulsion velocity, and ±u0 are the
opposite speeds of the Couette cell walls. (b) Illustration of the 2D model of Eq. (1); see Sec. II.
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with � = u0/yL, and the planar Poiseuille flow,

us(y) = u0[1 − (2y/yL)2], (3)

with �(y) = 4u0y/y2
L.

The symmetric harmonic trap of elastic constant k was
kept fixed at r0 = (0,y0). The choice of y0 is irrelevant in the
Couette flow (2), whereas it is expected to impact the particle’s
dynamics in the stationary Poiseuille flow (3) [25]. The
numerical integration of the stochastic differential equations
(1) was performed by means of a standard Euler-Maruyama
scheme [37]. The stationary p.d.f.’s and the stochastic averages
reported below were taken over ensembles of trajectories with
random initial particle orientation, i.e., assuming a uniform φ

distribution with φ(0) ∈ [0,2π ]. Residual transient effects due
to the choice of the injection coordinates, x(0) and y(0), were
also discarded.

III. TRAPPING IN A COUETTE FLOW

We address first the simpler case of a harmonically trapped
model Janus particle in the Couette flow of Eq. (2). The
corresponding Langevin equations (1) boil down to a set of
analytically tractable linear stochastic differential equations,

ẋ = v0 cos φ − kx − 2�y + ξx(t),

ẏ = v0 sin φ − ky + ξy(t), (4)

φ̇ = � + ξφ(t),

where we set y0 = 0 for convenience and made explicit use of
the identity us(y) = −2�y.

A. Noiseless regime, D0 = Dφ = 0

We start addressing the deterministic dynamics of a trapped
Janus particle in the absence of fluctuation sources. Upon
rescaling time, t → t ′ = kt , one sees immediately that the par-
ticle’s orbit depends on two parameters only, namely a length,
v0/k, which characterizes its size, and the dimensionless ratio
shear torque to restoring force (in the overdamped limit), �/k.

The analytical integration of the equation set (4) with D0 =
Dφ = 0 is a standard textbook exercise, which can be worked
out in either the time or frequency domain. From the third
equation (4), φ = �t + φ(0). Upon setting the time origin
at φ(0) = 0 and neglecting the exponentially decaying time
transients that bear memory of the initial conditions of x(t)
and y(t), one gets the following expressions for x(t):

x(t) = A cos(�t + α), (5)

with A = (v0/k)
√

1 + 9�2/k2/(1 + �2/k2) and tan α =
(�/k)(1 − 3�2/k2)/(1 + 5�2/k2), and for y(t),

y(t) = B sin(�t + β), (6)

with B = (v0/k)/
√

1 + �2/k2 and tan β = −�/k, which
hold asymptotically in time, i.e., for kt � 1 and �t � 1.

Having discarded all transients, Eqs. (5) and (6) provide
a convenient parametric representation of the particle’s orbit.
The orbits plotted in Fig. 2 for different values of the model
parameters exhibit a few interesting features:

(i) All orbits are closed and independent of the initial
conditions. In this regard, we refer to them as limit cycles;

FIG. 2. Trapped Janus particle in the Couette flow of Eq. (2):
noiseless regime. Plots have been produced by integrating Eqs. (4)
for D0 = Dφ = 0, v0 = 1, k = 0.5, u0 = 1, and different yL or � =
u0/yL (see legends). (a) yL = 10, limit cycle independent of the initial
conditions, x(0), y(0), and φ(0). (b) Closed orbits for different �. For
large t , the data points rest on the relevant orbits of Eq. (7).

see Fig. 2(a). They are quadrics centered at the origin:

x2

A2
+ y2

B2
+ 2

xy

AB
sin(α − β) = cos2(α − β). (7)

(ii) Such orbits are ellipses with rotated axes [38], as one
can easily conclude by inspecting Eq. (7). Their eccentricity
increases with increasing �, whereas for vanishingly small
torques one recovers a circle of radius v0/k, as expected.
For exceeding large � values both orbits’ axes eventually
shrink. The angle between the ellipse’s major axis and the
flow direction, 
e, is negative for � > 0. From the analytical
expression of Eq. (7),

tan 
e = − K

1 + √
1 + K2

, (8)

with K = 2AB sin(α − β)/(A2 − B2). One notices immedi-
ately that the dependence of 
e on the torque is monotonic with

e → 0− for �/k → 0 and 
e → −π/4+ for �/k → ∞.

(iii) The limit cycle representations of Eqs. (5) and (6) and
of Eq. (7) are validated in Fig. 2(b) by numerical integration
of the deterministic model equations (4).

The tilted elliptical limit cycles of Fig. 2 are the result of
a twofold action exerted by the shear gradient on the trapped
active particle. For � > 0 (positive chirality), the particle tends
to move counterclockwise following a circular path. However,
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in the upper (lower) branch of its orbit, as it moves from right
(left) to left (right), it is subjected to an additional negative
(positive) shear drag, us(y) < 0 [us(y) > 0 ]. This has the
effect of distorting its circular path into an elliptical one with
major axis rotated by the negative angle, 
e < 0, of Eq. (8).

B. Thermal noise, D0 > 0, Dφ = 0

We next switch on the translational noises ξx(t) and ξy(t),
while keeping ξφ(t) = 0. By introducing dimensionless units,
t → t ′ = kt, x → x ′ = x/

√
D0/k and y → y ′ = y/

√
D0/k,

one notices that the dynamics of the trapped particle is now
controlled by the ratio �/k, as before, and the ratio v2

0/kD0,
which measures self-propulsion against thermal diffusion in
the trap.

The calculation of all four correlation functions Cij (t) in
the time domain is straightforward. From the second Langevin
equation (4) we obtain the asymptotic solution

y(t) ≡ y(0)(t) + yD(t) = y(0)(t) + e−kt

∫ t

−∞
eksξy(s) ds,

(9)

where y(0)(t) is the deterministic solution of Eq. (6). The
subtracted autocorrelation function of y(t),

C(s)
yy (t) = Cyy(t) − C(0)

yy (t)

= lim
τ→∞[〈y(t + τ )y(τ )〉 − 〈y(0)(t + τ )y(0)(τ )〉0]

= D0

k
e−k|t |, (10)

follows suite from the identity 〈ξy(t)ξy(0)〉 = 2D0δ(t). Here
C(0)

yy (t) denotes the phase-averaged deterministic autocorrela-
tion function C(0)

yy (t) = 〈y(0)(t)y(0)(0)〉0 = (B2/2) cos �t ; see
Eq. (6).

The asymptotic solution for x(t) depends on y(t). On
integrating the first Langevin equation (4), we derive a slightly
more complicated, but still manageable expression for x(t),

x(t) = x(0)(t) + e−kt

∫ t

−∞
eks[−2�yD(s) + ξy(s)] ds,

(11)

with x(0)(t) given in Eq. (5). Contrary to C(s)
yy (t), the subtracted

autocorrelation for x(t) depends on the shear torque:

C(s)
xx (t) = Cxx(t) − C(0)

xx (t)

= lim
τ→∞[〈x(t + τ )x(τ )〉 − 〈x(0)(t + τ )x(0)(τ )〉0]

= D0

k
e−k|t |

[
1 + 2

�2

k2
(1 + k|t |)

]
. (12)

In the derivation of Eq. (12) we made use of the follow-
ing identities: 〈ξx(t)ξx(0)〉 = 2D0δ(t), 〈yD(t)ξx(0)〉 = 0 and
〈yD(t)yD(0)〉 = C(s)

yy (t). The deterministic autocorrelation for
x(t), C(0)

xx (t), was calculated by averaging over the initial con-
ditions, as done for C(0)

yy (t), hence, C(0)
xx (t) = 〈x(0)(t)x(0)(0)〉0 =

(A2/2) cos �t .
Finally, on combining solutions (11) and (9) for x(t)

and y(t), respectively, and noticing that 〈ξx(t)ξy(0)〉 =

0.0

0.2

0 2 4

0.0

0.2

0 2 4

-0.02

C
(s

)
xx

(t)

0.05
 0.1
 0.2

D0 =

C
(s

)
yy

(t)

t

0.05
 0.1
 0.2

0.05
 0.1
 0.2

(b)

C(s)
xy (t)C(s)

yx (t)

C
(s

) (t)

t

D0 =

(a)

FIG. 3. Trapped Janus particle in the Couette flow, Eq. (2), with
thermal noise. The subtracted auto- and cross-correlation functions
have been computed by integrating Eqs. (4) for Dφ = 0, v0 = 1, k =
1, u0 = 1, yL = 10, and different D0 (see legends). The solid curves
represent the corresponding analytical predictions of Eqs. (10) and
(12)–(14).

〈y(0)(t)y(0)(0)〉0 = 0, we calculate the cross-correlation func-
tions

Cxy(t) = lim
τ→∞[〈x(t + τ )y(τ )〉 (13)

= −D0

k

�

k
e−k|t |[1 + 2kt�(t)],

Cyx(t) = Cxy(−t), (14)

where �(. . . ) is the Heaviside function. Here C(0)
xy (t) =

〈x(0)(t)y(0)(0)〉0 = 0, so that the cross-correlations need not
be subtracted, namely, C(s)

xy (t) = Cxy(t) and C(s)
yx (t) = Cyx(t).

The correlation function plotted in Fig. 3 have been obtained
by numerical integration of Eqs. (4) for increasing levels of
the thermal noise. The simulation points are closely fitted
by the relevant curves of Eqs. (10) and (12)–(14). Moreover,
one can easily check that our subtracted correlation functions
coincide with the corresponding correlation functions obtained
by the authors of Ref. [11] for a trapped passive particle (i.e.,
a simple colloidal particle) in a Couette flow. This suggests
the conclusion, illustrated in Fig. 4, that the dynamics of a
trapped active particle in a Couette flow can be separated into
a deterministic chiral component, represented by its orbital
motion along a limit cycle, an a stochastic perturbation, to be
interpreted as the thermal fluctuations of the center of the limit
cycle around the trap’s bottom.

The separation of these two dynamical contributions is
apparent in Fig. 4 at low thermal noise. The contours of the
plotted 2D p.d.f.’s, P (x,y), retain the shape of the limit cycle
with D0 = 0. Such an annular structure disappears only when
D0 is raised above a certain threshold, D̄0. An estimate for D̄0

is obtained by equating the free mean square displacement a
passive particle undergoes in a time interval of the order of the
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FIG. 4. Trapped Janus particle in the Couette flow, Eq. (2), with thermal noise. The contour plots of the p.d.f.’s P (x,y) have been computed
by integrating Eqs. (4) for Dφ = 0, v0 = 1, k = 1, u0 = 1, yL = 10 and increasing levels of translational noise (see legends). Note that the
color scale changes from panel to panel.

trap’s relaxation time, D0/k, and the size squared of its limit
cycle, (v0/k)2, that is, v2

0/kD̄ ∼ 1. This argument justifies the
physical interpretation of the ratio v2

0/kD0 given at the top of
this section.

C. Angular noise, D0 = 0, Dφ > 0

Finally, we investigate the role of the angular noise, ξφ(t), on
the orbiting motion of the harmonically trapped active particle.
As done in Sec. III B, we first determine the minimal set of
control parameters by introducing dimensionless units, that is,
t → t ′ = kt, x → x ′ = x/(v0/k), and y → y ′ = y/(v0/k).
The ensuing free dynamical parameters are �/k, as in
Sec. III B, and the ratio, Dφ/k, of the relaxation time in the trap,
1/k, to the persistence time of the active Brownian motion,
τφ = 1/Dφ . v0/k plays the role of a scalable length unit.

To calculate the four correlation functions Cij (t) we prefer
to work here in the frequency domain. By taking the Fourier
transform of both sides of the second equation (4) with D0 = 0
and, then, calculating the square of their moduli, we obtain

Syy(ω) = v2
0

k2 + ω2
Scc(ω), (15)

where Syy(ω) and Scc(ω) are, respectively, the Fourier
transform of the stationary autocorrelation functions Cyy(t)
and Ccc(t) = 〈cos φ(t) cos φ(0)〉. Substituting φ(t) = �t +∫ t

0 ξφ(s)ds in the latter and taking the stochastic average
yield [35]

Ccc(t) = 1

2
cos(�t)e−Dφ |t |. (16)

The inverse Fourier transform of Eq. (15) can be easily
performed by applying the convolution theorem and making
use of Eq. (16) for Ccc(t). A lengthy calculation leads to the
final result,

Cyy(t) = v2
0/2k2(

�2/k2 + D2
φ/k2 + 1

)2 − 4D2
φ/k2

×
[
Dφ

k

(
�2

k2
+ D2

φ

k2
− 1

)
e−k|t | + 2

Dφ

k

�

k
sin(�|t |)

× e−Dφ |t | +
(

�2

k2
− D2

φ

k2
+ 1

)
cos(�t)e−Dφ |t |

]
.

(17)

Two limits of Eq. (17) are worth mentioning:
(i) For Dφ → ∞, Cyy(t) = (Ds/k)e−k|t | with Ds =

v2
0/2Dφ . As anticipated in Sec. II, in this limit the active

particle behaves like a regular Brownian particle fluctuating
in the trap with effective diffusion constant Ds .

(ii) For Dφ → 0, Cyy(t) = v2
0/[2(k2 + �2)] cos �t , which

is the autocorrelation function corresponding to the determin-
istic solution in Eq. (10).

The same procedure can be applied to the first Langevin
equation (4) to calculate Cxx(t). Making use of Eq. (15) we
obtain the identity

Sxx(ω) =
(

1 + 4�2

k2 + ω2

)
Syy(ω) − 4�v2

0

k2 + ω2

Ssc(ω)

k + iω
,

(18)

where Sxx(ω) is the Fourier transform of Cxx(t) and
Ssc(ω) = S∗

cs(ω) are the Fourier transforms of Csc(t) =
〈sin φ(t) cos φ(0)〉 and Ccs(t) = 〈cos φ(t) sin φ(0)〉, respec-
tively, with

Csc(t) = Ccs(−t) = 1
2 sin(�t)e−Dφ |t |.

The explicit expression for the inverse Fourier transform of
Sxx(ω) is cumbersome and thus of little use. The implicit
expression in terms of Cyy(t) and Ccs(t),

Cxx(t) = Cyy(t) + 2�2

k

∫ ∞

−∞
Cyy(s)e−k|t−s| ds

− 2�v2
0

k

∫ ∞

−∞
e−k|t−s| ds

∫ ∞

0
e−ks ′

Csc(s − s ′) ds ′,

(19)

can be used instead for practical purposes.
Finally, the Fourier transforms of Cxy(t) and Cyx(t) are also

linear combinations of Syy(ω) and Scs(ω). For instance,

Sxy(ω) = − 2�

k + iω
Syy(ω) + v2

0

k2 + ω2
Scs(ω), (20)

whence

Cxy(t) = − 2�

∫ ∞

0
Cyy(t − s)e−ks ds

− v2
0

2k

∫ ∞

−∞
e−k|t−s|Csc(s) ds, (21)
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FIG. 5. Trapped Janus particle in the Couette flow, Eq. (2), with
angular noise. The auto- and cross-correlation functions have been
computed by integrating Eqs. (4) for D0 = 0, v0 = 1, k = 1, u0 =
1, yL = 10, and different Dφ (see legends). The dashed curves
represent the corresponding analytical predictions of Eqs. (17) and
(19)–(21).

and, similarly to Eq. (14),

Cxy(t) = Cyx(−t). (22)

As a consistency test one can check that in the limit Dφ → ∞
Eqs. (21) and (22) coincide with Eqs. (14) and (13) after
replacing D0 by Ds . Moreover, all four correlation functions
(17), (19), (21), and (22), fit pretty well the relevant data
sets of Fig. 5, obtained by numerically integrating the model
equations (4).

The 2D p.d.f.’s, P (x,y), plotted in Fig. 6 for increasing Dφ

values, well illustrate the effects of the angular noise on the
motion of the trapped active particle. For Dφ = 0 the particle
follows its elliptical orbit with frequency � and orientation
determined by the sign of �. Under the action of the angular
noise, Dφ > 0, the particle tends to randomly change direction
on a time scale of the order of τφ = 1/Dφ . In the regime
Dφ � �, the particle retraces its limit circle repeatedly before
leaving it. Vice versa, for Dφ � � its trajectories tend to

populate the region enclosed by the limit circle. In fact, as
the confined particle orients its motion inward, it takes a time
of the order of (v0/k)/v0 = 1/k to reenter its deterministic
orbit at some other point. It τφ � 1/k, that is Dφ � k, the
particle’s trajectory will consist of extended arcs of the limit
cycle. Correspondingly, in Fig. 6 the p.d.f.’s for Dφ � k

exhibit a characteristic annular structure centered around the
deterministic limit cycle, left panels, whereas for Dφ � k,
they tend to peak around its center, right panels.

IV. TRAPPING IN A POISEUILLE FLOW

The dynamics of an active particle of the Janus type
harmonically trapped in the Poiseuille flow of Eq. (3) cannot be
treated analytically because its shear torque is now a function
of its distance, y, from the center of the flow, �(y) = 4u0y/y2

L.
As a consequence, the model equations (1) turn nonlinear. We
discuss here similarities and differences with the case of the
Couette flow analyzed in Sec. III.

(i) Deterministic regime, D0 = Dφ = 0. Upon inserting
Eq. (3) for us(y) into the first Langevin equation (1), we first
locate the effective trap center,

(xc,yc) =
(

u0

k

[
1 −

(
2y0

yL

)2
]
,y0

)
, (23)

where y0 is the transverse coordinate of the harmonic trap,
while the longitudinal coordinate, x0, was set to zero for
convenience. The longitudinal shift of the trap’s center, xc,
results from the equilibration between the flow drag, us(y),
and the harmonic restoring force, −kx.

Recalling that the linear dimensions of the orbit of a trapped
active particle are of the order of v0/k, we expect that for
|y0 ± yL/2| � v0/k in a Poiseuille flow a noiseless Janus
particle moves along a closed orbit, not much differently than
in the Couette flow of Sec. III A. For an appropriate choice of
y0 and v0, the sign of �(y) is either definite positive for v0/k <

y0 < yL/2 − v0/k, or definite negative for −yL/2 + v0/k <

−y0 < −v0/k, which implies that the particle tends to orbit
counter-clockwise or clockwise, respectively. The numerical
integration of the model Eqs. (1) and (3) with D0 = Dφ = 0
supports this prediction; see Fig. 7(a). Furthermore, as in the
Couette flow, the particle loses memory of its initial conditions
after a transient time of the order of 1/k and eventually
approaches a limit cycle.
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FIG. 6. Trapped Janus particle in the Couette flow, Eq. (2), with angular noise. The contour plots of the p.d.f.’s P (x,y) have been computed
by integrating Eqs. (4) for D0 = 0, v0 = 1, k = 1, u0 = 1, yL = 10, and different levels of the angular noise (see legend).
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FIG. 7. Trapped Janus particle in the Poiseuille flow, Eq. (3): noiseless regime. Plots have been produced by integrating Eqs. (1) for
D0 = Dφ = 0 and (a), (b) v0 = 1, k = 1, u0 = 1 yL = 10, and different y0 (see legend); (c) v0 = 1, k = 1, u0 = 1 yL = 10, y0 = 0.75 and
different φ(0); (d) v0 = 0.2, k = 0.5, u0 = 1 y0 = 1, and different yL (see legend). For all trajectories x(0) = 0 and y(0) = y0. In panel (d) the
approximate orbits of Eq. (24) are represented by crosses; the dotted parabola in panel (a) is the profile of the shear flow of Eq. (3) in arbitrary
units.

An approximated analytical expression of such limit cycle
for sufficiently large values of y0 can be obtained by noticing
that on increasing |y0| the fluid speed, us(y), decreases, while
the shear torque �(y) increases. As the angular frequency
of the orbiting particle vanishes, setting ẋ = ẏ = 0 in Eqs. (1)
yields

v2
0 = [us(y) − kx]2 + k2(y − y0)2. (24)

This simple formula fits quite closely the numerical limit
cycles plotted in Fig. 7(d).

If the trap is placed closer to the flow centerline, y = 0,
the orbiting particle may happen to cross it, which means
that its shear torque, �(y), changes sign. Upon setting again
ẋ = ẏ = 0 in Eqs. (1) and dropping the noise terms, one
immediately recognizes that for |y0| < v0/k there exists a fixed
point solution (xf ,yf ) with

xf = u0

k
−

√(v0

k

)2
− y2

0 , yf = 0, (25)

where trajectories converge at an angle φf with respect
to the flow, which must satisfy the geometric condition
φf = − arcsin(ky0/v0); see Figs. 7(b) and 7(c). The fixed
point is always approached counterclockwise from above,
y → 0+ or −π < φf < 0, and clockwise from below, y →
0− or 0 < φf < π , independently on the initial conditions.
Moreover, depending on the initial conditions, the fixed point
can be approached along two different paths (corresponding
to different values of φf ) for both y → 0+ and y → 0−. As
shown in Fig. 7(c), in view of the system’s mirror symmetry,

each such path and the mirror image of the other one, joined
together, form a closed orbit, also approximated by Eq. (24).

(ii) Stochastic dynamics. The noise effects on the dynamics
of the trapped active particle is distinct in the presence of limit
cycle or fixed point. As the noiseless self-propelled particle
moves along a closed orbit [Fig. 7(a)] the action of thermal
and angular noises can be well described by adapting the exact
analytical results of Secs. III B and III C [11]. As a matter of
fact, for |y0| � v0/k we can expand �(y) in first order along
the orbit’s center (xc,yc), Eq. (23):

us(y) = us(y0) + 2�(y0)(y − y0).

Upon further translating the origin of the spatial coordinates
to (xc,yc), x → x − xc and y → y − yc, we reduce the set of
nonlinear Langevin equations (1) to the set of linear ordinary
stochastic equations introduced in Sec. III to model the
dynamics of a harmonically trapped Janus particle in a Couette
flow. As a consequence, for this range of model parameters,
the analytical results of Sec. III apply to the Poiseuille flow, as
well, with the only caution that the approximate shear torque,
�(y0), is now a function of the transverse coordinate of the trap,
y0. Accordingly, above (below) the flow centerline the particle
tends to move counterclockwise (clockwise). This conclusion
holds for both the correlation functions and the p.d.f.’s of the
trapped active particle as confirmed by numerical simulation.

Switching on the noise terms when the noiseless dynamics
of Eqs. (1) is governed by the fixed point of Eq. (25), (xf ,yf ),
leads to a more peculiar stochastic dynamics. In Fig. 8(a) we
plotted long trajectory samples of the same trapped active
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particle, but with opposite values of y0. Contrary to the
noiseless trajectories of Figs. 7(b) and 7(c), prodded by the
angular noise, in both cases the particle seems to follow
perturbed closed orbits passing in the vicinity of the fixed point.
In the noiseless regime such orbits are mirror symmetric and,
as illustrated in Fig. 7(c), consist each of two paths (one above
and one below the flow centerline), which the particle traces
with opposite orientations (counterclockwise and clockwise,
respectively) as it approaches the fixed point. Accordingly,
in the presence of noise, the particle does not run along an
apparently closed orbit, as suggested by Fig. 8(a), but rather
switches randomly between the two alternative paths that take
it toward the fixed point. This interpretation is confirmed by
the emergence of a prominent peak in the 2D p.d.f.’s plotted
in Figs. 8(b)–8(d).

The P (x,y) accumulation around (xf ,yf ) can be quali-
tatively explained by noticing that for an appropriate neigh-
borhood of the fixed point |�(y)| � Dφ . Accordingly, the
angular noise is more likely to kick the particle away from its
deterministic path in that region of the plane, while the shear
torque drives it back to it, following either deterministic paths
as soon as |�(y)| � Dφ . In addition, the motion of the particle
along the limit orbit is slower on the side closer to the shear
centerline. For this reason the annular structures of the P (x,y)
in a Poiseuille flow are always biased toward the center of the
flow.

V. CONCLUSIONS

We investigated the 2D dynamics of an active Brownian
particle diffusing in a harmonic trap swept through a shear
flow. Our work can be regarded as an extension of Ref. [11]
with the key difference that the trapped colloidal particle
considered here propels itself with constant speed and random
orientation. Its dynamics is thus subjected to two distinct
fluctuation sources, a 2D translational noise, due to the thermal
fluctuations of the suspension fluid [11], and an angular
noise, peculiar to the self-propulsion mechanism itself. As

a noiseless 2D sheared active particle moves along a closed
planar orbit, the translational noise sustains a harmonically
confined Brownian motion of the orbit’s center, while the
angular noise makes the particle’s trajectory diffuse around
its deterministic orbit.

We analytically calculated the lower moments of the planar
coordinates of the harmonically trapped active particle in a
Couette flow; the exact results thus obtained were extended to
investigate the richer diffusive dynamics that characterizes the
very same bound system in a planar Poiseuille flow.

Our analysis was carried out under the assumptions that
the active particle were isolated (that is away from the
container walls and other swimmers, so as to ignore inevitable
hydrodynamic effects) and the trap isotropic and harmonic. In
a real optical tweezer the confining force is linear only close
to the center, while nonconservative effects due to radiation
pressure may arise in the outer region with a remarkable
bias on particle’s diffusion [39]. However, in the presence
of appreciably strong self-propulsion, the resulting nonlinear
contributions to the particle dynamics can be regarded as
a next-to-leading correction to the model studied in the
present work. More important are the effects due to the
hydrodynamically mediated interactions among trapped active
particles and between a trapped active particle and a fixed
obstacle [16,17]. This is the subject of a forthcoming paper,
where the outcome of extensive numerical simulations will be
compared with the exact analytical results reported here.
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