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Tricriticality in the q-neighbor Ising model on a partially duplex clique
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We analyze a modified kinetic Ising model, a so-called q-neighbor Ising model, with Metropolis dynamics
[Phys. Rev. E 92, 052105 (2015)] on a duplex clique and a partially duplex clique. In the q-neighbor Ising model
each spin interacts only with q spins randomly chosen from its whole neighborhood. In the case of a duplex clique
the change of a spin is allowed only if both levels simultaneously induce this change. Due to the mean-field-like
nature of the model we are able to derive the analytic form of transition probabilities and solve the corresponding
master equation. The existence of the second level changes dramatically the character of the phase transition. In
the case of the monoplex clique, the q-neighbor Ising model exhibits a continuous phase transition for q = 3,
discontinuous phase transition for q � 4, and for q = 1 and q = 2 the phase transition is not observed. On the
other hand, in the case of the duplex clique continuous phase transitions are observed for all values of q, even for
q = 1 and q = 2. Subsequently we introduce a partially duplex clique, parametrized by r ∈ [0,1], which allows
us to tune the network from monoplex (r = 0) to duplex (r = 1). Such a generalized topology, in which a fraction
r of all nodes appear on both levels, allows us to obtain the critical value of r = r∗(q) at which a tricriticality
(switch from continuous to discontinuous phase transition) appears.
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I. INTRODUCTION

Multiplex networks have become one of the most active
areas of recent network research [1,2] mainly due to the fact
that many real-world systems, like public transport or social
networks, consist of many layers. After seven years of studies
we know much more about the structure and the function of
multiplex networks [3–5]. A lot of attention has been devoted
to the analysis of various dynamics on multiplex networks,
including diffusion processes [6], epidemic spreading [7–9],
and voter dynamics [10,11].

However, there is still an open question how the number
of levels influence the macroscopic properties of the system,
such as dynamics of global variables, phase transitions, or
other emerging patterns. In order to find a general answer
to this question systematic studies of various models are
needed. However, one of the fundamental problems when
dealing with models on the multiplex network is how to
“translate” the model, originally defined on a monoplex
network, into a multiplex network, because usually there are
several possibilities. For example, in the case of models defined
by Hamiltonians [12] interlayer interactions can be introduced
by the relations between the coupling constants. However, the
results of the model can strongly depend on this interlayer
interaction. Jang et al. [12] thoroughly analyzed the behavior
of the Ashkin-Teller model in various types of interlayer
interaction and presented a rich phase diagram containing three
types of phase transitions: first order, second order, and mixed
order. For the models defined by the transition probabilities,
like the voter model [13], the threshold model [14], or the
q-neighbor Ising model [15] one way of defining interactions
between layers is the adoption of so-called AND and OR rules.
These rules were proposed for the first time by Lee et al. [16],
where the generalized threshold cascade model on multiplex
networks has been studied. Authors introduced two kinds on
nodes: (1) an OR node was activated as soon as a sufficiently
large fraction of its neighbors were active in at least one level,

and (2) an AND node was activated only if in each and every
layer a sufficiently large fraction of its neighbors were active.

The concept of AND and OR rules has been recently adopted
in the q-voter model with independence [11], in which the
tricriticality is observed on the monoplex network: for q � 5
an order-disorder phase transition is continuous, and for q � 6
it switches to discontinuous [17]. On a multiplex network
consisting of only AND nodes the phase transition switches
from continuous to discontinuous for q∗ = 4 if the number of
layers L � 3 and for duplex network q∗ = 5.

Another model, in which tricriticality has been recently
observed is the q-neighbor Ising model with Metropolis
dynamics [15,18], a nonequilibrium modification of the kinetic
Ising model. The Ising model has always played a very special
role in the statistical physics, but recently new unexpected
behavior, including tricriticality, has been found in one of
its nonequilibrium versions [15,18,19]. For the original Ising
model a continuous phase transition is observed for both
the regular lattices as well as monoplex complex networks
[20–22]. On the other hand, in the case of network of network
topology Suchecki and Hołyst observed a discontinuous phase
transition [23]. Moreover, recently it has been shown that a
seemingly small modification of the kinetic Ising model—in
which a randomly chosen spin interacts only with its q

neighbors—leads to the surprising result on monoplex com-
plete graph, i.e., a switch from a continuous to a discontinuous
phase transition at q = 4 [15,18].

In this paper we ask the same question that has been asked
previously within the q-voter model in Ref. [11], but this time
within the q-neighbor Ising model, namely, “How will the
additional level influence the type of the phase transition?”
Analogously, as in Ref. [11] we focus on a trivial topology,
i.e., a duplex clique. The experience gained from the q-voter
model allows us to predict that the switch from a continuous
to a discontinuous phase transition will appear for a smaller
value of q in the case of a duplex clique than for a monoplex
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one. Such a result would be also expected from the theory of
equilibrium phase transitions, if the additional layer could be
treated analogously to the additional dimension [11]. However,
we will show that our naive prediction fails in case of the
q-neighbor Ising model, and results are exactly opposite. For
a duplex clique the phase transition becomes continuous for all
values of q. Because for a monoplex network a discontinuous
phase transition is observed for q � 4 and for duplex cliques
the phase transition is continuous for an arbitrary value of q,
we expect that there is an intermediate topology for which a
switch from a discontinuous to a continuous phase transition
appears. Therefore we investigate the q-neighbor Ising model
also on a generalized topology of a partially duplex clique,
parametrized by r ∈ [0,1], which allows us to tune the network
from monoplex (r = 0) to duplex (r = 1). Such a generalized
topology, in which a fraction r of all nodes appear on both
levels, allows us to estimate the critical value of r = r∗(q)
at which the switch from continuous to discontinuous phase
transition is observed.

The question that naturally appears here is related to the
motivation of this work. Certainly investigated topology is
interesting from the point of view of social systems, but why
investigate a modified Ising model in this context? There are
at least three motivations for this work:

(1) The q-neighbor Ising model has shown very intriguing,
unexpected behavior already on the complete graph [15,18,19],
and we wanted to check what a role of additional level is for this
model. We hoped that this would bring us closer to heuristic
understanding of the behavior of the model.

(2) We have investigated already the q-voter model on a
duplex clique, and based on our studies we have speculated on
the role of the additional level of a network and on the relation
between the type of phase transition and dimensionality of
the system [11]. To check the universality of our findings
we decided to investigate another nonequilibrium model with
binary dynamical variables on the same type of network.

(3) Models of opinion dynamics are often based on
Ising-spin variables [17,24–29]. From this perspective the
q-neighbor Ising model could be treated as a model of opinion
dynamics with two types of social reposes: conformity and
independence [28]. Such simple models with binary opinions
have found surprisingly many applications, including diffusion
of innovation [30,31]. Therefore they are particularly worth
being studied on multilayer networks.

II. DUPLEX CLIQUE AND PARTIALLY DUPLEX CLIQUE

Multiplex networks consist of distinct levels (layers), and
the interconnections between levels are only between a node
and its counterpart in the other layer (i.e., the same node). A
duplex clique is a particular case of a multiplex networks,
which consists of two distinct levels, each of which is
represented by a complete graph (i.e., a clique) of size N .
Levels can can be interpreted as two different communities
(e.g., Facebook and school class) and are composed of exactly
the same people; each node possesses a counterpart node in the
second layer. The same topology was considered to analyze
the q-voter model with independence [11]. As previously, we
assume that each node possesses the same state on each level.

FIG. 1. Example of a partially duplex clique which consists of two
complete graphs of size N = 6 with interlayer connectivity r = 2/3.

In the partially duplex clique only fraction r of N nodes
have a counterpart in the other layer, and all remaining
nodes belong only to one community (layer). This means
that at each level we have Nd = Nr duplex-type nodes
and Nm = N (1 − r) monoplex-type nodes, which means that
in total the system consists of Nd + Nm = Nr + 2N (1 − r)
distinguishable nodes; an example of such a topology is shown
in Fig. 1. The fraction r of individuals who are active in both
layers was introduced in Ref. [7]. It has been suggested that
the parameter r can be interpreted as interlayer connectivity
or the degree of structural multiplexity of the system [32].

III. THE q-NEIGHBOR ISING MODEL
ON A DUPLEX CLIQUE

In Ref. [15] we have modified the kinetic Ising model
with Metropolis dynamics allowing each spin to interact only
with q spins randomly chosen from its neighborhood. We
have considered only a complete graph, which is particularly
convenient for analytical treatment. Here we consider again
a set of N spins described by dynamical binary variables
Si = ±1, but this time they are duplicated on the second level.
The algorithm of a single update of the q-neighbor Ising model
on a duplex clique consists of eight consecutive steps:

(1) Randomly choose a spin Si

(2) From all neighbors of Si choose a subset nn1 of q

neighbors on the first level
(3) Calculate the change of the “energy” related to the

potential flip of spin Si :

�E1 = E1(−Si) − E1(Si) = 2Si

∑
j∈nn1

Sj (1)

(4) Select randomly a real number p1 ∈ U [0,1], and if
p1 < min[1,e−�E1/T ], then set flag f1 = 1 else f1 = 0; flag
f1 = 1 indicates a flip, whereas f1 = 0 suggests to keep the
state

(5) From all neighbors of Si choose a subset nn2 of q

neighbors on the second level
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(6) Calculate the change of the “energy” related to the
potential flip of spin Si :

�E2 = E2(−Si) − E2(Si) = 2Si

∑
j∈nn2

Sj (2)

(7) Select randomly a real number p2 ∈ U [0,1], and if
p2 < min[1,e−�E2/T ], then set flag f2 = 1 else f2 = 0

(8) If f1 = 1 and f2 = 1, then flip the spin Si → −Si and
its counterpart in the second layer.

We are aware that E1 and E2 are not real energies, and
therefore we use quotes, because we sum interactions with
only some randomly chosen neighbors. As usual, a single
time step consists of N elementary updates, i.e., �t = 1/N ,
which means that one time unit corresponds to the mean update
time of a single individual. As an order parameter we choose
magnetization, in sociophysics models interpreted often as a
public opinion:

m = 1

N

N∑
i=1

Si. (3)

In a single update the number of spins “up” N↑ can change
according to the following process:

N↑(t + �t ) =

⎧⎪⎨
⎪⎩

N↑(t) + 1 with prob γ +,

N↑(t) − 1 with prob γ −,

N↑(t) with prob 1 − (γ + + γ −).
(4)

Simultaneously with N↑, magnetization m increases or de-
creases by 2/N or remains constant with the above probabili-
ties.

To calculate transition probabilities γ + and γ − for N → ∞
it is convenient to use the concentration of “up” spins, which
is related to the magnetization by the simple formula

c = N↑

N
= m + 1

2
. (5)

The transition probabilities as a function of c and model’s
parameters T and q have the following form:

γ +(c,T ,q) = (1 − c)

[
k=q∑
k=0

(
q

k

)
cq−k(1 − c)kE(q,k)

]2

,

γ −(c,T ,q) = c

[
k=q∑
k=0

(
q

k

)
(1 − c)q−kckE(q,k)

]2

, (6)

where

E(q,k) = min

{
1, exp

[
2(q − 2k)

T

]}
. (7)

The above equation comes as a direct consequence of Metropo-
lis dynamics (i.e., flip probability equal to min[1,e−�E/T ]),
where the energy change �E = 2Si

∑
j∈nn Sj . As the sum

over the spins in the q neighborhood can be expressed
as

∑
j∈nn Sj = kSi − (q − k)Si with k = 0, . . . ,q being the

number of neighbors which have the same state as spin Si ,
after some quick algebra we arrive at �E = 2(2k − q). For
the average values of concentration we can also write the rate

FIG. 2. The average magnetization 〈m〉 as a function of the
temperature T for the duplex clique with q changing from 1 to 6
(from left to right). Monte Carlo results (denoted by symbols) were
obtained for the system of size N = 104 and averaged over R = 200
realizations. Lines represent solutions of Eq. (9).

equation [33], which has the following form in the rescaled
time t :

〈c(t + 1)〉 = 〈c(t)〉 + [γ +(c,T ) − γ −(c,T )]. (8)

In the stationary state 〈c(t + 1)〉 = 〈c(t)〉, which is equivalent
to the condition that the effective force [17]:

F (c,T ,q) = γ +(c,T ,q) − γ −(c,T ,q) = 0. (9)

In Fig. 2 we compare the results obtained from the Monte
Carlo simulations and solutions of Eq. (9) (see Appendix A
for explicit solutions in the case of q = 1 and q = 2). Both
methods give consistent results, and a continuous phase
transition is visible for all values of q. In order to find
analytically the value of the critical temperature we can use
the method proposed in Ref. [28], namely, we calculate T for
which the following condition is fulfilled:∣∣∣∣∂F

∂c

∣∣∣∣
c=0.5

= 0, (10)

TABLE I. Critical temperature for duplex cliques for first values
of q.

q Tc Value

1 2
ln 3 1.82

2 4
ln 5 2.49

3 6

− ln ( 1
7 {8+ 9(

√
973−28)

1
3

7
2
3

− 27

[7(
√

973−28)]
1
3

})
4.86

4 8
− ln [ 1

81 (317−20
√

217)]
6.22

5 No compact form 8.35

6 12

−3 ln { 1
13 [(9534+13

√
537853)

1
3 − 1

(9534+13
√

537853)
1
3

−18]}
9.90
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which in our case takes the form of
k=q∑
k=0

(
q

k

)
(2q − 4k − 1)E(q,k) = 0. (11)

For small values of q it is possible to write explicitly the exact
value of Tc (see Table I), whereas for q 
 1 we observe a linear
growth of Tc with q that can be approximated by Tc ≈ 2q (see
Appendix A for details).

Let us recall here that for the q-neighbor Ising model on
a monoplex clique the behavior is much richer: for q = 1
and q = 2 there is no phase transition, for q = 3 the phase
transition is continuous, and for q � 4 it is discontinuous
[15]. Moreover, for q > 3 the hysteresis exhibits oscillatory
behavior, expanding for even values of q and shrinking for
odd values of q. It is worth to stress that the rule used here
corresponds to the AND dynamics [11,16] which means that
a change of a spin is possible only if both layers indicate the
change. In the case of the OR rule, i.e., when a change of a spin
is possible if at least one of the two layers indicate the change,
the q-neighbor Ising model does not exhibit phase transition
on a duplex clique, regardless of the value of q.

IV. THE q-NEIGHBOR ISING MODEL ON A PARTIALLY
DUPLEX CLIQUE

As has been already mentioned in Sec. II, in the partially
duplex clique only the fraction r of N nodes has a counterpart
in the other layer, and the remaining nodes belong only to
one level (see Fig. 1). Therefore for intermediate topologies,
i.e., r ∈ (0,1) there are two types of nodes at each level: we
have Nd = Nr duplex-type nodes (the state is the same on
both levels) and Nm = N (1 − r) monoplex-type nodes. The
algorithm of a single update of the q-neighbor Ising model on
a partially duplex clique can be described as follows:

(1) Choose randomly a level; the first or the second with
equal probability 1/2.

(2) From N spins on the selected level choose randomly a
single spin Si .

(3) If the chosen spin belongs to the subset of duplex nodes,
the algorithm looks the same as for the duplex clique.

(4) If the spin belongs to the subset of monoplex nodes,
then

(a) From all the neighbors of Si choose a subset nn of
q neighbors (monoplex nodes have neighbors only on one
level).

(b) Calculate the change of the “energy” related to the
potential flip of spin Si :

�E = E(−Si) − E(Si) = 2Si

∑
j∈nn

Sj . (12)

(c) Flip the ith spin with probability min[1,e−�E/T ].
We calculate separately concentration of “up” spins for the

monoplex nodes (cm) and duplex nodes (cd ):

cm = N
↑
m

Nm

, (13)

cd = N
↑
d

Nd

. (14)

Since both layers are equivalent, we can restrict our analysis
to a single level.

The transition probabilities for the monoplex nodes that
describe transitions cm → cm ± 1/Nm are given by

β+
m = (1 − r)(1 − cm) ×

k=q∑
k=0

(
q

k

)
cq−k(1 − c)kE(q,k),

(15)

β−
m = (1 − r)cm ×

k=q∑
k=0

(
q

k

)
(1 − c)q−kckE(q,k),

and the corresponding rate equation in the rescaled time:

〈cm(t + 1)〉 = 〈cm(t)〉 + (β+
m − β−

m ). (16)

The transition probabilities for the duplex nodes that
describe transitions cd → cd ± 1/Nd are given by

β+
d = r(1 − cd )

[
k=q∑
k=0

(
q

k

)
cq−k(1 − c)kE(q,k)

]2

,

(17)

β−
d = rcd

[
k=q∑
k=0

(
q

k

)
(1 − c)q−kckE(q,k)

]2

,

and the corresponding rate equation in the rescaled time:

〈cd (t + 1)〉 = 〈cd (t)〉 + (β+
d − β−

d ). (18)

Finally the total number of “up” spins in the single layer is
equal to N↑(t) = N

↑
m + N

↑
d which after dividing by N gives

〈c(t)〉 = (1 − r)〈cm(t)〉 + r〈cd (t)〉. (19)

As in the fully duplex case, the stationary state 〈c(t + 1)〉 =
〈c(t)〉 is equivalent to the effective force condition

Fq(c,T ,r) = 0, (20)

where the effective force is defined using the following
equation:

〈c(t + 1)〉 = 〈c(t)〉 + Fq(c,T ,r). (21)

A. Results for q = 1 and q = 2

For a monoplex network the phase transition is not present
for q = 1 and q = 2. We solve explicitly Eq. (20) for an
arbitrary value of r in case of q = 1 and q = 2. For q = 1 we
obtain the following relation between the critical temperature
Tc and r (see Appendix B for details):

Tc(r) = 2

ln r+2
r

. (22)

A phase transition appears for any r > 0, and it is continuous
(when r → 0 we have Tc → 0 and no phase transition). For
r = 1 we have Tc = 2

ln 3 confirming the result from Table I.
In the case of q = 2 for the narrow range r between

rc = 2(3
√

2 − 4) and 1
2 we observe a particularly rich behavior

with five real solutions, denoted further as m0, . . . ,m4 (see
Fig. 3 and Appendix B for explicit equations). The solution
corresponding to the disordered state, i.e., m0 = 0, is stable in
the entire range of temperature T . Moreover, we have two other
stable and two unstable solutions or rather one pair of stable
solutions m1,m3 = −m1 and one pair of unstable solutions
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FIG. 3. Analytical solutions of magnetization m as a function of temperature for q = 2 and (a) r = 0.486, (b) r = 0.49, (c) r = 0.499, and
(d) r = 0.5. Solid lines represent stable solutions, and dashed lines show unstable ones.

m2,m4 = −m2. In the language of nonlinear dynamics we
have two symmetrical saddle-node bifurcations, where a
stable solution annihilates with the unstable one [34]. This
is an interesting phenomenon that cannot be interpreted in
terms of a classical phase transition. One should notice that
a continuous phase transition corresponds to supercritical
pitchfork bifurcation: below the bifurcation point there is
one stable fixed point m0 = 0 and above m0 = 0 it becomes
unstable, whereas two new stable fixed points appear on either
side of the origin symmetrically located at m+,m− = −m+
[34]. On the other hand, a discontinuous phase transition
corresponds to subcritical pitchfork bifurcation, which is in
a sense an inverted supercritical pitchfork bifurcation. The
nonzero symmetric fixed points are unstable and exist below
the bifurcation point together with a stable fixed point m0 = 0.
Above the bifurcation point two unstable solutions annihilate
and m0 = 0 becomes unstable. As noted by Strogatz in real
physical systems, such an explosive instability is usually
opposed by stable solutions of higher-order terms, and this
is exactly what is observed in case of discontinuous phase
transitions. In these cases, the only difference between phase
and bifurcation diagrams comes from the definition of an order
parameter that takes a nonzero value below the critical point
and zero above. Thus the phase diagram could be obtained
from the bifurcation diagram by reflection T → −T . The
behavior we observe here for q = 2 is reminiscent in a sense of
a discontinuous phase transition, because we have hysteresis,

i.e., below the transition point we have three attractive fixed
points and three related basins of attractions. It approaches

FIG. 4. Analytical solutions for magnetization m as a function
of temperature T for q = 2. Solid lines represent stable (attracting)
solutions, dashed lines represent unstable (repellent) solutions: from
left to right r = 0.51, r = 0.6, r = 0.7, r = 0.8, r = 0.9, and r = 1.
The point where m = 0 changes its character from an unstable to a
stable solution is invisible due to overlapping of lines for different
values of r .
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FIG. 5. The construction of the m1(T1) (red arrow), i.e., the stable
solution of an order parameter at the lower spinodal line shown for
r = 0.501. Inset: the decay of stable magnetization at lower spinodal
line with parameter r for q = 2.

a regular discontinuous phase transition for r → 1/2. With
increasing r ∈ (rc; 1

2 ) two unstable fixed points approach each
other and finally overlap while two stable fixed points move
toward m = ±1, which can be seen in Fig. 3(d).

For r > 1
2 we observe a typical discontinuous phase

transition (see Fig. 4). The point where two unstable solutions
disappear and m0 = 0 becomes a stable one is clearly seen for
r = 0.51 in Fig. 4. With increasing r this transition becomes
weakly discontinuous: stable solutions dominate, whereas the
unstable one is visible only for a very small range of r .
Let us underline here that the analytical solutions are fully
consistent with the numerical simulations: in Fig. 9(d) in
Appendix C we show the average absolute magnetization
〈|m|〉 versus temperature T for r = 0.51 and system size
N = 500 000 compared with respective analytical solutions.
The hysteresis as well as the jump of the order parameter are
observed in both methods. It is worth mentioning here that the
observed behavior is strongly dependent on the system size
(see Appendix C for details).

The natural way to calculate the critical value of parameter
r = r∗, for which the phase transition becomes continuous,
would be to look at a distance between upper and lower
spinodal lines T2 − T1 (see Fig. 5). While the lower spinodal
line T1 can be obtained quite easily from the condition∣∣∣∣∂Fq(c,T ,r)

∂c

∣∣∣∣
c= 1

2

= 0, (23)

determining the upper spinodal line T2 is much more tricky.
However, we can also obtain r∗ using another quantity, namely,
the stable solution of an order parameter at the lower spinodal
line m1(T1) [or equivalently m3(T1) = −m1(T1); cf. the red
arrow in Fig. 5]. Notice that as T1 approaches T2, m1(T1) and
m3(T1) approach zero. Once m1(T1) = m3(T1) = 0 the phase
transition becomes continuous. The above described procedure
is equivalent to solving the equation

Fq(c,T1(r),r) = 0 (24)

FIG. 6. Analytical solutions for magnetization m as a function
of temperature T for q = 4 and (from left to right) r = 0, r = 0.05,
r = 0.1, r = 0.15 r = 0.18, and r = 0.208.

and obtaining this way m1(r) ≡ m1(T1(r)), which can be
further used to find the critical value r∗ by solving m1(r) = 0.

In general for an arbitrary value of q Eq. (24) is an
algebraic equation of high order; however, for q = 2 we have
a particularly simple form as in this case T1(r) = 4/ ln 2r+3

2r−1

and m1(r) = 1 − √
2r − 1. The decay of stable magnetization

at a lower spinodal line with parameter r is shown in the inset
of Fig. 5 proving that in the case of q = 2 for all r > 1

2 we
have a discontinuous phase transition as already observed in
Fig. 4, while in the limiting case r → 1/2 we obtain T1 = 0.

B. Results for q > 2

For q = 3 the phase transition is continuous for all values of
r . This is an expected result since for q = 3 continuous phase
transitions have already been observed for both monoplex [15]
and duplex cliques (see Fig. 2). On the other hand we have
different expectations for q = 4 where for a monoplex clique
the phase transition is discontinuous [15], whereas for the
duplex case it is continuous (Fig. 2). In Fig. 6 we present
magnetization as a function of T for q = 4 and several values
of r . It is clearly seen that the unstable regime decreases with
the increase of interlayer connectivity r . This observation
brings us to a natural question that can be formed in the
following way: “For which value of r∗ does the transition
become continuous?” In order to cope with that issue we
come back to the idea introduced in the previous section for
q = 2 and presented schematically in Fig. 5. The results for
q = 4 as well as for other values up to q = 13 are shown
in Figs. 7(a) and 7(b): Fig. 7(a) presents m1(T1) for even
values of q and Fig. 7(b) for odd ones. It is seen that for odd
values of q function r∗ = r∗(q) is monotonically increasing,
while for even values of q the behavior is nonmonotonic. This
phenomenon is summarized in Fig. 7(c) where we also observe
oscillatory behavior of r∗ with increasing q for odd and even
values of q similar to Ref. [15].

All observations discussed above regarding the character
of phase transitions for q = 1, . . . ,13 are gathered in a
(q,r)-space phase diagram presented in Fig. 7(d). It shows all
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FIG. 7. (a, b) The value of magnetization m1(T1) for even (a) and odd (b) values of q. (c) The critical value r∗ for which the phase transition
becomes continuous as a function of q. (d) Phase diagram for the q-neighbor Ising model on a partially duplex clique in a (q,r) space. White
regions indicate discontinuous phase transition and the gray ones continuous. The area where a phase transition is absent is marked with black.
The small range for q = 2 shown with orange represents the special case of a phase transition depicted in Fig. 3.

three possible outcomes of the model: discontinuous phase
transition (marked by white), continuous phase transition
(gray), and absence of phase transition (black). The phase
diagram underlines apparent differences between even and
odd values of q. In particular for odd values of q a continuous
phase transition dominates: for q = 1 and q = 3 the transition
is continuous for all r > 0, and for q = 5 we have a discon-
tinuous transition only for a small range of r ∈ [0; 0.016]. For
larger odd values of q the regime of discontinuity increases.
The same situation is observed for even values of q with
q � 6. The two outstanding cases are q = 2 and q = 4. One
has to stress that q = 2 is a singular case with a special
phase transition occurring for r ∈ (2(3

√
2 − 4); 1

2 ) [marked
with orange in Fig. 7(d)], a classic discontinuous phase
for r ∈ ( 1

2 ; 1), and finally a continuous phase transition for
r = 1.

V. CONCLUSIONS

According to the modern theory of phase transitions, each
phase transition can be described by an order parameter, having
a nonzero value in the ordered phase whereas it vanishes in
the disordered phase, and this simple classification is used

also in the theory of nonequilibrium phase transitions [35].
However, it has been noticed in number of cases that the
dichotomy between continuous and discontinuous transitions
fails, in a sense that a jump of the order parameter coincides
with power-law singularities [36–40] or even the absence
of hysteresis, metastable states, and phase coexistence [38],
which are fundamental indicators of the first-order phase
transitions. It can also happen that the phase transition is
weakly discontinuous [41,42], i.e., the jump of the order
parameter is small and therefore deciding if the transition
is discontinuous is quite difficult in computer simulations.
In such a situation measuring the hysteresis of the order
parameter is a demanding task [37]. However, one should
remember that the real size of hysteresis is reached only in
the thermodynamic limit and for a small system it may be
unseen. The problem is related to the word “small,” because
for every model the sufficient size of the system in general
can be very different. As we have discussed here, for the
q-neighbor Ising model on a partially duplex network for size
N = 104 the hysteresis is still unseen, and even for N = 105

it is still significantly smaller than for the infinite system.
Therefore this is why it is very important to have analytical
solutions, which in general is possible only for mean-field-like
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topologies. Having results both analytical and obtained from
Monte Carlo simulations, we can trust that our findings are
correct. This is particularly important in this case, because our
results are highly unexpected and difficult to understand.

In the first part of this work we have analyzed the q-
neighbor Ising model [15], on a duplex clique. Adding the
second level radically changes the behavior of the model: a
monoplex network model for q � 4 exhibits a discontinuous
phase transition, whereas for the duplex network continuous
phase transitions are observed for all values of q. This is
not an obvious result, especially if we recall the findings
and argumentations regarding the q-voter model on multiplex
networks [11]. In the q-voter model on a monoplex network
a continuous phase transition is observed for q ∈ [2,5],
and for q � 6 a phase transition becomes discontinuous on
various monoplex networks [17,29]. For a duplex network
a phase transition becomes discontinuous already for q = 5.
Therefore it has been argued that an additional level might
play a similar role as an additional dimension, because in
equilibrium statistical mechanics it is common that systems
exhibiting a discontinuous phase transition in high space
dimensions may display a continuous transition below a
certain critical dimension [35]. However, results obtained
within the q-neighbor Ising model on a duplex clique show
that our speculations were wrong. Unfortunately, we are not
even able to resolve which of two statements (maybe both)
are not universal: (1) additional levels of a network play
a similar role as an additional dimension, (2) the relation
between dimensionality and the type of phase transition in
nonequilibrium systems is reminscent of the relation observed
in equilibrium systems.

Even more surprising results have been obtained in the
second part of work, where partially a duplex clique has been
introduced. The most intriguing phenomena has been observed
for q = 1 and q = 2. Let us recall again that for monoplex
networks phase transitions appear in the q-neighbor Ising
model only for q � 3. Because here we use an AND rule to
describe interactions with both layers, we have expected that
phase transition would appear for q smaller than 3, but not
for q = 1. We would like to stress here that the continuous
phase transition appears in this case for any positive value of
r , which means that adding even a small fraction of duplex
nodes introduces a phase transition. However, an even bigger
surprise is the model’s behavior for q = 2. One would expect
that if the phase transition appears already for q = 1 with
arbitrary r > 0, it will be present also for q = 2 with r > 0.
Yet, for q = 2 and small values of r , the model does not exhibit
any phase transition. What is happening for larger values of r

is probably even more astounding. For r < rc = 2(3
√

2 − 4)
there is no phase transition, and the only steady state is
disordered, i.e., m = 0. For r ∈ [rc,0.5] there are two more
ordered steady states, but the phase tradition differs from the
regular discontinuous phase transition. Finally, for r > 0.5
the phase transition becomes classically discontinuous, but
discontinuity decreases with increasing r up to continuous for
r = 1.

We would like to focus for a while on the case q = 2
and r ∈ [rc,0.5], for which an “exotic” discontinuous phase
transition appears. In a sense the phase transition has all the
properties of a classical discontinuous phase transition: order

parameter jumps, coexistence of states, and dependence on the
initial conditions (hysteresis). However, if we look at the phase
diagram, we immediately see that this transition looks different
than “equilibrium-type” of phase transitions. If we look at
this behavior from the perspective of nonlinear dynamics we
see that for r > rc we have two symmetrical saddle-node
bifurcation points. For increasing r they are approaching
each other, and for r > 0.5 a new bifurcation point appears.
This is the so-called subcritical pitchfork bifurcation, which
corresponds to a “traditional” discontinuous phase transition
[34]. Both types of bifurcations are clearly seen in Fig. 5: at T1

there is subcritical pitchfork bifurcation (it is present only for
r > 0.5), and at T2 there is a saddle-node bifurcation. We are
aware that the model we consider here is not an equilibrium
model but a certain dynamical system, and therefore it might
seem naive to expect an “equilibrium-type” of phase transitions
here. On the other hand, it is often believed that [35] “Much
of what is known about equilibrium phase-transitions can
be extended to the nonequilibrium case as well.” Indeed, in
most Ising-type or voter-type nonequilibrium models only
traditional phase transitions have been observed [15,17–
19,29,43], and in this context the behavior of the q-neighbor
Ising model on a partially duplex clique is particularly
rich.

For q � 3 results are not so surprising, especially if one
recalls the behavior of the model on a single-layer complete
graph [15,18]. Because on a duplex clique a phase transition is
always continuous and on a monoplex one it is continuous for
q = 3 and discontinuous for q � 4, we expect that for q � 4
there is a critical value of r = r∗ below which the transition
is discontinuous and above continuous. This is indeed what
we have observed. For all q � 4 there is a critical value of
interconnections r∗ = r∗(q) above which a phase transition
becomes continuous. The transition between a discontinuous
and continuous regime is smooth: the jump of the order
parameter and hysteresis decreases to zero continuously.
Thus at r∗ = r∗(q) we have a tricritical point. It is worth
mentioning here that tricriticality has been already observed
in the q-neighbor Ising model three times, and each time its
origin was slightly different but in all cases related to some
kind of noise [18,19,44]. In Ref. [18] it has been introduced by
the additional heat bath for links, in Ref. [19] by the probability
W0 of flip in the absence of the energy changes, and in Ref. [44]
by rewiring a network at some time intervals τ .

In the Introduction we summarized the motivation for
this paper. Our first aim was to understand better the rich
behavior of the q-neighbor Ising model, observed earlier in
Refs. [15,18,19]. Although all results obtained so far were not
only numerical but also analytical, we do not feel that we came
closer to conceptual understanding of the model. The second
aim was to verify the universality of findings from our previous
paper [11]. As we have shown here the relation between the
number of levels of network and the type of phase transition is
not universal. Results obtained for a q-voter model with noise
and a q-neighbor Ising model are contradictory. For many
years the dream of statistical physicists has been to develop
and establish the theory of nonequilibrium phase transitions.
There was a hope, not fully justified, that much of what is
known about equilibrium phase transitions can be extended
to the nonequilibrium situation. However, as shown here, this
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hope does not always become reality, and our “equilibrium”
intuition may be completely wrong.
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APPENDIX A: EXPLICIT SOLUTIONS
FOR THE DUPLEX CASE

In the case of q = 1 Eq. (9) takes an explicit form of

−2c3e−4/T (−1 + e2/T )2 + 3c2e−4/T (−1 + e2/T )2

+ c(−1 − 3e−4/T + 2e−2/T ) + e−4/T = 0. (A1)

Solving the above equation as well as transforming c to m by
m = 2c − 1 leads to

m0 = 0,
(A2)

m1,2 = ±
√

(1 + x)(1 − 3x)

1 − x

with x = e− 2
T . In the same manner, for q = 2 Eq. (9) reads

−2c5e−8/T (−1 + e4/T )2 + 5c4e−8/T (−1 + e4/T )2 + c3(−6

−10e−8/T + 16e−4/T ) + c2(4 + 10e−8/T − 14e−4/T )

+ c(−1 − 5e−8/T + 4e−4/T ) + e−8/T = 0, (A3)

FIG. 8. Critical temperature Tc for the duplex clique as a function
of q. Points represent solutions obtained using Eq. (11), and the solid
line comes from a linear regression fit. To prevent visual overlap only
every 10th data point is shown.

which has five solutions, with three real-valued that can be
given as

m0 = 0,
(A4)

m1,2 = ±
√

2
√

(1 − 5x)(1 − x) − 1 + 5x

1 − x
,

where x = e− 4
T . Solutions for higher values of q have an

increasingly more sophisticated and complex form; nonethe-
less using Eq. (11) it is possible to obtain values of critical
temperature Tc and plot it as a function of q (see Fig. 8).
By applying linear regression we find that Tc = aq + b with
a = 1.95474 ± 0.00067 and b = 3.093 ± 0.077.

APPENDIX B: DERIVATION OF ANALYTIC EQUATIONS FOR q = 1 AND q = 2 CASES WITH ARBITRARY r

In the case of q = 1 combining the set of Eq. (19) with β+
m (c) − β−

m (c) = 0 and β+
d (c) − β−

d (c) = 0 as well as transforming c

to m by m = 2c − 1 leads to the following three solutions:

m0 = 0, m1,2 = ±1 + x

1 − x

√
(r + 2)x − r

(r − 2)x − r
(B1)

with x = e− 2
T .

The nominator under the radical allows us to get formula (22). A similar procedure performed for q = 2 results in the following
set of five equations:

m0 = 0, (B2)

m1,3 = ±
√

1 − 1

3

[
(x − 1)2[r2(x − 1) + 12r(x − 1) + 6(x + 1)]

u(x,r)/(1 − i
√

3)
+ 2(x − 1)2[r(x − 1) + 6x] + (1 + i

√
3)u(x,r)

(x − 1)3

]
, (B3)

m2,4 = ±
√

1 + 2

3

[
(x − 1)2[r2(x − 1) + 12r(x − 1) + 6(x + 1)]

u(x,r)
− (x − 1)2[r(x − 1) + 6x] − u(x,r)

(x − 1)3

]
, (B4)
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FIG. 9. Finite-size effects for average absolute magnetization 〈|m|〉 vs temperature T for q = 2 and increasing network size: (a) N = 10 000,
(b) N = 50 000, (c) N = 100 000, (d) N = 500 000. Symbols represent Monte Carlo simulations (squares, random initial conditions; circles,–
ordered initial conditions), and solid and dashed lines give, respectively, stable and unstable solutions obtained from Eqs. (B2)–(B4).

where

u(x,r) ={3
√

3(x − 1)15[4r3(x − 1)2(r + 15 + x) − 8(x + 1)2[6r(x − 1) + x+]) + r2(−95 + 61x − 13x2 + 47x3)]

− r(x − 1)8[9 + r(18 + r)(x − 1) + 63x]} 1
3 (B5)

and x = e− 4
T . The solutions are shown for exemplary cases in Fig. 3.

APPENDIX C: FINITE SIZE EFFECTS

The importance of the size of the considered system can be examined by comparing the analytical solutions with the Monte
Carlo simulations performed for a different number of nodes N . Such a setting is shown for q = 2 in Fig. 9(a) where we observe a
very narrow hysteresis for N = 10 000, which consequently increases with the system size: N = 50 000 [Fig. 9(b)], N = 100 000
[Fig. 9(c)], and finally becomes close to analytical solutions [N = 500 000, Fig. 9(d)].

[1] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-
Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M.
Zanin, The structure and dynamics of multilayer networks, Phys.
Rep. 544, 1 (2014).

[2] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, Multilayer networks, J. Complex Netw. 2, 203
(2014).

[3] F. Battiston, V. Nicosia, and V. Latora, Structural measures for
multiplex networks, Phys. Rev. E 89, 032804 (2014).

[4] V. Nicosia and V. Latora, Measuring and modeling correlations
in multiplex networks, Phys. Rev. E 92, 032805 (2015).

[5] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora,
Structural reducibility of multilayer networks, Nat. Commun.
6, 6864 (2015).

[6] S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-
Vicente, Y. Moreno, and A. Arenas, Diffusion Dynam-
ics on Multiplex Networks, Phys. Rev. Lett. 110, 028701
(2013).

062137-10

https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1103/PhysRevLett.110.028701


TRICRITICALITY IN THE q-NEIGHBOR ISING . . . PHYSICAL REVIEW E 96, 062137 (2017)

[7] C. Buono, L. G. Alvarez-Zuzek, P. A. Macri, and L. A. Braun-
stein, Epidemics in partially overlapped multiplex networks,
PLoS ONE 9, e92200 (2014).

[8] C. Granell, S. Gómez, and A. Arenas, Dynamical Interplay
Between Awareness and Epidemic Spreading in Multiplex
Networks, Phys. Rev. Lett. 111, 128701 (2013).

[9] J. Sanz, Ch.-Y. Xia, S. Meloni, and Y. Moreno, Dy-
namics of Interacting Diseases, Phys. Rev. X 4, 041005
(2014).

[10] M. Diakonova, M. San Miguel, and V. Eguíluz, Absorbing and
shattered fragmentation transitions in multilayer coevolution,
Phys. Rev. E 89, 062818 (2014).

[11] A. Chmiel and K. Sznajd-Weron, Phase transitions in the q-voter
model with independence on a duplex clique, Phys. Rev. E 92,
052812 (2015).

[12] S. Jang, J. S. Lee, S. Hwang, and B. Khang, Ashkin-Teller model
and diverse opinion phase transitions on multiplex network,
Phys. Rev. E 92, 022110 (2015).

[13] R. Holley and T. M. Liggett, Ergodic theorems for weakly
interacting infinite systems and the voter model, Ann. Probab.
3, 643 (1975).

[14] D. J. Watts, A simple model of global cascades on random
networks, Proc. Natl. Acad. Sci. USA 99, 5766 (2002).
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