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The problem of zero crossings is of great historical prevalence and promises extensive application. The
challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional
continuous random process determines the density function of the intervals between the zero crossings of that
process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of
a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal
that in this case the zero crossings segue between a random and deterministic point process depending on the
relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering
the Laplace transform of the density function, we show that incorporating correlation between successive intervals
is essential to obtaining accurate results for the interval variance. The same method enables prediction of the
density function tail in some regions, and we suggest approaches for extending this to cover all regions. In
an ever-more complex world, the potential applications for this scale of regularity in a random process are far

reaching and powerful.
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I. INTRODUCTION

One-dimensional, continuous random processes are used to
model a huge variety of real world phenomena. In particular,
the zero crossings of such processes are relevant to problems
such as diffusion [1], signal processing [2], speech analysis
[3], fault detection [4], radio waves [5], ocean waves [6,7],
hydrology [8], meteorology [9], genetics [10], and finance
[11,12]. Zero crossings have also impacted on queuing theory
[13], reliability theory [14], and applied probability [15,16].

Not only do zero crossings provide information about return
times and threshold crossings, but they also tell us about
extreme values. This is because the turning points of one
random process occur at the same time as the zeros of the
derivative of that process.

Blake and Lindsey [17] commented, in a review of the
zero-crossing problem, that “the ultimate goal of such an
investigation would be to determine the probability density
of the lengths of the intervals between zeros of the process”
and noted that “very little success has been achieved in finding
this function.” Over 40 years on, this is still very much the case.
The only analytical result for the density of interval times is
particular to a Gaussian process with a specific autocorrelation
function [18].

In this paper we consider smooth, Gaussian processes
which are fully characterized by the autocorrelation function
and straightforward to simulate. We make the autocorrelation
function our starting point for investigation, choosing a
particular oscillatory form introduced previously in conference
proceedings [19], and motivated in the next section. Statistics
for the number of zero crossings occurring within a set
time period are calculated and verified by simulations of
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the process. These demonstrate that such periodicities in the
autocorrelation function describe a process for which the zero
crossings segue between a random and deterministic point
process—this is a result with great potential for application.
We extend the work of McFadden [20,21] to describe the
interval variance and density function in this particular case.
We present our results and explore the limitations of these
methods.

The interplay between randomness and order is a pervasive
component of the dialogue surrounding complex systems; it
is present in the type of exploratory behavior observed by
ants [22], or the development of the circulatory and nervous
systems [23,24]. The precise way in which components
interact both randomly and deterministically determines the
emergent behavior of the system as a whole. This balancing
act between random exploration and deterministic exploita-
tion has been hypothesized to be a general property of
intelligent, adaptive systems [25]. Furthermore, continuous
one-dimensional random processes are often an effective way
to build randomness, whatever its origin, into a model. Their
most established application is in signal processing, and much
of the mathematical theory was developed with this in mind.
Real-world continuous processes frequently prove difficult to
measure and analyze in full, and it can be informative to
observe only their crossings, reducing them to a series of points
in time, or a point process. By linking a continuous Gaussian
process to a random point process, the regularity of which is
directly determined by the autocorrelation function, the work
of this paper presents a valuable modeling tool.

II. PERIODICITY AND THE AUTOCORRELATION
FUNCTION

The autocorrelation function (or the corresponding power
spectrum) describes the memory of the process and is essential
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to the determination of the statistical properties of the process
and its zero crossings. For a stationary process X (t) with zero
mean, the autocorrelation function is independent of the origin
of time and given by

N (X0)X(r))
p(r) =
o

where o2 is the variance of the process. It is a real valued

function satisfying |p(t")| < p(0) VT’ with p(0) = 1 and as

7" — 00, p(t’) — 0. Due to the stationarity of the process

X(1), p(t’) is symmetric about the origin. Finally, the power

spectrum of the correlation model, which describes how the

variance of X(¢) is distributed over its frequency components,

must be positive definite. The power spectrum p(w) is given by

the Wiener-Khinchin theorem [26-28] as the Fourier transform
of p(7):

plw) = 2/00 p(t) cosQRmwt)dt. (1)
0

When prescribing an autocorrelation function it must satisfy
all of these properties and so the power spectrum may place
constraints on the allowable values of any parameters of p(7).

For the mean rate of zero crossings to exist, the au-
tocorrelation function must be twice differentiable at the
origin, i.e., p(t) = 1 — bt? 4+ O(t***) with b, > 0. If this
is not the case then the autocorrelation describes a fractal
process, where an infinite number of zero crossings fails to
be resolved by magnification [29]. Where this is the case,
and 0 < p < 2, the resulting process is known as subfractal.
This is because the mean rate of zero crossings of the process
itself exists, but the mean rate does not exist for the dif-
ferentiated process which exhibits fractal behavior. In the
case where u = 2, the process is smooth and all derivatives
exist. It is these smooth processes with which this paper is
concerned.

In order to motivate the precise form of autocorrelation
we have chosen to investigate, we first consider the signal
S(¢) formed by a Gaussian process G(t), modulated by a
cosinusoidal wave with a random phase shift. The signal
exhibits interplay between the random behavior of G(¢) and
deterministic, periodic behavior governed by the cosine. Zeros
resulting from the random process break up the regular
crossings of the cosine.

We define the signal S(¢):

S(1) := V2 cos(at + ¢o)G(t) 2)

where ¢y ~ U(0,27) is a uniformly distributed random phase
fixed in time, and G(#) is an independent, stationary Gaussian
process with zero mean, unit variance, and autocorrelation
function g(t) = (G(0)G(1)). A realization of S(z) and G(¢) is
shown in Fig. 1.

The autocorrelation function of the signal S(¢) is

SONY
po(r) =
[0}

_ 2{cos(¢0)G(0) cos(at + ¢o)G (1))

- 2
GS

PHYSICAL REVIEW E 96, 062129 (2017)

FIG. 1. A representation of G(¢) (solid red line) and S(¢) (dotted
blue line).

Due to the independence of G(¢) and the cosine, the variance
of S(¢) is 1. Therefore

ps(t) = 2{cos(¢p)G(0) cos(at + ¢o)G (1))
= 2(cos(¢) cos(at + ¢0)){G(0)G(1))

= cos(at)g(7).

The autocorrelation function g(t) determines the behavior of
the random process G(¢). For a smooth, twice-differentiable
process a suitable choice of autocorrelation function is

2\ —v/2
g(r) = <1 + t—)
14

where y determines the rate of decay of the memory of the
process.

In this paper we consider the Gaussian process X(t)
with zero mean, unit variance, and the same autocorrelation
function as S(¢):

2\ —v/2
p(r):cos(ar)(l +r7) . 3)

The process will only be considered for y > 2 where numeri-
cal analysis reveals that the power spectrum is positive definite
for all values of a.

It should be noted that, while it has the same mean and
variance as X (¢), the signal S(¢) is not a Gaussian process. The
probability density function (PDF) of S is

1 52 52
p(S) = m&)(g) exp <—§)

where K is a modified Bessel function of the second kind [30].
This expression for the PDF of S has a logarithmic singularity
at the origin, meaning S(¢) spends more time near the origin
than the Gaussian process X(¢), which by definition has a
Gaussian PDF.

To summarize, G(t) is a Gaussian process with zero
mean, unit variance, and autocorrelation g(t). S(¢) is the
non-Gaussian random process obtained by modulating G(¢)
with a cosine; it also has zero mean and unit variance. X (¢)
is a Gaussian process with zero mean, unit variance, and the
same oscillatory autocorrelation function as S(z).
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A. Time scales

The autocorrelation function (3) has two time scales: £; =
1/a from the cosine and ¢, from the power law. The power law
governs the overall decay of the autocorrelation function. The
“width” of this power law reflects the overall memory of the
corresponding Gaussian process; it is this that the time scale
£, should capture. In the limit y — oo, the power law is a
Gaussian function:

. 2\ /2 )
lim {14+ — =exp|—= ),
y—>00 14 2

for which the obvious choice for the time scale is £, = ﬁ
The width of the power law is compared to that of the Gaus-

sian function as follows: With argument t = \/E the Gaussian

function is e~! and this is set to be equivalent to the power law

with argument £;:
z 2 —y/2
(1 + ﬂ) =e .
14

It then follows that
b= (ye” —y)i. 4)

This has the properties that £, — +/2as y — ooand £, — oo
asy — 0.

It should be noted that there are alternative ways to
characterize the width of the (symmetric) power-law function,
for example taking a scalar multiplier of the (positive) square
root of the variance of the power law. The scalar multiplier
can be set so that the property ¢, — V2 as y — 00 is
preserved, however ¢, — oo as y — 3. Another alternative
is the mean value of the power law over the positive real
line. Again, the scalar multiplier can be chosen to preserve
the property £5 — +/2 as y — oo. In this case £, — oo as
y — 2. All these possible time scales for the power-law
function are monotonically decreasing, converge to /2 as
y — 00, and diverge for small values of y. For the purposes
of this paper, this is sufficient information about ¢, to aid
explanation of the trends observed in the corresponding
Gaussian process. Further analysis of this function will require
careful justification of time scales used. The formulation given
by (4) is chosen here because it exists for all positive, real
values of y.

B. Mean crossing rate

A zero crossing is a sign change of a process from positive
to negative values or vice versa. The mean zero-crossing
rate is the expected number of zero crossings per unit time.
For the Gaussian process X(¢), the mean rate of crossings 7
depends only on the second derivative of the autocorrelation
function at the origin. It is calculated via the well known result
first presented in Sec. 3.3 of Rice’s report on “Mathematical
Analysis of Random Noise” [31]:

[—p"(0)]'/2 _a +a*)!?
T - T '

F= ®)
Note that the mean rate of crossings is independent of . As the
autocorrelation function gets more oscillatory with increasing
a,the rate of zero crossings increases.
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FIG. 2. Fano factor as a function of @ with y =2, y =5, and
y —>00.@)7T=1.(b) T =10.

The mean rate of crossings for the signal S(¢) is

B a 14+a
Fg=—+4+r, = .
T T

In the limits @ — 0 and oo, the mean rate of zero crossings of
the signal S(¢) and the Gaussian process X (t) are the same.

C. Fano factor

The fluctuations in the number N of zero crossings of
a stationary process, in an interval of fixed length T, are
described by the Fano factor [32]:

var(N) _1 (N(N = 1))
(N)y (N)

The Fano factor is the discrete analog of the coefficient of
variation: It quantifies the departure of the fluctuations in
random events occurring in a window of length 7' from purely
Poisson statistics. It was first used in particle detection to
detect deviations in dispersion of the number of ions produced
by constant amounts of radiation energy. It has proved useful
for characterizing neural spiking [33] and is extensively
used in photonics [34]. When there are Poisson number

F(T) =
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FIG. 3. F parametrized against a, and the integration time 7. The
dashed lines show T = n(t) forn = 1-6.

fluctuations, var(N) = (N) and F(T) = 1. If fluctuations are
super-Poissonian then zeros occur in clusters and F' > 1. In
the case of sub-Poissonian behavior where zeros are repelled
from each other, F < 1.

The Fano factor is calculated via Rice’s result for the mean
number of crossings (5) and the following result by Steinberg
et al. [35]:

_ 27?2 1 dy(1—y)
WWN=Dr="5 | = ponpe

B
2 2,12
X [|A B~|'/* + B arctan (—| 5 2|1/2)]

where A = —p"(0)[1 — p*(yT)] — p*(yT)
and B = p"(yT)[1 — p*(yT)1+ p(yT)p*(yT). (6)

The cases y =2, y =5, and y — oo are compared in
Fig. 2 for T =1 and 10. The overriding trend is that, as a
increases, the Fano factor decreases. For large a (i.e., when
£, < ) the cosine in the autocorrelation function oscillates
much faster than the power law decays. The result is that the
effect of the cosine dominates the behavior of the process;
there is little fluctuation in the number of zero crossings in
an interval, i.e., zeros occur at more regular intervals and the
process appears increasingly “deterministic.”

This is reflective of the interplay between the random
behavior of G(¢) and deterministic, periodic behavior governed
by the cosine in signal S(¢). For small enough a, when the
power law dominates the autocorrelation function, F increases
with decreasing y. When a is large enough that the oscillations
in the autocorrelation function significantly affect the process,
this effect is reversed and F decreases with decreasing y. The
greater the difference £; < £,, the more the cosine affects the
process and the more regular the zero crossings are.

For smaller values of T there are ripples in F(a). This rich
behavior of the Fano factor is displayed in Fig. 3. In order
to understand how these ripples in the Fano factor relate to
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FIG. 4. F fora = 15 and y — oo, plotted against 7’7 so that the
integer-valued grid lines correspond to T = n(t) forn = 1-8.

the behavior of X (¢) itself, we consider F as a function of T
as in Fig. 4, which reveals that the first local minimum of F
occurs when the fixed interval length 7 is equal to the mean
interval between zero crossings, i.e., T = 1/7. Subsequent
local minima occur at T = n /i (where n takes integer values)
until, with sufficiently large T, the ripples are damped. Zero
crossings occur regularly for large enough a and so when
T = n/F there is very little fluctuation in the number of zeros
which is highly likely to be n, but when T = (n 4 1)/2r there
are equally likely to be n or n + 1 zeros in an interval. This
change in fluctuation in the number of zeros means that F is
locally larger when 7' = (n + 1)/2 and smaller when T’ = n /7.
This is plainly visibly in Fig. 4 where the grid lines at n
correspond to the minima in F.

III. SIMULATION RESULTS

Simulations are obtained by Fourier transforming both
Gaussian random noise and the autocorrelation function,
then multiplying them in the frequency domain and Fourier
inverting the result back into “real” space (this is equivalent
to forming a convolution of Gaussian random noise and
the autocorrelation function). This is an established method
covered in many texts [28].

A. Variance of the intervals

Figure 5 shows simulations of the variance of the interval
between successive zero crossings, for y — oo,y =5, and
y = 2 in the autocorrelation function:

2\ —7/2
p(t) = cos(ar)(l + T—> .
14

The variance declines rapidly with increasing a, and be-
comes less than the mean ata ~ 1.2, indicating the distribution
for the intervals is narrowing. The effect of y, or equivalently
the size of the power-law time scale £, is minimal. A larger
£, will result in the power law dominating the behavior of the
process until a larger cosine time scale £; = 1/a (equivalent to
a smaller value of @) is attained. In the region where the power
law dominates the behavior of the process, a larger £, results
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FIG. 5. Simulation results for the variance of the intervals for
y — oo (purple +), y = 5 (green U), and y = 2 (red x).

in a higher variance. In the region where the cosine dominates
the process, the zero crossings occur more regularly and the
variance is small, and the effect of ¢, is negligible.

The remainder of this paper will focus on the Gaussian limit
case where y — oo (or £, — 0) such that

72
p(t) = cos(at)exp <—7)

and ¢, = V2. Here, a relatively small cosine time scale £
results in the Gaussian function dominating the behavior so
that intervals have a greater variance. For £; small enough
the process will behave as if the non-oscillatory Gaussian
autocorrelation function has been used. This could represent
physical processes such as the scattering of light from a
random-phase-changing screen [36]. A large cosine time scale
£, means the cosine dominates the behavior of the process,
resulting in low interval variance and regular zero crossings.
This could be representative of processes that exhibit some
periodicity, such as the nearly periodic 11-year solar sunspot
cycle [37].

B. Density function of the intervals

The time between zero-crossing events is a continuous
random variable T with P,(t)dt denoting the probability that
the (n 4 1)th event occurring after time 7, falls within the
interval ¢y + T to tp + 7 + dt and Py(7) is the density of the
interval length between successive events. Figure 6 shows three
plots of simulations of the interevent density function Py(7).
Figure 6(a) shows Py(t) for values of a from zero to twenty.
As a increases, the mean decreases and the PDF shifts to
smaller values of 7 in accordance with (5). In addition, the PDF
becomes more concentrated around the mean, reflecting the
greater regularity of the zero crossings. This is better observed
in Fig. 6(b), which shows the renormalized PDF plotted on the
rescaled axis /(7). The previous sections showed that, with
increasing a, successive intervals become highly correlated
ie., k = 1and 02 — 0 as a — oo. These simulation results
confirm that the corresponding effect on the PDF is that Py(7)
tends towards a delta function located at the mean interval
spacing 7 = (7).
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FIG. 6. Simulations of the interval density function Py(t) for
a =0,2,5,10, and 20. (a) Py(r). (b) Renormalized simulations of
Py(7), plotted against 7t. (c) Renormalized simulations of Py(t),
plotted on a logarithmic axis against 7.

Figure 6(c) contains the same data as Fig. 6(b), but
with a logarithmic scale on the y axis. This gives a clear
representation of the tail of the PDF. When a = 0, the tail is
a straight line corresponding to exponential decay. For higher
values of a there is a shoulder in the tail at around twice
the mean. We consider the possibility that this shoulder is an
artefact of simulation whereby two crossings appear within
one time step so that a longer interval is falsely recorded. This
is done by comparing the PDF simulated with the resolution
used throughout this paper, and at twice that resolution. In
Fig. 7 it can be seen that the shoulders are almost identical in
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FIG. 7. Simulations of the PDF for a = 10 with the resolution

used throughout this paper (dashed dark blue), and at twice this
resolution (solid light pink).

both cases. The simulations of the smooth process X(¢) are of
high enough resolution that misrecording zero crossings, that
are distinct at the order of magnification of one time step, has
no perceptible impact on the resulting density function. The
explanation is then that occasionally the process turns when
it is very close to zero, resulting in a zero-crossing interval of
approximately twice the mean length. It is important to note
that this “touch” of the zero line occurs very infrequently and
is only perceptible on the logarithmic scale plots.

C. Correlations between the intervals

The correlation coefficient describes the correlation be-
tween theithand (i + j)thintervals, 7; and 7 ;, and is defined
as
(titiy)) — (1)°

- j>o. 7

Kj= .
When intervals are independent of each other, they are
uncorrelated and x; = 0. When k; > 0, intervals are positively
correlated with k; = 1 corresponding to full correlation where
the ith and (i + j)th intervals are the same length. When
k; < 0, intervals are negatively correlated so that if the ith
interval is long the (i + j)th interval is likely to be short.
Figure 8 shows the simulated results for the correlation
coefficients k| to k4. The graph of « is negative for small a,
showing that successive interval lengths are anticorrelated in

FIG. 8. Simulated values of the correlation coefficients (7).

PHYSICAL REVIEW E 96, 062129 (2017)

this region. This indicates that zeros of the random process are
repelled from each other where they are principally affected
by the exponential factor in p(7), g(t) = exp(—12/2). This
is because the process is smooth and, unlike a fractal or
subfractal process, cannot change sign or slope in an arbitrary
short time. The intervals become positively correlated once
the oscillations in p(7) begin to occur within the characteristic
width of the exponential function (i.e., for £; < £,). This
demonstrates that the process is becoming more regular, in
accord with the behavior found for F(T) in Sec. IIC.

The higher-order correlation coefficients «,, 3, and k4 all
start very close to zero. With progressively increasing a they
then oscillate close to zero, through periods of correlation
and anticorrelation, before becoming positive and strictly
increasing. The number of oscillations observed corresponds
to the order of the correlation coefficient, i.e., k, crosses the
axis twice and k4 crosses four times. This structure comes
about through the interplay of the time scales of the cosine
£, and of the power law ¢,, described in Sec. IIIA. In
the limit £; — O all the x; — 1, indicating a trend towards
exact periodicity and determinism. These simulation results
demonstrate that intervals between zero crossings are not
independent of each other.

IV. CALCULATING THE INTERVAL VARIANCE

In this section we present McFadden’s derivation of two ex-
pressions for the variance under the assumption that successive
intervals are independent. The simulation results presented in
the previous section demonstrate that the independent intervals
assumption is not correct. We extend the work of McFadden to
consider two possible assumptions for the structure of interval
correlation. Again, we obtain expressions for the variance.
In all three cases, the derivation of the expressions for the
variance begins with some exact results: two infinite sums. The
different assumptions about correlations are then substituted
in and result in polynomials in the Laplace transform of P,(t).
The second moment in the expansion of this Laplace transform
is then identified so that expressions for the variance can be
determined and numerically evaluated.

A. Exact results

Recall from Sec. I1I B that P,(7) is the density of the interval
length between n 4 1 successive events. Two infinite series of
P,(7) were derived by McFadden [21].

The first relates to the clipped process of X(t), which
identifies the locations of the zero crossings, and is defined
as

N 1 X@®=0

s = {—1 X(1t) <0

The autocorrelation function of &(¢) is
R(T') = ()&t + 1)),

from which it can be shown that

R

//(_C) . 00 "
yr —g(—l) P,(7) 8)

where 7 is the crossing rate (5).
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McFadden derived a second infinite series relating P,(t) to
U (t) where U (t)dt is defined to be the conditional probability
that a zero occurs in the interval (¢ + 7,7 + 7 4 d7), given one
occurs at . If there is a zero in the interval (r + 7,t + t + d71),
it must be either the first, second, third,...up to infinity and
hence

U(t)=)_ Pu(1). ©)
n=0

Deriving equations for the variance of the zero-crossing
intervals requires the following Laplace transform:

u(s) = LU, (10)

rs) = c(R”(_”), (11)
4r

pas) = LIPA(D)] (12)

so that the infinite sums can be expressed as

r(s) =Y (=1)"pals), (13)
n=0
u(s) =) pals). (14)
n=0

Both these infinite sums, expressed in P, (1) or p,(s), are exact
results for a general, symmetric, stationary, ergodic process,
meaning any sample from the process must represent the
average statistical properties of the entire process.

B. Assumption: Independent intervals

Making the assumption that successive intervals between
zero crossings are statistically independent the the interval
sums are given by convolutions of Py(z), or in terms of the
Laplace transforms

Pa(8) = po(s)"*. (15)

Substituting this into the infinite sums (13) and (14) obtains
two independent equations for py(s):

()
po(s) = T 6) (16)
_ ) 17
po(s) = Tu(s) 17

From the definition of the Laplace transform we obtain
the moments of Py(7) from derivatives of py(s) at s = 0. By
matching coefficients of equal powers of s in the expansion of
(16), expressions for (t) and (t?) are obtained. The resulting
expression for the variance is then

21
o2=

7
with I defined as the integral

1= fw R(t)dr.
0

The function u(s) cannot be expanded about the origin but
the transform v(s) = u(s) — 7 /s enables expansions of py(s)

PHYSICAL REVIEW E 96, 062129 (2017)

and v(s) to be substituted into (17). We then obtain a second
expression for the variance through matching powers of s:

1+2J

f2

o? =
where
o0
J =/ [U(r) —7Fldr.
0

The evaluation of the integrals / and J depend on the
precise distribution of the process. These two expressions for
the variance, o; and oy, could be expected to match if, and
only if, the assumption of statistical independence of intervals
were correct.

Numerical evaluation

Evaluating the clipped autocorrelation function requires an
integral of the bivariate density function for the process X (#).
The result for a Gaussian process is given by the van Vleck
theorem [38]:

R(t) = ;arcsin [p(T)]. (18)

For a Gaussian process, the function U () has been determined
by Rice [31] (Sec. 3.4) to be

1
Fr2[1 - p2(o)]"?

B
2 21172
x|:|A B7| +Barctan<—| 3 2|1/2)i|

with A and B given in (6). These permit o} and o7 to be
evaluated by quadrature.

In Fig. 9 numerical evaluations of the variance in both
cases are compared to results from simulations. Both o7
and 012 display the same overall behavior as the simulated
variance with slight over- or underestimation of a similar

U(t) =

FIG. 9. The variance from simulations (circles) and numerical
evaluation of the model 7 from (IV B) (dotted) and o2 from (IV B)
(dashed) as well as the mean interval length via (5) (solid).
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magnitude. The findings of the previous sections are affirmed,
with the decreasing variance reflecting increasingly regular
Zero crossings.

The difference between the two results for the variance,
although small, implies that intervals between zero crossings
are not independent of each other. At a ~ 1.3, 0} =07,
suggesting that the intervals may be uncorrelated at this point,
however simulation results show this is not the case and that
this point does not correspond to «; = 0. We conclude that
incorporating interval correlation is necessary.

C. Assumption: Interval correlation

A strategy for relaxing the assumption of statistical in-
dependence was suggested by McFadden [21] through the
introduction of the undetermined function a,(s) into the
assumed model so that

Pu(8) = an()pgt(s). (19)

This relation is a generalization of (15), which followed
when successive intervals were assumed to be independent of
each other. The function a,(s) embodies information about
correlation. As with the uncorrelated case, this relation will be
substituted into the two infinite sums (13) and (14), and the
second moment in the expansion of py(s) will be identified so
that two expressions for the variance can be found. Unlike the
uncorrelated case, the extra degree of freedom introduced by
a,(s) will enable these two expressions for the variance to be
equated to each other. First, a,(s) must be determined.

It is possible to determine a,(s) using the fact that p,(s) is
a moment generating function with expansion near the origin:

pu(s) =1 —(T)s + (T?)s* + O(s*)

where

n+1

T = Z‘L’j.
j=1

Noting that (T') = (n + 1)(t) the expansion for a,(s) follows:

Dn(s)
po(s)y++!

2
= 14+ DU = 1 D) + ()] + 0G6")

an(s) =

The quantity (T2) contains terms of the form (t;t ;) and so, in
order to evaluate these terms, the correlation coefficient (7) is
required. Then

()

i=1 =1

=2 (n—j+ D{nmy) + (4 ()

j=1

=202 Z(n —j+ D +nn+ () + (0 + D{?).

J=1
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Combining these results yields the simpler form

an(s) =145 (n—j+Dk; n>0, (20
j=1

ap(s) = 1. (21)

Obtaining a closed form expression (involving only ¥ = k)
for a,(s) requires a suitable closure model for the «;’s. In this
paper we explore two models: a Markov chain model and a
truncated model.

1. Markov chain correlation model

McFadden made the assumption that the intervals form a
Markov chain yielding the closure condition k; = «/, where
kK = k1, the correlation coefficient for consecutive intervals.
Our simulation results in Fig. 8 suggest this is an appropriate
model for large enough a.

Substituting the Markov chain closure condition into (20)
yields

s20%k
a(s) =14 ———[n—(m+ D + "7+ 0. (22)
(1—«)?
This enables the evaluation of (19) in the infinite sums (13)
and (14). In the uncorrelated, independent intervals case
this resulted in two quadratic equations (16) and (17); the
additional information about interval correlation contained in
(22) results in the following cubic equations in py(s):

Do k(@5po)?
= — 23
A B e T S
Do k(o spo)?
= : 24
S = T pord o) =

which reduce to the uncorrelated case (16) and (17) when
Kk =0.

By matching coefficients of equal powers up to O(s?) in
(13) and (23) we obtain

1
Gf:ﬁ(ii)

21
B=—.

7

with

Through doing so in (14) and (24), via the transform v(s) =
u(s) — /s, we obtain a second expression for the variance:

Gzzﬁ 11—«
7 a2\ 1+«

271 \?
o = .
1+2J

The condition that o; = o; > 0 determines

1—

e=17% d o2=F (25)
14+« o

Figure 10 shows numerical evaluation of the variance and

correlation coefficient in (25) plotted against results from

with
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FIG. 10. The variance and first-order correlation coefficient of
the interval between crossings as a function of a from simulations
(red dashed with squares), from numerical analysis of the Markov
chain model (25) (solid black) and its asymptotic limit (26) (dotted
black), and from numerical analysis of the truncated model (31) (blue
dashed). (a) The variance of the interval between crossings. (b) The
interval correlation coefficient.

simulations. In the case of the variance, the model gives an
accurate result, verifying that the theory is effective up to
O(s?) and computation of the integrals in (25) is correct. The
result for « is good for small a; it then deviates slightly from
the simulated results for 2 < a < 5. This is the region where
simulation results in Fig. 8 show that «, and k3 are negative,
whereas the Markov chain assumption has them as a power
of k1, which is positive in this region. For larger a the model
appears to reflect simulated results in Fig. 8 again, as only
higher index «;’s would be negative and their effect is smaller
given that all the lower index «;’s do appear to fit the model.

2. Asymptotic behavior of the variance and correlation coefficient
under the Markov chain model

For large enough a, both the variance and the correlation
coefficient (25) are described by a power law. This follows
from numerical results which show that

8 g\ /2
~— and o~ |—
a* (7a>
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as a — 00. Hence

1/2
o’ = B (5—6> (26)
o a’
and
172
l—a _1-(3)
k=170~ N 27)
* 1+ (5)

as a — oo. Plots of these asymptotic results for o' and « are
shown in Fig. 10.

The power-law decay of the interval variance and corre-
lation demonstrates that the dynamics at play in this system
are far from simple. On first glance, the variance in Fig. 10
might appear to decay exponentially or, like the autocorrelation
function, according to a Gaussian function exp(—a?). This
is not the case, and the effect of the cosine term in the
autocorrelation function is bound up in the intricacies resulting
from nonstandard oscillatory integrals.

3. Truncated correlation model

The simulation results in Fig. 8 show that, while the
correlation coefficients do appear to form a Markov chain for
large a, this is not an appropriate assumption for an interme-
diate regime in a. Therefore we propose the equally tractable
assumption that only successive intervals are correlated. That
is, k; = O for j > 2, which gives

an(s) = 1 +no’s’c + 0(s?), (28)

whereupon inserting this and (19) into the infinite sums (13)
and (14) yields quadratic equations for py(s):

__po k(ospy)
re) = l4+po (14 po)?*’ @5
Do K(ospo)?
= , 30
A R (N G0

which reduce to the uncorrelated result (16) and (17) when
k=0.
Following the same methods as before,

2= py L PR el 31
O’—§<,3 oz_2> an K—§<1+a2)- 3D

The variance and correlation coefficient under this model are
shown in Fig. 10. The truncated model predicts the variance
accurately, although not as well as the Markov chain model
for larger a.

4. Discussion of correlation assumptions

Comparing results for the correlation coefficient « in
Fig. 10(b), the Markov chain proves to be a far better
assumption for larger a. In fact, under the truncated model, the
maximum value « can take is 1/2 as opposed to the Markov
chain model where it approaches 1 in agreement with simula-
tions. This illustrates that as a — oo the higher-order correla-
tions k»,k3 ... become more important. The truncated model
does, however, provide a slight improvement on the Markov
chain assumption in the intermediate region 2 < a < 4,
where the Markov chain model has «, > 0 when in fact
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simulation results in Fig. 8 show that x; < 0. As a — 0, the
truncated model is qualitatively and quantitatively correct,
getting the magnitude of the anticorrelation in this region
correct.

V. CALCULATING THE DENSITY FUNCTION

Following the work of McFadden [20,21], incorporating
correlation is achieved through the assumption that the interval
densities are linked multiplicatively in the frequency domain
with some unknown function of the frequency variable a,(s).
In the previous section, that function is found up to O(s?) by
matching coefficients in the expansions of interval densities.
This methodology led to accurate predictions of the interval
length variance, in the regions where the interval correlation
closure condition was appropriate. The success of this method
demonstrates that the theory is correct up to O(s?). In this
section, by considering poles in the Laplace transform of the
density function, we predict the tail of the density function for
small a, where |s| < 1, and propose further work towards a
global expression for the tail of the density function.

A. Persistence

Persistence is the probability P,(7) that there is no zero
crossing by a Gaussian process in the interval [0,t]. Persis-
tence is related to the PDF Py(t) for the intervals t between
successive crossings by

Pe(r)=/ Py(t)dt.

Results by Olla [39] and Eichner et al. [40] state that, for
sufficiently large 7, the form of the tail of Py(r) depends
on the autocorrelation function. Specifically, if p(t) ~ [t|77
with y > 1, or if it is exponentially bounded such that p(t) ~
exp(—|t|”), as is the case for the autocorrelation function
considered in this paper, then the asymptotic form of Py(7)
does not depend on y and is given by Py(t) ~ exp(—67). As it
also describes the exponential tail of the persistence P,(7), 0 is
referred to as the persistence parameter. It relates to the length
of time until the process changes state and describes how steep
the tail of the interevent PDF is. Previous sections have shown
that, as the autocorrelation function becomes more oscillatory,
the variance of the interevent intervals decreases. Equivalently,
the PDF will have a steeper tail, and the persistence parameter
will increase.

The persistence parameter is examined through the struc-
ture of po(s) = LPy(t). The tail of the interevent density
function is Py(t) ~ exp(—67) and the Laplace transform of
such an exponential function is

1
Llexp(—01)] = Pl

Hence we expect the Laplace transform of Py(r) to have a
simple pole at s = —6. Consequently the location of the pole
in po(s) determines the persistence parameter.

PHYSICAL REVIEW E 96, 062129 (2017)

FIG. 11. Location of the poles in the Laplace transform of the
interevent density function under the uncorrelated assumption given
by (32). Real poles are solid lines; complex poles are made up of a
real part (dashed) and imaginary part (dotted).

B. Uncorrelated intervals

In the uncorrelated model, p,(s) = po(s)*+!, the equation
for py(s) in terms of r(s) (16) is
r(s)
po(s) = =)
which indicates that py(s) has a pole at the (negative) value of
s = —6 that solves

bl

r(=0)—1=0. (32)

The asymptotic form of the interevent distribution will then
be Py(t) ~ exp(—0t) where the persistence parameter 6
describes the rate of decay.

Due to the oscillatory nature of p’(t), there are in fact
multiple poles of po(s). These occur at negative values of
s = —z;, where z; < z5 < z3... are the solutions to

= [T A@expr)
mi Jo (1= p(x)?]'?

resulting from inserting (11) and (18) into (32).

The topology of the location of the poles in py(s) is shown in
Fig. 11. The real-value locations are established by performing
a numerical contour plot of (V B) with a single contour at
zero, where the integral is evaluated numerically. Because the
complex roots arise from the point at which two real roots
coalesce, it is possible to track them from this point.

For a given value of a, taking a vertical slice in Fig. 11 gives
the multiple roots of (32). Fora < 1.3 there are infinitely many
real-valued roots, the first of which are observed in the plot.
Ata =~ 1.35 the smallest two real roots coalesce, resulting in a
complex root, the real and imaginary parts of which are plotted

dt—1=0
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FIG. 12. The persistence parameter 6, from simulations (green
dashed), from considering only the first term in (33) (blue) and from
considering the first two terms in (33) (red).

by dashed and dotted lines, respectively. More complex roots
emerge as further real-valued roots coalesce.

For a given value of a, there exists some m > O for
which the subsequent poles, z,+1,Zm+2 . . . are purely real and
positive. Furthermore, numerical results show that as n — oo
the interval between these poles z,,4+| — z, approaches 7 /a so
that 7, = z, + k7 /a.

Such a spectrum of infinitely many poles in po(s) has
not been observed before in the context of the zero-crossing
problem.

Calculating the persistence parameter for small a

The locations of the first few poles such thats = —z;, where
71 < 22 < z3...,are shown in Fig. 13, alongside the simulated
value of the persistence parameter 6.

In order to estimate 6, the function py(s) can be approxi-
mated close to each pole. Expanding r(s) about the location of
apole s = —z;,

r(s) =r(—z;) +r'(—z;)(s + z;)
r'(=z;)
2
with r(—z;) = 1, which upon insertion into (32) gives
-1
[r'(z)I(s +z;)
Hence the tail of the distribution Py(t) is given by the sum of
the relative contribution from each of the poles:

+ (s +2))* + Ol(s + 2))°]

po(s) ~

-1

lim Po(r) ~ L7 ) (z;)(s + 2;)

J

and the persistence parameter can be determined from a linear
fit to

d -1
0=——1n|L" E——
dt n\t ;r/(Zj)(S‘i‘Zj) (53)

Figure 12 compares 6 obtained from simulations, with
that obtained from calculations including only the first term

PHYSICAL REVIEW E 96, 062129 (2017)

FIG. 13. The real (solid colored) and complex (real part, dashed
green; imaginary part, dotted green) poles of (32), as well as the
simulated value of 6 (dot-dashed black).

in (33) as well as including the first two terms. For small a
including only the first term is sufficient. The magnitude of the
least negative pole z; coincides with the value of 6 obtained
from (33). As the location of the second real pole nears the
first, its contribution in (33) becomes significant [note that
r'(—z1) and r'(—z,) are necessarily of opposite sign] creating
logarithmic modifications to the tail of the PDF which persist
even for t/(t) > 1. The effect of these adjustments is that,
when including the second term in calculations, the persistence
parameter is reduced from that value predicted by the first
regarded in isolation, giving an improved estimate.

The first two real roots merge at a & 1.34, whereupon the
root becomes complex, the real part being shown in Fig. 13
by the dashed curve and the imaginary part being shown by
the dotted curve. When determining 6 under (33), the value
of Re(z1) places an upper bound on the value calculated for
0. Figure 13 shows that for a > 1.6 the simulated value of
0 exceeds Re(z;) and is increasing at a far greater rate. The
simulated values for 6 are much higher, and hence the decay
of the tail is much faster, than this model will predict. In this
region, the correlations between intervals must be incorporated
into the model.

C. Correlated intervals

In Sec. IV C the variance and correlation coefficients were
effectively modeled through the introduction of the function
a,(s) into the assumed model so that

Pa(s) = an(s)pg ™ (5).
Using the fact that p,(s) is a moment generating function,
a,(s) was determined up to O(s?) under a suitable closure
condition for the correlation coefficients. Considering a < 3
then, the truncated correlation model is appropriate, for which
solving the quadratic (29) in favor of py(s) gives

_[2r(s) = 11£[1 - dko?s?r(s)]'/?
B —2[r(s) — 1 + ko2s?] ’

Po(s)

Taking the “4” solution, poles of po(s) occur where the
denominator vanishes when s — —6, which now becomes
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the solution of
r(—0) — 1 = —ko26°. (34)

Note that this is not a linear perturbation of the uncorrelated
assumption result in (32) (the correlation coefficient features
explicitly and is coupled with o2 but retrieves it if k¥ = 0).

Figure 14 shows the topology of the poles for the correlated
case, and in comparison to the uncorrelated case. The corre-
lated case displays very similar results to the uncorrelated
case, but the way in which the real-valued poles coalesce
is slightly different. As o ~ (56/a7)]/2 for a > 1 (26) and
|k] < 1 the roots of the correlated case (34) approach those
of the uncorrelated case (32). This can be seen in Fig. 14(b);
although the structure is different when they first emerge, with
increasing a the complex roots tend to the same value as found
in the uncorrelated case.

Again, the function py(s) can be approximated close to each
pole. Expanding r(s) about the location of a pole s = —z;,

r(s) = r(=z;) +r'(=z;)(s + z;)

r"(=z;)

2

+ (s +2))* + O[(s + 2;)°]

with r(—z;) = 1 + ko%s?, which upon insertion into (V C)
gives

2/<02z§ —1
[r'(z;) + 2k02z;1(s + z;)

po(s) ~

The persistence parameter can then be determined from a linear
fit to

o=——mlc (Y 2oz 1
dt I f(Z)(s +z5)
with f(s) =r(s) — ko2s?.

Estimating 6 in this way does not improve on the uncorre-
lated result because ko> < 1. Again, Re(z;) places an upper
bound on the value calculated for 6. It is clear from Fig. 14
that the truncated correlated model does not significantly
improve upon the uncorrelated one. There is also no significant
improvement under the Markov chain assumption. In both
cases, the problem lies in the expansion of a,(s).

Using polynomial expansions to locate poles in py(s) is
only appropriate in the region where the s expansion for ay(s)
applies. Under both closure conditions ay(s) is approximated
as

a,(s) =1+ SZO'ZKf(I’l,K) + o(sz)

for some function f such that f(0,x) =0 and f(n,x) is
positive whenn > 0and 0 < k < 1. As a — 00, 0%k — 0,
which means that the O(s?) expansion of a,(s) — 1 and hence
the correlated intervals model approaches the uncorrelated
intervals model under both closure conditions. Simulation
results show that, as a — o0, k has far greater influence than
this model would suggest. The PDF becomes more singular so
that P,(t) tends towards a delta function located at the mean
interval spacing (n + 1)(t).

PHYSICAL REVIEW E 96, 062129 (2017)

FIG. 14. The poles in the Laplace transform of the interval density
function, in the correlated intervals case and in comparison to the
uncorrelated. (a) The poles in the correlated intervals case given by
(34). Real poles (solid) coalesce to form complex poles made up of
a real part (dashed) and imaginary part (dotted). (b) The real part of
poles in the correlated case (dashed blue) (34) and the uncorrelated
case (solid red) (32).

D. Transitional model

The above model for p,(s) could never describe a delta
function and so, in the situation when a — oo, an adapted
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FIG. 15. The persistence parameter with u = 4.5 from simula-
tions (dashed green) and estimated for a > 5 via (36) and (37) (solid
blue).

model is designed to account for this:
Pals) = Pol(1 — k)"s1"* ! exp [—(n + 1k (T)s]

for some u > 0 and where py(s) satisfies the uncorrelated
model which was shown to be sufficient for smaller a:

Pa(s) = po(s)"*. (35)

When « =0 this model has the same structure as the
uncorrelated model (35). Asa — oo,k — 1 and

pu(s) = exp[—=(n + 1)(7)s],

which is the Laplace transform of a delta function located at
the mean interval spacing.

Essentially this model provides a transition from the PDF
being a solution to the uncorrelated model (valid for small a)
to the PDF being a delta function at the mean interval length
(valid for infinitely large a). As a — oo, the PDF suggested
by (35) is compressed and the influence of the delta function
increases.

For large a the asymptotic result for x (27) is

1o _1-(H)"
1+Ol 1+(7§ 1/2°

which is a good approximation when a > 5. In this region the
poles of py(s) then occur at the poles of po[(1 — k)*s] which
are given by (32) as s = —z, the solution to

r[—(1 —k)z;1—1=0. (36)
The persistence parameter is then estimated as

0 = Re(z)) 37

where z; is the smallest root.

Figure 15 shows the persistence parameter from simula-
tions, and estimated via (36) and (37) with u = 4.5, for the
region a > 5 where the asymptotic result for « is accurate.
The transitional model captures the rate of increase in the
persistence parameter as the PDF tends towards a delta
function for large a.

PHYSICAL REVIEW E 96, 062129 (2017)

E. Future work

By considering poles in the Laplace transform of the density
function, accurate predictions of the density function tail have
been made for small a, where |s| < 1. However, it is not
possible to locate poles in po(s) where |s| > 1. Doing so would
require the global form of a,(s).

One plausible model for tackling this problem would be to
renormalize the function so that

ay(s) = 1 £ xo’s>exp [~| f(5)]] (38)
with f(0) = 0. This model incorporates terms of the form
(TiTitjTidjrk -+ ) (39

The related higher-order correlations «; ;... must all tend
towards unity as determinism is approached when a — oo. In
addition, further analysis of the persistence would be helped
with more accurate simulations extending further into the
tail of the distribution. Because intervals of these lengths are
extremely rare, this would require a great deal more time and
computational power.

VI. SUMMARY

The model presented in this paper explores systematically
the changes that occur between a random signal and a
deterministic one. Study of the effects of oscillation in
the autocorrelation function has revealed a sliding scale of
regularity in the zero crossings of Gaussian processes. For
both the power-law autocorrelation function and the Gaussian
limit case, more oscillations in the autocorrelation function
mean zero crossings occur at more regular intervals. As
zero crossings become more regular, the random intervals
between them have reduced variance and a more localized,
tending to singular, probability density function. This will
prove useful for modeling any process upon which there
is a periodic variation, for example the diurnal and annual
variations implicit in weather, climate, traffic, energy demand,
sleep patterns, etc., or in analysis of signals which result from
some combination of periodicity and random noise such as in
interferometry or tomography.

This paper demonstrates that the entire structure of the
autocorrelation function of the random process is the principal
cause for the rich phenomenology exhibited by the derived
process of the interevent intervals. In particular, the oscillatory
behavior in the autocorrelation function is a way of punctuating
a random process by deterministic features. The way these
become manifested is subtle, first involving an interplay
between the characteristic scale sizes associated with the
higher-order statistics, but eventually cascading throughout the
entire process as it becomes progressively more correlated.
Divining how these scale sizes emerge from the properties
of the autocorrelation function remains an area for fruitful
investigation.
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