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We study long-range power-law correlated disorder on square and cubic lattices. In particular, we present
high-precision results for the percolation thresholds and the fractal dimension of the largest clusters as a function
of the correlation strength. The correlations are generated using a discrete version of the Fourier filtering method.
We consider two different metrics to set the length scales over which the correlations decay, showing that the
percolation thresholds are highly sensitive to such system details. By contrast, we verify that the fractal dimension
df is a universal quantity and unaffected by the choice of metric. We also show that for weak correlations, its
value coincides with that for the uncorrelated system. In two dimensions we observe a clear increase of the fractal
dimension with increasing correlation strength, approaching df → 2. The onset of this change does not seem to
be determined by the extended Harris criterion.
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I. INTRODUCTION

Structural obstacles (impurities) play an important role
for a wide range of physical processes as most substrates
and surfaces in nature are rough and inhomogeneous [1,2].
For example, the properties of magnetic crystals are often
altered by the presence of extended defects in the form of
linear dislocations or regions of different phases [3,4]. Another
important class of such disordered media are porous materials,
which often exhibit large spatial inhomogeneities of a fractal
nature. Such fractal disorder affects a medium’s conductivity,
and diffusive transport can become anomalous [5–8]. This
aspect is relevant, for instance, for the recovery of oil through
porous rocks [9,10], for the dynamics of fluids in disordered
media [11,12], or for our understanding of transport processes
in biological cells [13,14].

Disordered systems are conveniently studied in the frame-
work of lattice models with randomly positioned defects (or
empty sites). Of particular interest is the situation where the
concentration of occupied (i.e., nondefect) lattice sites is near
the percolation threshold and clusters of connected occupied
sites become fractal. The case where defects are uncorrelated
is a classic textbook model, whose properties have been
studied extensively [15]. In nature, however, inhomogeneities
are often not distributed completely at random but tend to be
correlated over large distances. To understand the impact of
this, it is useful to consider the limiting case where correlations
asymptotically decay by a power law rather than exponentially
with distance:

C(r) ∼ |r|−a. (1)

An illustration of such power-law correlations for continuous
and discrete site variables on a square lattice is shown in
Fig. 1. If the correlation parameter a is smaller than the spatial
dimension D, the correlations are considered long-range or
“infinite.”

The problem of power-law correlated disorder was first
investigated in the context of spin systems and later for
percolation [16,17]. The relevance of the disorder was shown
to be characterized by an extension of the Harris criterion
for uncorrelated defects [18]: the critical behavior of the
system deviates from the uncorrelated case if the minimum
of D and a is smaller than 2/ν (where ν denotes the
correlation-length exponent for the ordered system). It was
furthermore argued that, in the regime of strong correlations,
the critical correlation-length exponent for strong disorder is
universally given by 2/a. Since D is always larger than 2/ν

for percolation, the correlation-length exponent for long-range
correlated percolation is given by

νa =
{

2/a for a < aH = 2/ν

ν for a � aH = 2/ν.
(2)

The extended Harris criterion is still slightly controversial
[19,20], but it has to some extent been supported by nu-
merical investigations [21–23]. These studies made use of
the Fourier filtering method (FFM) [21–31] to generate
power-law correlated disorder and have yielded estimates
for critical exponents and fractal dimensions characterizing
the system in two dimensions. However, they in part used
semianalytical implementations of the FFM, involving various
approximations and free parameters. In this work we use a
numerical version without free parameters, for which errors
are fully controlled.

The remainder of the article is organized as follows:
Section II gives a detailed description of the FFM so that
our implementation is easily reproducible [32]. Thereafter, in
Sec. III, we specify how the mapping to discrete site variables
is carried out. In Sec. IV, we present our results for the
percolation thresholds on square and cubic lattices. Our main
findings, regarding the fractal dimension df for long-range
correlated percolation clusters in two and three dimensions,
are discussed in Sec. V. Finally, our results and conclusions
are summarized in Sec. VI.
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FIG. 1. Illustration of long-range correlated defects on a 20482

lattice with correlation parameter a = 0.5. (a) Continuous correlated
Gaussian random variables. The color reflects the value at the
respective lattice site. (b) Corresponding lattice of discrete variables at
the finite-size percolation threshold pL

c = 0.522 with defects shown
in black.

II. GENERATING LONG-RANGE CORRELATED
DISORDER

We start with the more general problem of how to obtain
a hypercubic lattice LD of identically distributed random
variables τx ∈ R that exhibit correlations of the form

〈τxτx+r〉 = Cr, (3)

where 〈· · · 〉 denotes the expectation value and Cr is a (discrete)
correlation function. Cr should be symmetric around zero and
periodic along all spatial dimensions, i.e., Cr+Lei

= Cr for all
unit vectors e1, . . . ,eD . It is furthermore convenient to choose
τx as Gaussian random variables with mean 〈τx〉 = 〈τ〉 = 0 and
variance σ 2

τ = 1. Otherwise, we consider Cr to be an arbitrary
function for now. (Note that we use the index notation for
explicitly discrete functions.)

We use a variant of the Fourier filtering method that employs
discrete Fourier transforms (DFTs) and is similar to that from
Refs. [30,31]. The key idea of the FFM is to correlate random
variables in Fourier space. The result of the inverse transform
will in general be complex numbers, ϕx = ϕRe

x + iϕIm
x . To ex-

plain how the method works, let us now assume that we already
have a lattice of complex random variables ϕx. Let us further
assume that {ϕRe

x } and {ϕIm
x } are independent sets of random

variables, each spatially correlated according to Eq. (3), i.e.,〈
ϕRe

x ϕRe
x+r

〉 = 〈
ϕIm

x ϕIm
x+r

〉 = Cr,
(4)〈

ϕRe
x ϕIm

x+r

〉 = 〈
ϕIm

x ϕRe
x+r

〉 = 0,

and see what that implies for the distributions of Fourier
coefficients.

As we are interested in a discrete lattice with periodic
boundary conditions of linear size L and volume N = LD ,
we consider a DFT of the form

�k =
∑

x

ϕxe
2πikx

L , (5)

ϕx = 1

N

∑
k

�ke
− 2πikx

L , (6)

where
∑

x denotes the D-dimensional sum over possible
realizations of the vector x on the hypercubic lattice. In

practice, we employ a numerical fast Fourier transform (FFT)
[33] and follow the convention that xi ∈ [0,L) and ki ∈ [0,L).

As shown in Appendix A, the correlation function is
connected to the Fourier coefficients via

2Cr = 〈ϕ∗
xϕx+r〉 = 1

N2

∑
k

〈|�k|2〉e− 2πikr
L . (7)

The discrete spectral density

Sk =
∑

r

Cre
2πikr

L (8)

can thus be written as

Sk =
∑

r

1

2N2

∑
k′

〈|�k′ |2〉e− 2πik′r
L e

2πikr
L

= 1

2N

∑
k′

〈|�k′ |2〉δk′,k = 1

2N
〈|�k|2〉

= 1

2N

(〈
�Re

k
2〉 + 〈

�Im
k

2〉)
. (9)

In return, this means we can generate complex real-space
random variables with the desired correlation from Fourier-
space random variables that satisfy Eq. (9). It is convenient to
consider distributions of �k with zero mean, so that Eq. (9)
can be expressed in terms of the variance:

2NSk = σ 2
�k

= σ 2
�Re

k
+ σ 2

�Im
k
. (10)

Hence, we can simply draw real and imaginary parts of
�k independently from identical distributions (for each
frequency k):

�
Re/Im
k =

√
SkU, (11)

where U is a random variable with mean 〈U〉 = 0 and variance
σ 2

U = N . Transforming �k back to x-space, we get two sets
of variables, {ϕRe

x } and {ϕIm
x }, each with zero mean and spatial

correlations Cr. Thanks to the orthogonality of the Fourier
transform, the two sets are statistically independent. Each can
be associated with the real random site variables τx in Eq. (3)
and used for further analysis. We draw U from a Gaussian
distribution, and so the resulting distributions will also be
Gaussian. (In fact, they would be Gaussian anyway for large
systems due to the central limit theorem.)

The derivation above did not use any assumptions regarding
the correlation function Cr. However, we see from Eq. (9)
that its Fourier transform Sk needs to be positive. Any
Cr that is symmetric (around zero) will give rise to real Sk,
but the positivity constraint is somewhat problematic. For the
continuum Fourier transform, it is in fact also implied by
the symmetry [28], but for discrete systems, some values of
Sk can become negative. This has to do with the restricted
frequency range, leading to an aliasing effect that causes
periodic modulations on the signal. Note, however, that this is
not just an artifact of the method, but rather implies that some
correlations are fundamentally not possible on a finite discrete
lattice. In practice, we can simply fix this problem by setting
all negative values of Sk to zero (“zero cutoff”). While this
will inevitably modify the resulting correlations, the effect is
usually negligible and vanishes rapidly with increasing system
size (see Appendix B).
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In short, our version of the FFM can be summarized as
follows:

(1) Choose a discrete correlation function Cr that is
symmetric around zero. For optimal performance, the linear
size of the lattice should be L = 2l with integer l.

(2) Perform a DFT, Cr → Sk, and set Sk = 0 for all Sk < 0
(zero cutoff). This step only needs to be done once for the
whole disorder ensemble.

(3) Construct real and imaginary parts of each component
independently, �

Re/Im
k = √

SkU, where U is drawn from
a Gaussian distribution with mean 〈U 〉 = 0 and variance
σ 2

U = N .
(4) Perform an inverse DFT, �k → ϕx, to obtain two

independent sets of long-range correlated variables, {ϕRe
x }

and {ϕIm
x }. Each can be associated with a set of real random

variables {τx}.
No free parameter is involved in the process. The only minor

issue is a potential zero cutoff (only for strong correlations),
but the practical impact of this intervention is small and can
be assessed a priori (see Appendix B).

Here we are interested in long-range power-law correlated
Gaussian random variables with the following properties:

〈τxτx+r〉 ∼ |r|−a, for |r| 
 1, σ 2
τ = C0 = 1.

We follow the suggestion by Makse et al. [28] and consider
the correlation function

C(r) = (1 + r2)−a/2, (12)

which satisfies the above conditions. More generally, correla-
tions of the form C(r,α) = (1 + |r|α)−a/α with α > 0 are all
suitable and may be chosen depending on the desired behavior
of convergence to the asymptotic limit.

To verify the correlations numerically, we measure the site-
site correlation function along the “x direction” (unit vector
e1) with periodic boundary conditions,

〈Cr〉R =
〈

1

N

∑
x

(τx − 〈τ〉)(τx+|r|e1 − 〈τ〉)
〉

R

. (13)

Here 〈· · · 〉R denotes the disorder average over R replicas,
and the expectation value 〈τ〉 is zero, which we verified
numerically. With increasing sample size R, the measured
correlation function rapidly converges to the envisaged Cr.
As can be seen in Fig. 2 for a two-dimensional lattice, the
agreement is striking even for very small systems (162),
despite the zero cutoff. This is one of the benefits of a
fully discrete implementation of the FFM over semianalytical
techniques, which often cannot faithfully reproduce the desired
distributions for small systems. For a short review of other
variants to generate long-range power-law correlations and a
discussion of some of the difficulties, see Appendix C.

III. MAPPING TO LONG-RANGE
CORRELATED DEFECTS

To study percolation, we have to map the correlated
continuous variables τx to correlated discrete values tx ∈ {0,1}.
For this, we need to specify the mean density of available sites
p (considering defects as tx = 0). Here, we use a global or
grand-canonical [34] approach and fix the expectation value

10−3

10−2

10−1

100

100 101

C
(r

)

|r|

a = 0.50
a = 1.00
a = 1.50
a = 2.00

FIG. 2. Correlation function C(r) compared to the measured
site-site correlation function 〈Cr〉R of continuous variables along
the x direction on a 162 lattice with R = 106 disorder replicas.
The continuous random variables are obtained via a discrete Fourier
transform of Cr and satisfy σ 2

τ = 〈C0〉R = 1.

〈∑x tx/N〉 = 〈t〉 = p. Therefore, we introduce a threshold θ

such that sites are considered defects if τx < θ . In the disorder
average the τx are normally distributed, such that the threshold
is tied to p via

p = p(θ ) =
∫ ∞

θ

P (τ)dτ = 1

2
erfc

⎛⎝ θ√
2σ 2

τ

⎞⎠, (14)

where erfc denotes the standard complementary error function
and σ 2

τ = 1 by construction. Note that for strong correlations,
the densities on individual replicas fluctuate significantly. If we
measure the site-site correlation function of discrete variables
according to Eq. (13) (where we replace 〈τ〉 with 〈t〉 = p),
we observe 〈C0〉R = σ 2

t < 1. The variance of discrete site
variables is no longer unity but is instead connected to
the variance of uncorrelated random lattices, σ 2

t = p(1 − p).
Figure 3 (open symbols) shows the discrete site-site correlation
function averaged over 104 lattices of size 10242. It can be
seen that the average site-site correlations on discrete lattices
mapped via Eq. (14) decay according to Eq. (12) over a long
range, though the amplitudes are somewhat diminished.

Alternatively, one might use a local or canonical [34]
approach, adjusting

∑
x tx/N = p for each replica by sorting

the continuous correlated variables and adjusting θ until∑
x �(τx − θ )/N = p, where � is the unit step function

[21]. However, fixing p on every lattice tends to suppress
correlations on a macroscopic scale. As can be seen in Fig. 3
(solid symbols), this results in a decay rate of the correlation
function that is faster than polynomial. This effect is most
significant for strong correlations and small systems and can
be expected to vanish in the limit of infinite system size.
By contrast, the global approach [Eq. (14)] described above
works reliably for any lattice size and appears thus generally
preferable.
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FIG. 3. Normalized correlation function of discrete random
variables with long-range power-law correlation at the percolation
threshold pc(a) (see Table II) on a 10242 lattice averaged over
104 disorder replicas. Continuous correlated random variables were
obtained as described in Sec. II. The mapping to discrete variables is
performed via a global approach (open symbols), i.e., on the level of
the disorder average [see Eq. (14)], and via a local approach, i.e., on
the level of each disorder realization (solid symbols). The measured
site-site correlation function 〈Cr〉R along the x axis is normalized
with respect to the variance 〈C0〉R for discrete site variables.

IV. PERCOLATION THRESHOLD

The value of the percolation threshold pc is not a universal
quantity. It may depend not only on the type of lattice but
also on local aspects of the correlation function Cr and hence
on the implementation of the FFM. Numerical results given
in this section therefore only apply for the specific settings
we used and cannot be quantitatively compared to those from
previous studies, e.g., Ref. [22]. We were careful to be explicit
about these settings to ensure that our results for the fractal
dimensions are reproducible and so that future studies may use
our estimates for pc.

We use the correlation function [Eq. (12)] and perform
a discrete numerical Fourier transform as discussed in the
previous section. The radial distance |r| is usually considered
in the Euclidean metric, but here we also use the Manhattan
metric, i.e., the minimum number of steps on the lattice. This
is done to demonstrate the sensitivity of pc to changes of
the correlation function that are not captured in the correlation
parameter a. Later, we also use the Manhattan metric to test the
robustness of our estimates for the fractal dimensions, which
should be the same for both variants.

To define percolation on a finite lattice, we apply the
horizontal wrapping criterion: a cluster percolates if it closes
back on itself across one specific lattice boundary. This choice
has the benefit of being translationally invariant and is known
to give relatively small finite-size errors [35]. The percolation
threshold pL

c for the finite system of extension L is then defined
as the average occupation density at which a percolating cluster
emerges. We estimate this value by determining the maximum
threshold θc for each replica of continuous variables at which
a percolating cluster exists for the subset of sites with τx � θc.

We then take the average of the mapped values,

pL
c = 〈p(θc)〉, (15)

where the mapping is carried out according to Eq. (14).

A. Square lattice

In two dimensions, we extrapolate to the percolation thresh-
old for the infinite system, pc := p∞

c , via the standard finite-
size scaling approach [15] without higher-order correction
terms:

|pc − pL
c | ∼ L−1/νa . (16)

Here νa denotes the critical exponent of the correlation
length. The value of νa is determined by Eq. (2) with the
uncorrelated correlation-length exponent ν = 4/3 [15]. This
assumed behavior of νa has been numerically supported for
percolation on a two-dimensional (2D) triangular lattice [21].

To obtain our numerical estimates, we randomly generated
105 replicas for each size L = 2l where l = 6, . . . ,13 (L =
64−8192). Some of the results for pL

c are shown in Fig. 4(a)
together with least-squares fits of Eq. (16) over the range
L � 64. The estimates for pc are the y intercepts of the fit
curves. The values are listed in Table I, where we also give
the reduced χ2 values per degree of freedom (DOF) of the
respective fits. The last columns show our results for systems
where the Manhattan metric is used to set the distance |r| for
the correlations. Here the estimates for pc are considerably
smaller than for the Euclidean case, underlining the strong
dependence of pc on the details of the correlation function.
In both cases the χ2 values are mostly close to 1, justifying
the simple scaling ansatz. However, they are quite large at the
“crossover” value of aH = 1.5, where the behavior is supposed
to change according to the extended Harris criterion, Eq. (2).
This suggests the presence of additional correction terms in
the vicinity of aH, possibly of logarithmic nature.

An overview of the results for the percolation thresholds
as a function of a is shown in Fig. 4(b). As can be seen,
correlations tend to lower pc, which is intuitive as they promote
the emergence of larger clusters. As noted in Ref. [22] the value
of pc for the square lattice must eventually approach 1/2. This
bound can be understood considering that a cluster of occupied
sites that wraps the system in one direction exists if and only
if no cluster of defects wraps the system in the orthogonal
direction, where the defects are allowed to connect via next-
nearest neighbors (diagonally). For a → 0, the relevance of
these next-nearest-neighbor connections becomes negligible,
and the resulting symmetry between clusters of defects and
occupied sites demands pc = 1/2. Note that for the Manhattan
metric, diagonal correlations are weaker to begin with. The
strong deviations not only depend on the chosen metric but
are already affected by the details of the employed method,
as can be seen by comparing to results we obtained with the
continuous FFM on a square lattice [38], which qualitatively
look similar but do not agree within error bars.

When a is increased, i.e., when the correlation strength
is diminished, pc must converge towards the value for the
uncorrelated system as long as C(r)/C(0) → 0 for all |r| > 0.
Note, however, that the uncorrelated value is only reached in
the limit a → ∞ and not at a = D, where the correlations
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FIG. 4. (a) Measured percolation thresholds pL
c for varying

lattice size L and different values of the correlation parameter a

in two dimensions (Euclidean metric). Lines show the best fits
of Eq. (16) to the data, whose intercepts represent our estimates
for the infinite-system value pc. (b) Estimates for pc as function
of the correlation strength for the square lattice with distances
measured in the Euclidean metric (squares) and the Manhattan metric
(crosses). The horizontal line shows the value for the system without
correlations.

become effectively short range. This is contrary to the results
from previous studies due to differing definitions of the
correlation function C(r), which at a = 2 has a vanishing
amplitude in Ref. [22] and a divergent variance C(0) in
Ref. [27].

B. Cubic lattice

The version of the FFM described in Sec. II can directly be
applied in three (or more) dimensions as well, which allowed
us to study percolation with long-range correlated disorder on
the cubic lattice. We looked at systems with linear extensions
in the range L = 8−512, and we again generated 105 random
replicas for each size. Unlike in two dimensions, however, the
simple finite-size scaling approach to estimate the percolation
threshold pc, Eq. (16), proved unsuccessful, suggesting the
need for higher-order terms (see Ref. [39] for a discussion of

TABLE I. Estimates of the percolation threshold for square
lattices with correlated disorder. For consistency all fits include
L � 64. The extended Harris criterion, Eq. (2), modifies νa �= ν for
a < 2/ν = 1.5.

a νa pc (Euclidean) χ 2/DOF pc (Manhattan) χ 2/DOF

∞ 4/3 [36] 0.592746 [37]
3 4/3 0.561406(4) 0.92
2.5 4/3 0.556214(4) 0.87
2 4/3 0.550143(5) 0.90 0.528397(5) 1.9
1.75 4/3 0.546717(7) 0.41
1.5 4/3 0.54299(1) 3.5 0.519991(8) 4.0
1.25 8/5 0.53895(2) 1.4
1 2 0.53452(4) 0.87 0.51226(4) 2.28
0.75 8/3 0.5296(1) 0.63
0.5 4 0.5239(3) 0.53 0.5054(3) 0.66
0.25 8 0.516(1) 0.38
0.1 20 0.508(4) 1.2

finite-size scaling for uncorrelated systems):∣∣pc − pL
c

∣∣ ∼ L−1/νa (A + BL−ω + CL−1/νa + · · · ), (17)

where νa is given by Eq. (2) with ν the correlation-length expo-
nent for uncorrelated percolation (0.8764(12) [40], 0.8762(12)
[41], 0.8751(11) [42]).

In practice, the correction to Eq. (16) seems to be described
well by the latter (quadratic) term alone, suggesting that the
correction-to-scaling exponent ω is relatively large. This is
in fact the case for the uncorrelated system, where previous
estimates locate the correction-to-scaling exponent between
ω ≈ 1.62 [29] and ω ≈ 1.2 [40]. We thus used the ansatz∣∣pc − pL

c

∣∣ ∼ L−1/νa (A + CL−1/νa ), (18)

which we fitted to the data for L � 32. The corresponding
fit curves and our results for pL

c (a) are shown for selected
correlations in Fig. 5(a), and the resulting estimates for
pc = p∞

c are listed in Table II. Again, we see that the
changing behavior predicted by the extended Harris criterion
(at aH = 2/ν ≈ 2.28) manifests itself in a poorer quality of
the fits for nearby values (a = 2 and a = 2.5). Our estimate
for the uncorrelated case, pc(∞) = 0.311 610(2), is in decent
agreement with previous estimates (0.311 608 1(11) [29],
0.311 607 7(2) [40], 0.311 607 68(15) [41]).

In contrast to the 2D situation, using the Manhattan metric
in place of the Euclidean metric to measure the distance
for the correlation function does not significantly lower the
percolation threshold. As can be seen in Table II and Fig. 5(b),
the values are even slightly larger. That is plausible since
the argument why the Manhattan metric should lower pc in
two dimensions does not apply in three dimensions, where
wrapping clusters of defects and occupied sites can coexist.
This also means that there is no obvious lower bound for pc

in three dimensions other than zero. Indeed, our estimates for
strong correlations are very small, and the overview shown in
Fig. 5(b) even seems to suggest the extrapolation pc → 0 for
a → 0.

We should note, however, that the scaling ansatz, Eq. (18),
is mainly motivated empirically. Especially for small a, some
of the finite-size corrections have a different origin as in the
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FIG. 5. (a) Measured percolation thresholds pL
c for varying lattice

size L and different values of the correlation parameter a in three
dimensions (Euclidean metric). Lines show the best fits of Eq. (18)
to the data, whose intercepts represent our estimates for the infinite-
system value pc. (b) Estimates for pc as a function of the correlation
strength for the cubic lattice with distances measured in the Euclidean
metric (squares) and the Manhattan metric (crosses). The horizontal
line shows the value for the system without correlations.

uncorrelated system, namely, that smaller systems are not
self-averaging: For small a and small L, the continuous site
variables τx within each individual replica tend to be very
similar, and about half the ensemble has mostly negative
values, while the other has mostly positive values. In the limit
a → 0 (at fixed L) the values τx across each replica become
constant, so that a wrapping cluster in the discrete system
emerges when a threshold θc = τx is used for the mapping.
Since the overall distribution of the τ values is symmetric
(Gaussian) and we define pL

c according to Eqs. (14) and (15),
the a → 0 limit at fixed L is pL

c (0) = 1/2. This “segregation”
finite-size effect might play a significant role for the most
strongly correlated cases (a = {0.5,1}), and our respective
estimates should therefore be taken with a grain of salt.

V. FRACTAL DIMENSION

The fractal dimension df describes how the volume of a
critical percolation cluster increases with its linear size. It can

TABLE II. Estimates of the percolation threshold for cubic lat-
tices with correlated disorder. For consistency all fits include L � 32.
The extended Harris criterion, Eq. (2), modifies the correlation-length
exponent νa �= ν for a < 2/ν ≈ 2.28.

a ν pc (Euclidean) χ 2/DOF pc (Manhattan) χ 2/DOF

∞ 0.8762 0.311610(2) 0.44
4 0.8762 0.238778(4) 0.10
3 0.8762 0.208438(5) 0.83 0.209315(4) 0.75
2.5 0.8762 0.188289(7) 1.9 0.189801(5) 6.0
2 1 0.16302(2) 3.0 0.16514(1) 0.54
1.5 4/3 0.13022(5) 0.51 0.13251(4) 0.37
1 2 0.0863(3) 1.1 0.0878(2) 0.86
0.5 4 0.025(3) 1.4 0.030(2) 0.25

conveniently be estimated via

〈V 〉 ∼ Ldf , (19)

where L is the lattice extension and 〈V 〉 denotes the average
number of sites in the largest cluster [15]. Note that, for
correlated systems, it is important to include replicas with
no percolating cluster. It is possible to either consider all
systems at the same, asymptotic concentration pc or to take
size-dependent values, pL

c . We opted for the latter approach,
so we would not have to rely on the fitting ansatz for pc.

A. Square lattice

In two dimensions, finite-size corrections again turned out
to be small, so that fitting Eq. (19) without any higher-order
correction terms worked well. Figure 6(a) shows the average
volume of the largest cluster relative to the total number of
sites, 〈V 〉/LD , for several different values of a plotted on
a double-logarithmic scale. The lines correspond to least-
squares fits of Eq. (19) over the range L � 128, and their
slopes show the differences from the Euclidean dimension,
df − 2. Our resulting estimates for df can be found in Table III
together with the reduced χ2 values of the fits. Also listed
are estimates obtained using the Manhattan instead of the
Euclidean metric. Here, the fits yielded smaller amplitudes,
but the exponents resulted very similar. This can be seen
in Fig. 6(b), which shows an overview of the estimates for
df . The data verify that df is universal, i.e., independent of
system details. For weak correlations the uncorrelated value,
df = 91/48 [36], seems to be recovered in accordance with
the extended Harris criterion [Eq. (2)] and earlier numerical
findings [21–23,43]. Interestingly though, there seems to be no
increase of df directly below aH = 3/2, the crossover threshold
set by the extended Harris criterion. For the Manhattan metric,
the fit quality is still diminished around aH, suggesting that the
threshold may still affect correction terms. However, it is yet
unclear why χ2 is largest at a = 2 for the Euclidean case.

The fact that df does not increase directly below aH was
already noted in Ref. [21], where a crossover threshold of
ax = 2/3 (or in terms of the Hurst exponent Hx = −ax/2 =
−1/3) was suggested instead. However, that value is not
quite consistent with our findings, which show a significant
increase already at a > 3/4. Another disagreement regards
the behavior in the correlated limit, a → 0 (H → 0): our
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FIG. 6. (a) Average volume fraction of the largest cluster vs lattice
extension in two dimensions plotted for different correlations a on a
double-logarithmic scale (Euclidean metric). Colored lines are least-
squares fits to Eq. (19). The black line represents the behavior of
the uncorrelated system with a slope of 91/48 − 2. (b) Overview of
our estimates for the fractal dimensions as function of a with the
horizontal line again corresponding to the uncorrelated system.

results are consistent with the idea that the fractal dimension
converges to the “Euclidean” value of D = 2 as clusters get
more and more compact, while according to Ref. [21] the value
stays well below 2. This discrepancy may be owed to the use
of different mapping rules as discussed at the end of Sec. III.

It is interesting to compare the results for df with the
Ising model at criticality, which exhibits spin-spin correlations
of the form 〈SiSj 〉 ∼ r−(d−2+η). In two dimensions η = 1/4
and the fractal dimension of the geometrical Ising clusters
is df = 187/96 = 1.9479 . . . [44,45], which is indeed quite
similar to our result of df = 1.9360(6) for a = 1/4. As already
noted [22], the results could not be expected to agree perfectly.
In fact, it is intuitive that df should be slightly larger for Ising
clusters, where the spin-spin correlation function is essentially
the probability that two spins belong to the same cluster.
In our system, by contrast, spins from unconnected clusters
still contribute to the correlation function, so that connected
clusters may be “thinner” for the same decay exponent.

TABLE III. Fractal dimension for square lattices with correlated
disorder. For consistency all fits include sizes L � 128. In two
dimensions we consider only the leading-order behavior at the finite-
size percolation transition. Results from Euclidean and Manhattan
metrics are in good agreement.

a df (Euclidean) χ 2/DOF df (Manhattan) χ 2/DOF

∞ 91/48 ≈ 1.89583 . . .

3 1.8961(2) 0.74
2.5 1.8962(2) 1.2
2 1.8966(2) 4.5 1.8964(2) 1.2
1.75 1.8964(2) 2.8
1.5 1.8965(3) 1.6 1.8956(3) 2.3
1.25 1.8950(3) 1.2
1 1.8961(3) 1.2 1.8952(3) 0.29
0.75 1.9006(4) 1.2
0.5 1.9128(5) 0.47 1.9126(6) 0.17
0.25 1.9360(6) 0.085
0.1 1.9602(8) 0.39

B. Cubic lattice

The situation in three dimensions turned out to be more dif-
ficult. As with the percolation threshold, the scaling behavior
seems to involve strong finite-size corrections, so that simply
fitting Eq. (19) would not work for the system sizes that we
considered. Including a confluent correction term also failed
as the fit could not handle two additional parameters. What did
work reasonably well, at least for a > 1, was fitting our data
for the Euclidean and the Manhattan versions simultaneously,
while assuming the exponents of the leading term and the
correction to be equal for both cases:

〈V 〉Euclid. = A1L
df (1 + B1L

−w),
(20)

〈V 〉Manh. = A2L
df (1 + B2L

−w).

This approach was motivated by general universality argu-
ments [46,47] and our previous observation that the fractal
dimensions in two dimensions are the same for both versions.
We assume that equality also holds for the correction exponents
w, which seems reasonable since w is also strongly believed
to be universal for percolation without correlations; see for
instance Ref. [48]. Figure 7 shows finite-size scaling data
and fits for the case a = 2 as an example [Fig. 7(a)] and an
overview of the obtained estimates for df [Fig. 7(b)]. The
values of our estimates can be found in Table IV together
with the correction exponents and the χ2 values of the fits.
Unfortunately, the data for a � 1 could not be convincingly
fitted by this approach. For these strongly correlated cases, one
would probably need to investigate systems still much larger
than 5123. For a � 1.5, the value for df seems to be very similar
to the one without correlations (df(∞) = 2.522 95(15) [40]).
As in two dimensions, the Harris threshold, aH = 2/ν ≈ 2.28,
hence does not determine the onset of a sudden increase in
the fractal dimension. Surprisingly, the value even seems to
decrease slightly below aH. Upon close inspection, this can also
be observed in two dimensions for a = 1.25 < aH (compare
Table III). A diminishing fractal dimension does not seem
plausible as stronger correlations should make the clusters
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FIG. 7. (a) Average volume fraction of the largest cluster vs lattice
extension in three dimensions plotted for the exemplary case a = 2
on a double-logarithmic scale. Colored lines are the simultaneous
fits according to Eq. (20); the black line represents the behavior of
the uncorrelated system with a slope of 2.52295 − 3. (b) Overview
of our estimates for the fractal dimensions as function of a with the
horizontal line again corresponding to the uncorrelated system. Our
fitting did not work properly for very strong correlations (a � 1).

more compact. We suspect that a correction term comes
into play at aH which is not captured by our fitting approach.

TABLE IV. Fractal dimension for cubic lattices with correlated
disorder. For consistency all fits include sizes L � 16. In three
dimensions, we require higher-order corrections of the form of
Eq. (20). Assuming universality, we perform simultaneous fits
including both Euclidean and Manhattan metrics.

a df w χ 2/DOF

∞ 2.52295(15) [40] 1.2(2) [40]
3 2.524(2) 1.2(2) 0.70
2.5 2.522(2) 0.9(2) 3.3
2 2.512(3) 0.9(2) 1.9
1.5 2.507(6) 0.6(1) 0.55
1 2.6(2) 0.20(1) 2.1

VI. CONCLUSIONS

We presented high-precision results for the percolation
thresholds on square and cubic lattices with long-range power-
law correlated disorder as well as estimates for the fractal
dimensions of the critical percolation clusters. The correlations
were generated using the FFM based on the discrete Fourier
transform. We specified the details of our implementation,
so that it may easily be reproduced [32], and discussed the
differences from previous approaches regarding, e.g., how the
continuous site variables are mapped to discrete disorder.

The percolation threshold is dependent on the employed
method and moreover on short-range details of the model. We
demonstrated this by using both the standard Euclidean metric
and the discrete Manhattan metric to define the correlation.
The effect of this choice on the percolation threshold is
particularly strong for the square lattice. This is because
diagonal correlations are weaker for the Manhattan metric,
bringing the system closer to pc = 0.5 where the percolation
thresholds for occupied sites and defects connected via next-
nearest (diagonal) neighbors coincide. In general, correlations
were shown to lower pc, and in three dimensions the value even
becomes very close to zero for small a, i.e., strong correlations.

The fractal dimension, by contrast, is a universal quantity
and does not depend on details of the model. We verified
that for large a (weak correlations) the fractal dimension of
the uncorrelated model is reproduced, showing df ≈ 91/48
(two dimensions) and df ≈ 2.52 (three dimensions). This was
expected above the bound from the extended Harris criterion,
i.e., for all a � aH with aH = 1.5 (two dimensions) and aH ≈
2.28 (three dimensions). However, as was previously noticed
for the triangular lattice [21], df ≈ duncorr

f seems to remain
true also well below the Harris bound. In two dimensions,
our data suggest that the value of df starts to rise below ax ≈
1, approaching df → 2 as a → 0. Differences from previous
findings may be attributed to different mapping prescriptions
employed. To obtain estimates for df in three dimensions, we
simultaneously fitted our data for correlations with Euclidean
and Manhattan metrics using a polynomial fit with a correction
term. Unfortunately, this approach did not work for very strong
correlations, i.e., for a � 1. In the accessible range, the values
were found very close to the uncorrelated value. Below aH ≈
2.28, they even resulted in slightly smaller values, which we
suspect is due to changing corrections to scaling. We conclude
that while the bound from the Harris criterion does not seem
to determine a change in the leading exponent df , it does affect
the system’s subleading behavior.
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APPENDIX A: DISCRETE WIENER-KHINCHIN
THEOREM

We require ϕx to be complex random variables with
independent real and imaginary contributions. For a given
disorder realization the lattice average of ϕ∗

xϕx+r can be written
as

1

N

∑
x

ϕ∗
xϕx+r

= 1

N

∑
x

(
1

N

∑
k

�∗
ke

2πikx
L

)(
1

N

∑
l

�le
− 2πil(x+r)

L

)

= 1

N2

∑
k

�∗
k

∑
l

�le
− 2πilr

L
1

N

∑
x

e
2πi(k−l)x

L

= 1

N2

∑
k

�∗
k

∑
l

�le
− 2πilr

L δl,k

= 1

N2

∑
k

|�k|2e− 2πikr
L . (A1)

Here, we used the notation of a D-dimensional Kronecker-
delta function δl,k = �iδli ,ki

= 1
LD

∑
x e2πi(k−l)x/L. The result

is essentially the discrete Wiener-Khinchin theorem, a special
case of the cross-correlation theorem.

Taking the disorder average on both sides of Eq. (A1) and
exploiting translational invariance on the left, we thus obtain

〈ϕ∗
xϕx+r〉 = 1

N2

∑
k

〈|�k|2〉e− 2πikr
L . (A2)

APPENDIX B: EFFECT OF ZERO CUTOFF IN Sk ON Cr

As mentioned in Sec. II, particular choices of C(r) evaluated
on a finite lattice may lead to unphysical negative values of
the discrete spectral density Sk. This seems to occur only for
strong correlations (small a) and becomes more noticeable
with increasing dimension. Numerically, we deal with this
issue by using a zero cutoff, i.e., by using a modified spectral
density

S̃k =
{
Sk if Sk � 0
0 else. (B1)

This inevitably affects the resulting correlation function. We
can directly predict the effect from the inverse discrete Fourier
transform of S̃k since

C̃r = 1

N

∑
k

S̃ke
− 2πikr

L (B2)

is of course the asymptotic limit of the measured site-site
correlation function 〈Cr〉R for large sample size R.

It turns out that the effect of this zero cutoff is very small, if
present at all, with deviations mainly occurring for small lat-
tices. With increasing lattice size, the predicted (and measured)
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FIG. 8. (a) Demonstration of the effect of the zero cutoff Sk → S̃k

on the measured correlation function 〈Cr〉R in three dimensions for
a = 0.5. Also shown is the prediction C̃r for the asymptotic limit
from Eq. (B2). (b) Plot of the deviations from the desired function
C(r).

deviations quickly converge towards the desired correlation
function. To demonstrate this, we consider the example of
three-dimensional lattices with (strong) correlations a = 0.5
and linear extensions L = {8,16,32} in Fig. 8. The measured
correlation function of continuous site variables along the x

direction, 〈Cr〉R [Eq. (13)], is evaluated with data from Sec. IV.
The effect of the zero cutoff on the correlation function from
Eq. (12) is indeed perfectly predicted by Eq. (B2).

APPENDIX C: DIFFERENT VERSIONS OF THE FFM

Many different variants of the FFM can be found in the
literature [22,25–31]. We want to give a brief overview of
the differences and discuss the effects of some of the implied
approximations.

In early works the spectral density is approximated as
S(q) = |q|−(D−a) [22]. The resulting nontrivial amplitude in
the correlation function C(r) = f (D − a)|r|−a was shown
to vanish for a → D, in accordance with the picture that
the uncorrelated case should be recovered for short-range
correlations (a > D). Still, the desired correlation function
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could only be produced in a small region of the system with
this approach.

Reference [27] follows a similar idea but directly uses
C(r) = |r|−a . This function diverges at |r| = 0, and hence
the authors interpolate by integrating the function in the
corresponding discrete bin around zero. This works reliably
in one dimension but becomes cumbersome in more di-
mensions. Moreover, this assigns a nontrivial value to C(0)
thus modifying the variance of the desired Gaussian random
variables.

The most influential works are by Makse et al. [26,28]. They
introduced the correlation function from Eq. (12), allowing
them to approach the problem both numerically [26] and
(partially) analytically [28]. Their numerical approach is quite
similar to ours, but the analytical one has received far more
attention. We have in fact tried it ourselves [38], but found
that it has many pitfalls, which we want to briefly discuss
here. The idea is to discretize the Fourier transform of
C(r) = (1 + r2)−a/2 for the infinite continuum, which can be
calculated analytically:

S(q) =
∫ ∞

−∞
C(r)eiqrdr

= 2πD/2

�(a/2)

( |q|
2

)β

Kβ(|q|), (C1)

where � is Euler’s gamma function and Kβ(|q|) is the modified
Bessel function of order β = (a − D)/2 [49]. The variance
is recovered by integrating over full continuous space: σ 2

τ =
C(0) = 1

2π

∫ ∞
−∞ S(q)dq = 1.

The next step is to identify q = 2π
L

k and map the continuous
result to a discrete lattice by evaluating the function S( 2π

L
k) at

each lattice site k. The first problem here is that S(0) diverges.
This can be circumvented by evaluating the zero signal at
a shifted frequency, i.e., S0 = S( 2π

L
|k|0) with |k|0 ∈ (0,1)

chosen “appropriately” [28]. With increasing system size
the choice becomes less relevant, and the differences can
be expected to vanish in the infinite-system limit. For finite
systems, however, the effect of the parameter |k|0 depends on
the dimension and the strength of the correlations. In addition,
|k|0 has to be adjusted iteratively, rendering the application of
the method rather tedious.

There is another, more severe problem with the discretiza-
tion, which is relevant for the mapping to discrete site variables
[38] (see Sec. III). As we are interested in the asymptotic
long-range scaling behavior, we typically use a fixed lattice
spacing of unit length �xi = 1 and consider the limit to infinite
system size rather than to the continuum. Thus, the frequency
space is confined to qi ∈ [−π,π ), while the resolution in-
creases with increasing system size. As a consequence, the
variance σ 2

τ will deviate from 1, complicating the mapping
procedure. In fact, we can estimate the deviations via σ 2

τ =
1

2π

∫ π

−π
S(q)dq � 1 = C(0). We numerically verified this but

also found additional finite-size scaling corrections of the form
σ 2

τ,L = σ 2
τ + O(L−1). These corrections are inconvenient for

finite-size scaling, e.g., for finding the percolation threshold,
because one needs to evaluate the variance σ 2

τ,L in addition to
the parameter |k|0 for each value of the correlation parameter
a and each system size. By contrast, the method sketched in
Sec. II is parameter free and always yields the correct variance
σ 2

τ up to negligible effects from the zero cutoff.
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