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Critical point of liquid-gas (LG) transition does not conform with the paradigm of spontaneous symmetry
breaking because there is no broken symmetry in both phases. We revisit the conjecture that this critical point
belongs to the Ising class by performing large scale Monte Carlo simulations in two-dimensional free space in
combination with the numerical flowgram method. Our main result is that the critical indices do agree with the
Onsager values within the error of 1%–2%. This significantly improves the accuracy reported in the literature.
The related problem about the role of higher order odd terms in the (real) ϕ4 field model as a mapping of the LG
transition is addressed too. The scaling dimension of the ϕ5 term at criticality is shown to be the same as that of
the linear one ϕ. We suggest that the role of all higher order odd terms at criticality is simply in generating the
linear field operator with the critical dimension consistent with the Ising universality class.
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I. INTRODUCTION

The liquid-gas (LG) phase transition is characterized by
latent heat which vanishes at one point of the phase diagram:
the critical point. Within the mean field approach, the LG
coexistence curve is well described by the celebrated van der
Waals equation where the role of the order parameter is played
by the difference in densities of liquid and gas (see in Ref. [1]).
Formally speaking, however, neither liquid nor gas can be
characterized by a symmetry breaking order parameter simply
because there is no order in both phases.

Absence of any underlying symmetry breaking raised the
question about the universality of the transition at the critical
point. The standard conjecture is that this transition belongs to
the Z2 universality class, that is, of the Ising transition (see in
Refs. [1–3]). This question has a straightforward answer for the
lattice gas where a direct mapping to the Ising model exists [4].
It is formally possible to consider a free space fluid on a lattice
with spacing being much smaller than any typical distance
determining interaction. In this case the lattice and free space
models should be equivalent. Thus, in general, no underlying
Z2 symmetry can be found in such a lattice. Accordingly,
lattice models explicitly violating Z2 symmetry have been
considered [5]. It was further suggested that the asymmetry
does not change the Z2 universality of the LG criticality, and
its role is reduced to mixing of the primary scaling operators
which results in the nonanalytical corrections to the position
of the critical point [3,6–9]. The extended mixing scenario has
been suggested in Refs. [10–13] in relation to the Yang-Yang
anomaly.

The conjecture that LG criticality in Z2 is closely related
to the question about the role of higher order odd terms in
the field theory. As shown in Ref. [14], the LG transition
characterized by quite generic two-body interactions in free
space can be mapped on a field theory of a continuous
scalar real field ϕ with some effective Hamiltonian which,
in addition to even terms ( �∇ϕ)2, ϕ2, ϕ4, . . ., contains odd ones
ϕ1, ϕ3, ϕ5, ϕ7, . . . . Thus, there is a possibility that higher order
odd terms ϕ5, ϕ7, . . . change the universality (the term ϕ3

can be eliminated by a uniform shift ϕ → ϕ + ϕ0 with ϕ0

being some constant) [15]. The analysis [16] based on the
renormalization group (RG) approach found that there is a

novel fixed point in dimensions d = 10
3 induced by the term ϕ5,

provided ϕ1 and ϕ3 are tuned to zero. This result, however, was
challenged in Ref. [17] based on the ε-expansion around d = 4
showing that all odd operators of higher order are strongly
irrelevant at the symmetric fixed point, so that this point is
stable with respect to the odd perturbations.

It is important to note that the argument [17] cannot be
used in two dimensions (2D). Thus, the question about the
role of the higher odd terms in 2D remains open. More
recently, the analytical solution for the critical exponents of
three-dimensional (3D) LG transition has been found under
quite general assumptions [18]. These exponents turn out to
be different from the values obtained numerically. The same
method can also be used in 2D and it gives the exponents which
are different from the Onsager values [19].

Some early attempts to measure critical exponents ex-
perimentally have claimed significant deviations from the
3D Ising universality [20,21], while others [22,23] find an
acceptable agreement with the Ising universality, provided the
fitting procedure included subcritical corrections (with several
adjustable parameters). The main problem turns out to be due
to gravity which does not allow to approach the critical point
close enough so that the corrections to the leading scaling can
be ignored. The experiments in microgravity (see in Ref. [24])
did not improve the situation much.

Measurement of the LG criticality in 2D has been conducted
in Ref. [25]. The value of the β exponent was reported to be
consistent with the Onsager result β = 1

8 within 15%–20%
accuracy. This result was achieved within 3-parametric fitting
procedure requiring knowledge of accurate values of the
critical temperature and density. At this point, we note that
the value of β = 1

8 is also characterizing other universalities,
e.g., XY and three-state Potts model. Thus, by itself it is not a
“smoking gun” for the Ising criticality.

The LG critical point has been addressed by direct Monte
Carlo simulations by many groups. In Ref. [8] the analysis
of 2D Lennard-Jones fluid has been carried out within the
hypothesis of the mixing [3,6,7], and it has been concluded
that the universality of the transition is consistent with the
Ising class. However, the maximum size simulated in this work
allowed to include only about 400 particles on average, with
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two relatively small sizes of the simulation box used. Under
this condition, the applicability of the finite-size scaling (FSS)
analysis becomes questionable. The same approach has been
used in 3D [9] with the conclusion that the 3D LG critical point
belongs to the Z2 class. The role of corrections to scaling turns
out to be much more important in 3D. This, in particular, led to
inconsistent values of the ν exponent deduced from different
quantities.

Monte Carlo simulations have been also conducted for the
model interaction potential: the square well in 3D in Ref. [26]
(see also references there). The analysis was carried out for
a set of box sizes from 6 to 18 hard core radii, and the
conclusion was reached that the universality of the critical
point is consistent with the Ising class. Later, however, a
different result has been obtained for Lennard-Jones potential
[27]: the critical exponent ν was not consistent with the Ising
class. The LG criticality has been also addressed in a series
of papers [11–13], where both the critical exponent ν and the
critical histogram were found to be consistent with those of
the 3D Ising. (At this point, however, we should notice that the
accuracy in the ν-exponent value does not allow to exclude the
non-Ising universality [18].) The approach based on molecular
dynamics has been utilized in Ref. [28] and significantly larger
sizes have been simulated with the conclusion that the LG
criticality in 3D is of Ising type.

It is important to note that the methods used to evaluate the
critical exponents in Refs. [8,9,26–28] are strongly dependent
on the choice of the values of the critical temperature Tc and
pressure Pc (or density). This introduces significant uncertain-
ties in the exponents. In 3D, the corrections to scaling must
also be included. Thus, the fits become multiparametric which
introduces even larger errors. Furthermore, as pointed out in
Ref. [10], the Yang-Yang singularity implies nonanalytical
corrections to the position of the liquid-vapor coexistence line
which makes questionable the extrapolation procedures for the
purpose of recovering the β exponent.

Overall, it is fair to say that the majority of the scientific
community do accept the conjecture that the LG criticality
belongs to the Ising class despite that the experimental and
numerical evidence may leave some room for doubts due
to substantial uncertainties in measured indices. Thus, our
main motivation is to significantly improve the accuracy
in determining the indices. Here, we suggest a different
approach, based on the so called numerical flowgram (NF)
first introduced in Ref. [29] and further developed in Ref. [30].
This method is based on the finite-size scaling (FSS) approach
[31]. It allows finding position of the critical point as a
by-product of tuning a system into criticality with the help of
the Binder cumulants [32]. Thus, error in the critical exponents
is given essentially by the error of the Binder cumulant only
because no extrapolation or multiparametric fit procedure
is used.

We apply the NF method to the LG critical point in 2D by
measuring directly the critical index μ (and, independently,
γ /ν as a crosscheck). The outcome of our large scale
simulations allows to conclude with high certainty that the 2D
LG criticality does belong to the Ising class. It is important to
note that our analysis is not affected by the mixing effect. Using
the same method we have determined the scaling dimension
�5 of the φ5 term in the ϕ4 + ϕ6 model in the context of the

correspondence between the LG and the field ensembles. Our
finding is that �5 coincides with that of the linear term in the
Z2 class.

Our paper is organized as follows. First, we address the role
of the odd term ϕ5 in the mapping [14] of the LG criticality
to the field theory in 2D. Then, we present the results of the
direct simulations of the LG critical point in 2D. These parts
are independent from each other with the exception that the
same NF method is implemented for both. Finally, we discuss
the results and open problems and outline a path toward de-
tecting the nonanalyticity induced by the Yang-Yang anomaly
[10] within the NF approach.

II. CRITCALITY WITH THE ϕ5 TERM

As discussed above, there is a formal mapping between a
gas of particles undergoing the LG transition and the field
theory [14]. This mapping, however, unavoidably contains
odd terms in the field. The proposal [16] of the asymmetric
fixed point is based on the assumption that the operator Q5 =∫

ddx ϕ5 in the field model is relevant at the symmetric fixed
point in (d < 10/3)-dimensional space. Then, the symmetric
point may become unstable and the system finds another
(asymmetric) fixed point characterized by critical indices
different from those of the Ising model [16]. The alternative
view based on the ε expansion around d = 4 renders Q5 and all
higher terms as (dangerously) irrelevant [17]. This argument,
however, cannot be used in 2D. Thus, the issue of the odd
terms remains quite controversial in 2D, and our goal here is
to resolve it by simulations.

Here, we will specifically focus on the critical dimension
�5 of the Q5 term in the potential part of the action V (ϕ)
characterized by the symmetry ϕ → −ϕ. At this point, it is
important to mention that the result of adding g5ϕ

5 to V (ϕ)
can be quite drastic at the microscopic level already; this term
can simply eliminate the transition before scaling behavior
develops. We are not considering this option, and focus on the
situation where Q5 term is small at the microlevel. Then, if
it is relevant in the sense of renormalization, it will take the
system away from the Ising fixed point to a new (non-Ising)
one.

At this point, it is important to realize that the paradigm
of universality implies that the microscopic form of the action
V (ϕ) does not affect the scaling behavior occurring around
ϕ = 0. The only requirement is that this action should have
not more than two equilibrium solutions in the vicinity of
ϕ = 0 away from the critical point. Traditionally, the action
is taken as a truncated polynomial V (ϕ) = ∑n∗

n=1 g2nϕ
2n with

n∗ being as small as possible to ensure overall stability. In the
presence of the ϕ5 term, n∗ = 3 is sufficient. Thus, a natural
choice of the model corresponds to the uniform part of the
action Hu = ∫

ddx[V (ϕ) − g5ϕ
5] with

V (ϕ) = g2ϕ
2 + g4ϕ

4 + g6ϕ
6, (1)

where g2, g4 > 0, g6 > 0, g5 are parameters. Without loss of
generality, we will be using g4 = g6 = 1, g5 > 0. The range
of values of g5 is chosen in such a way as to avoid creating
extrema additional to ϕ = 0, at least at the mean field level.
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This corresponds to the condition

|g5| < g∗ = 16

5
√

3

√
g4g6 ≈ 1.848 (2)

implying that the Q5 term does not disturb the system
strongly at the microscopic scale. Fluctuations may change
this situation. Thus, in simulations we will consider the
range 0 < g5 < g∗. According to the standard practice [1],
the action (1) must be supplemented by the gradient term
∼∫

ddx( �∇ϕ)2 > 0.
Simulations have been conducted in 2D for the discretized

version of the model, placed on a square lattice. Then, the
partition function becomes

Z =
∫

Dϕ exp(−H ), (3)

with

H = −t
∑
〈ij〉

ϕiϕj +
∑

i

[
V (ϕi) − g5ϕ

5
i

]
, (4)

where the field ϕi is defined at a site i of the square lattice with
L sites along each direction, and the summation

∑
〈ij〉 runs

over nearest neighbor sites separated by �L = 1 distance and
coupled by the parameter t > 0. This parameter together with
g5 will be used to tune the system into the critical point. Thus,
in addition to g4 = g6 = 1 we set g2 = 1. The measure in (3)
is defined as

∫
Dϕ = ∏L2

i=1

∫ ∞
−∞ dϕi .

We will be using the dual formulation of the models (3) and
(4) in terms of the nonoriented loops and will utilize the Worm
algorithm [33]. More specifically, the factor exp(tϕiϕj ) at each
bond as well as exp(g5ϕi) at each site are expanded in Taylor
series and, then, each term is integrated out with respect to the
field ϕi . The resulting partition function (3) is represented in
terms of the powers and coefficients of the expansion as

Z =
∑

{Nij },{ni }

∏
〈ij〉

(
tNij

Nij !

) ∏
i

(
S(Ci)

g
ni

5

ni!

)
, (5)

where Nij = 0,1,2, . . . ,∞ are integers defined at bonds
between neighboring sites i and j ; ni = 0,1,2, . . . ,∞ are
defined at sites, and

S(Ci) =
∫ ∞

−∞
dϕ ϕCi exp(−aϕ2 − g4ϕ

4 − g6ϕ
6), (6)

with

Ci =
∑
j=〈i〉

Nij + 5ni, (7)

where
∑

j=〈i〉 denotes summation over bonds connected to the
site i. Thus, the configurational space is fully defined by the
bond and the site integers Nij ,ni , respectively.

The inspection of Eq. (5) indicates that the partition function
can be represented as a series in even powers of g5:

Z =
∑

N5=0,2,4,...

BN5g
N5
5 , N5 =

∑
i

ni, (8)

where

BN5 =
∑
{Nij }

∑
{∑i ni=N5}

∏
〈ij〉

(
tNij

Nij !

) ∏
i

(
S(Ci)

ni!

)
(9)

are positive coefficients independent of g5. This is consistent
with the symmetry of the model with respect to simultaneous
change ϕ → −ϕ, g5 → −g5. Thus, the dual representation
(5)–(7) is free from the sign problem.

While being formally exact in the asymptotic sense, the
mapping of the LG transition on the field theory [14] is not
practical for obtaining specific results if viewed beyond the
paradigm of universality, simply because the resulting action
is presented as an infinite series. Thus, the analysis of a field
model in conjunction with the LG criticality makes only sense
along the line of the universality concept when the action is
truncated. To emphasize this aspect, we introduce a variety
of models which, despite having very different appearance,
demonstrate the same critical behavior.

It is also useful to use a simplified (for numerical purposes)
version of the model by limiting the onsite values of ni in
Eqs. (5) and (8) to ni = 0,1 only. In other words, in the
expansion of exp(g5ϕ

5
i ) in Eqs. (3) and (4), only two first

terms are kept. According to the paradigm of universality,
such a truncation should not affect the scaling properties of the
model, that is, in the limit when the correlation length exceeds
considerably the lattice constant. This truncation corresponds
to the partition function

Z =
∫

Dϕ exp(−H1)
∏

i

(
1 + g5ϕ

5
i

)
, (10)

where

H1 = −t
∑
〈ij〉

ϕiϕj +
∑

i

[
aϕ2

i + g4ϕ
4
i + g6ϕ

6
i

]
. (11)

Following the standard approach [1] that only the first most
relevant terms of the Landau expansion matter, the integrand
in Eq. (10) can be rewritten as exp[−H1 + ln(1 + g5ϕ

5)] →
exp(−H1 + g5ϕ

5 − g2
5ϕ

10/2), with the higher order terms
dropped. As it is obvious, the truncated model does not need
to have the ∼g6 term because there is no instability anymore,
due to the term ∼ϕ10. Thus, g6 can be set to zero in Eq. (11).

A comment is in order about the appearance of the
model (10) which may invoke the sign problem because the
integrand in Eq. (10) is not positively defined. As clearly seen
from the representation (8) valid for both models, each term
in the series is positive, and, thus, there is no sign problem in
the truncated model as well. In principle, one can generate an
arbitrary number of the truncated models which are free from
the sign problem by limiting the onsite factors ni up to some
maximum value greater than 1. This limitation, obviously,
should have no impact on the scaling behavior.

The dual representations (5)–(7), (8), and (9) are especially
convenient in calculating the mean thermodynamical values
〈. . .〉 of

∑
i ϕ

5
i . Evaluation of d ln Z/dg5 in the representations

(8) and (3) gives

〈ψ〉 = g−1
5 〈N5〉, ψ =

∑
i

ϕ5
i . (12)

Similarly, higher order means 〈ψm〉, m = 2,3, . . ., can be
expressed in terms of the means of the higher powers of N5.

For the truncated model, the derivative d ln Z/dg5 applied
to the representation (10) and compared with (8) gives the
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relation similar to Eq. (12):

〈ψ1〉 = g−1
5 〈N5〉, ψ1 =

∑
i

ϕ5
i

1 + g5ϕ
5
i

→ ψ, (13)

where the last relation is written with respect to the limiting
scaling behavior. This aspect will be explicitly addressed
below.

The paradigm of universality predicts that both models
should have the same critical behavior. We will present results
of the simulations for the truncated as well the full model.
Jumping ahead, it will be shown that, while the position of
the critical point t = tc is different for two models, the critical
behaviors are identical within the statistical error (of about
1%–2%).

It is important to report that we have found no fixed point
at any finite value of g5 within the interval 0 < g5 � 1 (where
the correlation length is diverging). Thus, we conclude that
there is only one fixed point, corresponding g5 = gc = 0.
Then, the question should be answered about the scaling
dimension �5 of the g5 term. This can be achieved by
observing the divergence of the correlation length ξ ∼ g

−μ5

5
with some exponent μ5 > 0 as g5 → 0 as long as t = tc.
Such a divergence has been observed and it is found that
μ5 coincides with the Onsager value μ = 8

15 of the field
exponent (within 1%–2% of the total error). This implies that
�5 = 2 − 1/μ = 1

8 is the same as the critical dimension �1

of the field ϕ.

A. Critical behavior at g5 = 0 by the flowgram method

The idea of the flowgram method [29,30] is based on
constructing the FSS flow (with respect to the system size
L → ∞) by adjusting a critical parameter t so that some
Binder cumulant UB [32] is tuned to a value within its critical
range. Conversely, keeping UB within its critical range (by
adjusting t) as L → ∞ guarantees that t → tc with increasing
accuracy. Then, a quantity Q characterized by scaling behavior
will exhibit self-similar dependence versus UB with respect
to L. In other words, if UB is kept in the critical range for
large enough L, the plot Q versus UB can be represented by
some universal function multiplied by the factor L−�Q with
the exponent �Q determining scaling dimension of Q.

More specifically, far from the criticality UB takes some
fixed values, say, UB = B0 in the disordered phase and UB =
B1 in the ordered phase. At the critical point, t = tc (and
g5 = 0), it takes a value UB = Bc independent of the system
size L as long as L → ∞ and such that B0 < Bc < B1(where
for the sake of argument we assume B1 > B0). It is important to
note that for any finite L, the function UB(t) changes smoothly
from B0 to B1 as t passes from t < tc to t > tc. However, as L is
taken larger and larger, the domain δt around t = tc over which
this change happens becomes smaller and smaller. Thus, in the
thermolimit (L → ∞) the cumulant exhibits a jump from B0 to
B1 at exactly t = tc because δt ∼ L−1/ν in accordance with the
FSS [31], with ν > 0 being the critical exponent characterizing
the divergence of the correlation length ξ ∼ |t − tc|−ν .

This strategy is guaranteed to access a critical point in
progression of growing sizes L, as long as UB is tuned to any
value within the critical range B0 < UB < B1. Accordingly,
the system is always in the critical range of UB (and of any other
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512256

128

64
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t

32

FIG. 1. Ur vs t (symbols) for various L (shown close to each
data set); lines are guides to eye. The crossing point corresponds
to UB = 0.965 and it determines tc = 1.3173 ± 0.0003 (for g4 =
1, g6 = 0, g2 = 1, g5 = 0 in Eqs. (5), (4).

scaling quantity). In particular, the family of curves dUB/dt

vs UB for various L must be self-similar for large enough L

because dUB/dt ≈ (B1 − B0)/δt ∝ L1/ν . Thus, constructing
such a family and then rescaling them into a single master curve
by a scaling factor λ(L) gives the exponent ν by plotting ln λ

vs ln L. Similarly, other exponents can be found by choosing
the appropriate quantity Q to plot versus UB and to perform
the rescaling of the family of the curves (for various L) into a
single master curve. Clearly, within this approach the value of
tc plays no explicit role in the fitting procedure, with the only
one fitting parameter being the scaling dimension.

In order to determine the ν exponent, we have chosen the
following Binder cumulant:

Ur (t,L) = 〈r2〉G
r2
L

, r2
L =

∑
�r

�r 2/Ld ∝ L2, (14)

where 〈r2〉G = ∑
�r G(�r)�r2/

∑
�r G(�r), with G(�r) denoting the

correlator 〈ϕ(�r)ϕ(0)〉 taken at two points in 2D space separated
by the vector �r; and 〈. . .〉 defines the averaging with respect
to the partition function (3), (4). To demonstrate that Ur is a
scale invariant quantity at the critical point, we have analyzed
its behavior vs t for various sizes. Figure 1 shows the crossing
point of Ur at t = tc ≈ 1.3173 for the parameters g2 = g4 =
1, g6 = 0, g5 = 0. The value of tc depends on g6. For the
case g2 = g4 = g6 = a = 1, g5 = 0 it is tc ≈ 1.6975. (The
accuracy of tc is controlled by the maximum system size L

simulated.)
By the definition (14), Ur → 0 (as L → ∞) in the

disordered phase [where the correlation length is ∼O(1)]
and Ur = 1 in the ordered phase where the coherence length
reaches the system size L. Thus, formally speaking, any value
in the interval 0 < Ur < 1 belongs to the critical range of Ur .
In reality, for practical purposes of achieving better accuracy of
the critical exponent we have found that it is reasonable to tune
Ur into the region where dUr/dt vs Ur reaches its maximum
(see Fig. 2), that is, within the range 0.5 < Ur < 0.8.
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FIG. 2. Monte Carlo results for dUr/dt vs Ur (symbols) as
defined in Eq. (15) for several system sizes L (shown close to and
above each curve; Lines are guides to eye).

At g5 = 0, the integers Nij form closed nonoriented loops.
Within the Worm algorithm [33] the evaluation of the correla-
tor corresponds to having one loop with two open ends. In this
space, Ur can be constructed as the histogram of the square of
the distance �r 2 between two open ends which represent two
random walkers. Accordingly, dUr/dt can be found as

t
dUr

dt
=

∑
〈ij〉

[〈Nij �r 2〉G − 〈Nij 〉G〈�r 2〉G] (15)

following direct differentiation vs t in the dual representations
(5)–(7).

The result of this procedure, the family of graphs dUr/dt vs
Ur for various L, is shown in Fig. 2 for g4 = a = 1, g6 = 0.
The master curve obtained by the vertical rescaling of the
data with the exponent ν = 1 is shown in Fig. 3. The lines

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

160

180

Ur

λ(L)dUr/dt

FIG. 3. Rescaled data shown in Fig. 2 with λ(L) =
(200/L)1/ν, ν = 1. The overall statistical error of the data is
∼1%–2%.

connecting the data points for L = 40,80 are shown in order
to emphasize that at these sizes the subdominant term is still
visibly significant so that these data points do not collapse into
the master curve. The line for L = 400 is also shown to indicate
that all higher sizes L = 120,160,200,320,400 belong to to the
master curve within the error 1%–2%.

At finite g5, the structure of the configurational space
changes: there are loops which are not closed. The general
condition (7) indicates that whenever ni = 1,3,5 at a site i,
there are an odd total number of the integers Nij at the bonds
connecting this site with its neighbors j .

B. Critical behavior at finite g5

Ising critical behavior is characterized by two primary fields
∼ϕ2 and ∼ϕ with the corresponding “charges” τ ∼ t − tc and
h. In the space (τ,h), the divergence of the correlation length ξ

along the line h = 0 is characterized by ξ ∼ τ−ν → ∞ and by
ξ ∼ h−μ → ∞ along τ = 0, with the Onsager exponents ν =
1, μ = 8

15 . According to the FSS, once ξ reaches the system
size L, the role of ξ is taken over by L. In the previous section
we have explored the first property and have shown that the ν

exponent is consistent with the Onsager solution. In order to
observe the divergence along the second line one should select
t = tc as determined from the previous procedure for largest
sizes and to apply the NF method, now at finite h. In this case,
plotting dUB/dh vs UB for various L and constructing the
master curve by rescaling dUB/dh into a single master curve
by some factor λ(L) for each L will give the μ exponent.

The above logic can be followed in order to determine
scaling dimensions of any higher odd terms. Here, we will
be concerned with the term ∼ϕ5 as the most possibly
relevant one, as suggested in Ref. [16]. We have determined
the corresponding critical exponent μ5 from the rescaling
procedure of the graphs dUB/dg5 versus UB for various L.

At this juncture, we have to change the type of the Binder
cumulant UB . At finite g5 (or in the presence of any other odd
term) using the cumulant UB = Ur [Eq. (14)] is not convenient
because the number of open loops is now a dynamical variable.
Thus, we choose UB = U2 = 〈∑i ϕ

5
i 〉2/〈(∑i ϕ

5
i )2〉 built on

the ϕ5 term. In the dual representation (5) it is

U2 = (d Z/dg5)2

Zd2 ln Z/dg2
5

= 〈N5〉2

〈N5(N5 − 1)〉 . (16)

For the full models (3) and (4) U2 = 〈ψ〉2/〈ψ2〉, where ψ is
defined in Eq. (12). Clearly, U2 = 0 at g5 = 0 simply because
〈ψ〉 = 0 and 〈ψ2〉 is finite; and U2 = 1 far away from the
critical point, where g5 = 0 and fluctuations are suppressed.

For the truncated model, the role of ψ is played by
ψ1 [Eq. (13)]. In the limit g5 � 1, the denominator in ψ1

plays no practical role. More specifically for the truncated
model 〈N5(N5 − 1)〉 = g2

5[〈ψ2〉 − ∑
i〈ϕ10

i /(1 + g5ϕ
5
i )2〉] →

g2
5〈ψ2〉 because the term ∼〈ψ2〉 has the extra factor L2 with

respect to ∼∑
i〈ϕ10

i 〉. We will be evaluating U2 in terms of
its representation by the dual variable N5 [Eq. (16)] for both
models.

The variation of U2 versus g5 from 0 to 1 occurs over
the domain shrinking with L → ∞ as the power ∼L−1/μ5

where μ5 > 0 determines the scaling dimension �5 = 2 −
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FIG. 4. Monte Carlo results for dU−1
2 /dg5 vs U−1

2 in the truncated
model (10) for sizes L shown close to each curve.

1/μ5 of the ϕ5 term. (If �5 < d = 2, this term is relevant
and irrelevant otherwise.) Thus, dU2/dg5 ∝ L1/μ5 → ∞. This
derivative can be expressed in terms of averages of powers of
N5 with the help of the general relation for the derivative
d〈Q〉/dg5 = g−1

5 [〈QN5〉 − 〈Q〉〈N5〉] of any quantity Q. This
relation follows immediately from the representation (8) for
both models. The results of the simulations for the truncated
model are presented in Fig. 4.

The family of the curves (Fig. 4) can be collapsed to a single
master curve (Fig. 5) by the scale factor λ(L) ∼ L−1/μ5 with

1 10 100
101

102

103

104

105

106

107

10 100

1

10

100

U-1
2

λ(L)dU-1
2

/dg
5

λ

L

FIG. 5. The master curve obtained by “vertical” rescaling of
the plots dU−1/dg5 vs U−1

2 . The upper curve is from Fig. 4
obtained by the rescaling by the factor λ(L) to match the data for
L = 350, that is, λ(350) = 1. The lower curve is obtained by the
same procedure for the data obtained from the full model, g6 = 1,
for L = 10,20,40,80,160,200,250,320, with the choice λ(200) = 1.
Inset: the log-log plots of λ versus L for the full (the lower data and the
line) and truncated (the upper data and the line) models. Solid lines
are the linear fits with the slopes 1/μ5 giving μ5 = 0.534 ± 0.008.
The error includes statistical and systematic contributions. This value
is consistent with the Onsager exponent μ = 8

15 ≈ 0.533.

0.1 1
1
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100

0.06 0.08 0.10 0.12
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10

λdU-1
2 /dg5

U
-1
2 -1

350

10

350

10

FIG. 6. Deviation from the scaling. Two curves, L = 10,350,
from Fig. 5 are shown in the domain where deviations from scaling
are significantly higher than the statistical error of 1% (about 15%).
Inset: more detailed view on the linear scale.

the exponent μ5 = 0.534 ± 0.008. This exponent turns out to
be consistent with the μ exponent of the 2D Ising model, μ =
8
15 ≈ 0.533, within 1%–2% of the combined error: systematic
and statistical. It is important to note that the range of λ extends
over almost three orders of magnitude. In order to emphasize
the quality of the collapse, we have included the plot Fig. 6
showing two sizes L = 10,350 rescaled to each other within
a narrow range of U−1

2 − 1. A visible deviation from scaling
starts for U−1

2 − 1 < 1. Similar behavior is demonstrated by
the full model with g6 = 1. Its master curve is also shown
in Fig. 4, with the rescaling factor characterized by the same
exponent μ5.

This concludes our analysis of the role of the symmetry
breaking term ϕ5 in 2D. Within the accuracy of 1%–2% and
up to the simulated sizes of L = 350 this term has the same
scaling dimension as the linear one ϕ in the Ising class. Using
a similar approach, higher odd terms can be considered too. In
response to the question [15] about the role of the odd terms
in the formal mapping [14] of the LG critical point to the field
theory, we conjecture that all odd terms have the same critical
dimension of the field primary operator, consistent with the
Ising criticality. This conjecture will be further supported in
Sec. IV.

III. LG CRITICALITY IN 2D

So far, we have discussed the role of higher odd terms in the
field theory along the line of the universality paradigm when
a particular form of the action is not important as long as a
system is close to the fixed point. The relation of this study to
the actual LG criticality stems from the formal mapping of the
classical gas to a field theory [14].

Here, we will analyze the LG transition in 2D gas of
classical particles by simulating it directly. We choose the
simplest interacting potential: the square well [26]. The NF
method will be used to determine the critical behavior in this
case too.
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The system of classical particles is described by the grand
canonical partition function

Y =
∞∑

N=1

1

N !
eμ̃N

∫
d�r1 . . . d�rNe−V , (17)

where V = (1/2)
∑

ij v(�ri − �rj ) is the potential energy of
binary interaction (normalized by temperature) between N

particles located at �ri, i = 1,2, . . . ,N , within the square area
L2 (now L is a continuous length); μ̃ is the chemical potential
(normalized by temperature).

The interaction energy v(�r) between two particles separated
by a vector �r is taken as the square well potential. That is,
v = ∞, if |�r| < σ , v = −ε, if σ � |�r| � λ̃σ , and v = 0, if
r > λ̃σ . Here, σ and λ̃σ > σ are the hard and soft core radii,
respectively, and ε > 0 characterizes attraction within the soft
core shell. Since temperature is absorbed into the definition
of ε, we will be calling 1/ε as “temperature” T and μ̃ as
“chemical potential.” Simulations have been conducted for
λ̃ = 1.5.

The quantities of interest are cumulants of the total number
of particles N , that is, 〈Np〉, with p = 1,2,3, . . . . In the plane
(μ̃,T ) there is a line of first order phase transition between low
and high density phases. This line ends by the critical point
at some μ̃ = μc, T = Tc. One of the significant difficulties
in analyzing the LG transition is in finding this point in a
controlled manner. Below, we will address this difficulty with
the help of the NF method which leads to the critical point
automatically, along the same line as discussed in previous
sections. For this purpose, we consider the following Binder
cumulant:

U4 = 〈(N − 〈N〉)2〉2

〈(N − 〈N〉)4〉 , (18)

and its derivatives dU4/dμ̃ and dU4/dε. (These derivatives
can be expressed in terms of the cumulants 〈Np〉, with p =
2,3, . . ., and 〈NpE〉, where E is the total energy of the system.)

As discussed in Ref. [32], this cumulant has a specific
form: away from the coexistence line it is U4 = 1

3 in the
limit L → ∞. At the coexistence line it has two dips
corresponding to the densities of liquid and gas, with the
peak in between corresponding to U4 = 1. Above the critical
point, this maximum tends toward the value U4 = 1

3 . Thus, at
the critical point the dips approach each other, with the peak
reaching some intermediate value 1

3 < Uc < 1. This value is
scale invariant [13]. Figure 7 illustrates this specific form of
the cumulant.

In other words, the critical point corresponds to the
separatrix of the maximum of U4 as a function of T ,μ̃ with
respect to L → ∞. This suggests a protocol for finding the
critical point: 1. choose some T and find maximum of U4 by
adjusting μ̃ for each size L; 2. if this maximum flows toward
1 (toward 1

3 ), increase (decrease) T and repeat the previous
step until the flow of U4 maximum (versus L) saturates to
some constant value. The result of this procedure is shown
in Fig. 8. It is important to emphasize that the accuracy of
Tc = 0.5540 ± 0.0005 and μ̃c = −3.700 ± 0.005 is limited
only by the maximum system size simulated and the numerical
accuracy of U4. Obviously, no fitting procedure with respect
to Tc,μc is required.

0.0

0.2

0.4

0.6

0.8

1.0

U4

μ

maximum•

1.0 at 1st order transitions

1/3 in single phases

U*
4 at T=Tc

FIG. 7. Sketch of the Binder cumulant (18).

Thus, while keeping T = Tc the FSS can be conducted by
tuning μ̃ in the vicinity of μc so that U4 stays within the
critical range 1

3 < U4 < Uc. Then, plotting dU4/dμ̃ versus U4

should allow finding the corresponding exponent. There is one
complication, though, a possibility of mixing of the primary
operators in N and E in a priori unknown proportions as
suggested in Refs. [3,6,7] and further discussed in Refs. [10–
13]. Thus, it is not known along which line in the space of the
primary scaling operators (τ,h) the system approaches criti-
cality, if, say, μ̃ is tuned toward μc while T is kept at its critical
value T = Tc. It is, however, possible to argue that, generically,
the approach to the critical point should proceed along the line
where the primary operator with smaller scaling dimension
dominates. This argument goes as follows: the critical range
can be divided into two parts: of strong and weak field [1].

10 20 30 40 50 60 70 80

0.65

0.75

0.85

0.95

T > Tc

T < Tc
0.5525

0.5540

0.5618

0.5587

0.5555

L

U4 max

0.5495

T=Tc

FIG. 8. Monte Carlo results for the maximum of U4 (symbols)
for several temperatures, T , (shown close to each data set) in regions
T < Tc and T > Tc. Lines are guides to eye. The horizontal line,
separatrix, determines the critical point, Tc = 0.5540 ± 0.0005 and
μ̃c = −3.700 ± 0.005.
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0 |τ|

|h|

strong field

weak field

FIG. 9. A generic path (dashed line) toward the critical point
(h = 0, τ = 0) in presence of the mixing effect when μ < ν. The
solid line, h∗ ∼ |τ |ν/μ with ν/μ > 1, separates the regions of strong
and weak field.

The separation between the two regions is determined by the
relation h∗ ∼ τ ν/μ so that at |h| > h∗ the critical singularities
are determined by h rather than by τ → 0. Thus, if μ < ν,
a generic path μ̃ − μc ∼ r1τ + r2h toward the critical point
τ = 0,h = 0 with nonzero mixing coefficients r1,2 will belong
to the region of strong field close enough to the critical point,
as sketched in Fig. 9. Accordingly, conducting the FSS with
respect to μ̃ will give the μ exponent. Conversely, if μ > ν, the
approach should generically proceed along a path in the weak
field region so that the flowgram method will give the ν expo-
nent. The result of the flowgram analysis of dU4/dμ̃ vs U4 is
shown in Fig. 10 with the rescaling factor λ plotted in Fig. 11.

As can be seen, the resulting exponent μ = 0.532 ± 0.005
is consistent with the Ising value 8

15 within 1% of the statistical
error.
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0

1000

2000

3000

10
18

24
36

48

60

72

84

λ(L)dU4/dμ

U4

FIG. 10. The master curve obtained by “vertical” rescaling of the
data dU4/dμ̃ vs U4 (symbols) for sizes L = 10, . . . ,84 by the factor
λ(L) to achieve the best collapse. Inset: the original data for sizes
shown close to each data set (symbols). Lines are guides to eye.

4 8 16 32 64
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1
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4

8

16

L

λμ(L)

line: (36/L)1/μ

FIG. 11. The rescaling factor λ vs L (symbols) obtained from the
data shown in Fig. 10. The value of the exponent μ = 0.532 ± 0.005
is consistent with the Onsager value μ = 8/15.

We have also analyzed the compressibility of the system
κ = 〈(N − 〈N〉)2〉/L2 within the NF method, that is, by
plotting it vs U4 in the critical range. The result is presented in
Figs. 12 and 13. The found exponent (1 − 1/δ)/μ = γ /ν =
1.75 ± 0.05, where δ, γ are the critical exponents (related to
each other through the scaling relations), is consistent with the
Onsager value 7

4 . Thus, the results of our simulations strongly
support the conjecture that the LG criticality in 2D belongs to
the Ising class.

IV. DISCUSSION AND SUMMARY

The NF method [29,30] is a universal numerical tool
in FSS analysis. Its main advantage comes from avoiding
numerical fits where accurate knowledge of the position of
the critical point is required, in a strong contrast with the
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0
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0.20 0.25 0.30 0.35 0.40 0.45 0.50
0
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36
48
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72

84

λ(L)κ

24 18
10

U4

FIG. 12. The master curve of the compressibility κ vs U4 obtained
by rescaling of the data sets (symbols) for various L. Inset: the original
data (symbols) for each size L shown close to each curve. Lines are
guides to eye.
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16 line: (36/L)γ/ν

γ/ν = 1.75 +- 0.01

L

λγ/ν(L)

FIG. 13. The rescaling factor λ vs L (symbols) obtained from the
data shown in Fig. 12. The exponent γ /ν = 1.75 ± 0.01 is consistent
with the Onsager value γ /ν = 7/4.

standard methods. The FSS relies on approaching the scaling
regime where the role of the correlation length ξ ∼ |T − Tc|−ν

is taken over by the system size L. Thus, the error of the
universal scaling exponent δν coming from the uncertainty
δTc of the critical temperature δν ≈ δTc/|T − Tc| ∼ δTcL

1/ν

grows with L. The situation becomes much worse in the case
of the LG transition where the critical point is determined
by two parameters: critical temperature and pressure (or
density). The NF method avoids this significant source of
errors because no multiparametric fits or extrapolations are
used. As a result, its accuracy is solely determined by statistical
errors of measuring appropriate Binder cumulants and their
derivatives with respect to Hamiltonian parameters.

The scaling dimension of the φ5 term has been determined
to be the same as of the linear term. We conjecture that all odd
terms are equivalent to the linear one at the criticality. In simple
terms, the mechanism can be illustrated by the following pic-
ture. A higher odd term ∼∫

ddx ϕ2n+1, with n = 2,3, . . ., in (4)
can be decomposed as ϕ = ϕL + ϕs into a long range part ϕL

and short range fluctuations ϕs so that at the criticality the rel-
evant contribution is ∼∫

ddx ϕLϕ2n
s where ϕ2n

s can be replaced
by a short range contribution which is a noncritical constant.

Here, we give a qualitative argument in support of this
conjecture using dual view on the field model. As can be
seen from the dual representation (5), any correlator G2n+1 =
〈ϕ2n+1(�r)ϕ2n+1(0)〉, with n = 0,1,2, . . ., can be represented
by a single loop of the bond integers Nij with only two open
ends: at �r and at 0. The logarithm of the statistical weight
of such a loop depends on the loop structure and its length
as an extensive value (with respect to L) at the criticality.
The contribution to this weight depending on n is finite and,
thus, it cannot change the total weight in thermolimit L → ∞.
This implies that all the correlators should be proportional
to each other at the critical point. This argument shows that
scaling dimensions of all odd terms determined with respect
to the Ising fixed point should be identical (and equal to
that of the linear term). Strictly speaking, however, this does
not prove that these terms will not modify the criticality if these

are added to the Hamiltonian. Here, we proved only that ϕ5

does not change the Ising universality. However, it is straight-
forward to apply the same protocol for arbitrary odd term.

Here, we have also addressed the LG criticality of a classical
gas in 2D free space. The analysis is based on applying
the NF method to the Binder cumulant showing a specific
behavior [13]. Our finding is that it is characterized by Onsager
value of the critical exponent μ. The same method can be
used in 3D. However, the analysis is complicated by the
low value of the exponent θ ≈ 0.54 determining correction to
scaling. Thus, in order to suppress such corrections within the
FSS analysis, much larger system sizes should be simulated.
Alternatively, the fitting of the rescaling factor λ(L) should
involve two exponents: the main one and θ . This introduces
significant uncertainty which requires large computational
efforts to minimize the contributions of errors from several
fitting parameters.

A long standing problem in the theory of the LG criticality
is the anomaly in the so called diameter: the mean value
of the liquid nl and gas ng densities along the liquid-vapor
coexistence line. Absence of the underlying symmetry implies
that the diameter must have a nonanalytical term ∼(Tc − T )1−α

along the critical isochore (see Ref. [1]) with α being the heat
capacity critical index. As suggested in Ref. [10], there should
also be a much stronger term ∼(Tc − T )2β where β is the
order parameter critical index. The attempts to observe this
term directly [11–13] were not very conclusive. The question,
then, can be asked if the NF method can be used to resolve the
problem. Here, we outline a path toward this goal.

We remind that the heat capacity (in variables μ̃, T )
diverges as C ∼ |T − Tc|−α along the coexistence line μ̃ =
μ̃(T − Tc), T < Tc (cf. Ref. [1]). On the sketch Fig. 9 this
line is given by h = 0. This divergence is much weaker
than along a generic path (the dotted line in Fig. 9) where
C ∼ |T − Tc|−γ . In terms of the FSS, this means C ∼ Lα/ν

and C ∼ Lγ/ν , respectively. In 2D, α/ν = 0 and γ /ν = 7
4 ,

and in 3D, α/ν ≈ 0.2 while γ /ν ≈ 2. This drastic difference
in the divergence rate can be used to locate the coexistence
line within FSS by measuring C around the critical point
(determined by the NF method as described above). Then,
once μ̃ is set along this line, the histogram of system density
can be determined with the peaks nl and ng corresponding to
the densities of liquid and gas. Since the critical density nc

can be accurately determined by the NF method, the quantities
η+ = nl − nc and η− = ng − nc can be identified with the
order parameter values. Within FSS, these are characterized
by η+ − η− ∼ L−β/ν and, if the anomaly τ 2β , Ref. [10] is
present, by η+ + η− ∼ L−2β/ν . Within the NF method, these
quantities should be plotted vs U4 in its critical domain
(collected also along the coexistence line) and then rescaled
into two master curves with the corresponding values of the
rescaling parameters λ+, λ− for the sum and the difference,
respectively. If the 2β anomaly is present, the log-log slope
of λ+ vs L should be twice that of the slope of λ− vs L. It is
worth mentioning that the outlined protocol does not involve
the direct fitting of η+ + η− by ∼(Tc − T )2β . This project will
be discussed elsewhere.

Summarizing, the numerical flowgram method has been
applied to the problem of LG criticality in 2D and the critical
correlation length exponent μ has been determined to be
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consistent with 2D Ising class within the combined error of
1%–2%. The main advantage of the method is that it does not
require the accurate knowledge of the position of either the
critical point or the coexistence line. Instead, these quantities
follow as a by-product of the method. The role of the odd
terms in the real scalar field theory near the critical point has
been addressed too in the context of the general mapping of
the LG transition to the field theory. The analysis of the ϕ5

term revealed that its critical dimension is the same as that of
the linear term ϕ. We have put forward a conjecture that in 2D

all odd terms have the same critical dimension. This excludes
the possibility of non-Ising LG criticality.
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