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Effective dielectric response of dispersions of graded particles
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Based upon our compact group approach and the Hashin-Shtrikman variational theorem, we propose a solution,
which effectively incorporates many-particle effects in concentrated systems, to the problem of the effective
quasistatic permittivity of dispersions of graded dielectric particles. After the theory is shown to recover existing
analytical results and simulation data for dispersions of hard dielectric spheres with power-law permittivity
profiles, we use it to describe the effective dielectric response of nonconducting polymer-ceramic composites
modeled as dispersions of dielectric core-shell particles. Possible generalizations of the results are specified.
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I. INTRODUCTION

The effective properties of dispersions of graded particles
have been studied intensively. Aside from being important due
to their abundance in nature [1], such systems attract particular
interest because of their potential technical applications. For
instance, the effective dielectric response of graded composites
can be tuned finely by designing the dielectric profiles of
the constituent. Numerous applications of such systems are
discussed in [2–9].

Despite serious efforts made so far, the determination of
the effective dielectric properties of dispersions of graded
particles, which is the objective of this paper, remains a chal-
lenging theoretical problem, even in the quasistatic limit. The
reason is strong variations of the electric field in such systems
due to electromagnetic interactions and spatial correlations
of their constituents. As a result, reliable analytical results,
such as [10–13] for graded spherical inclusions or [14–16] for
two-dimensional composites of graded cylindrical inclusions,
are rare and have been obtained within the Maxwell-Garnett
approach [17–19] for diluted low-contrast dispersions, where
the interparticle influences are negligibly weak: the problem
is actually reduced to solving the governing equation for the
electric potential of a single particle in a uniform external
field [10–16]. Similarly, computer simulations [20] deal with
the response of a single graded particle in the computational
domain. This situation tacitly implies the use of the Maxwell-
Garnett type of homogenization.

The results [11–14] validated approximate schemes known
as the differential effective dipole approximation (DEDA)
[21,22], anisotropic differential effective dipole approximation
(ADEDA) [23], and differential effective multipole moment
approximation (DEMMA) [21,24]. Based on the application
of differential analysis to available rigorous solutions for a
single graded particle, these schemes allowed one to evaluate
the induced dipole moments of single graded particles with
more complex shapes and, in general, anisotropic permittivity
profiles. The differential analysis also became an integral
part of other approaches, such as the differential replacement
procedure (DPR) [25], which combines it with an energy
equivalency condition; the multiscale homogenization scheme
[26], proceeding from a generic theorem on the equivalence
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between a graded dielectric ellipsoid and an anisotropic
homogeneous ellipsoid, etc.

It is significant to emphasize that after the individual
polarizability of a graded particle is found with the just-listed
or similar methods, the effective permittivity of a dispersion
of such particles is calculated using again the Maxwell-
Garnett approach. As the filler particle concentration or the
particle-matrix contrast or both are increased, the electric field
distribution in the dispersion becomes extremely complicated
and difficult to visualize. The pertinent microscopic calcu-
lations, which now require the knowledge of an infinite set
of the correlation functions of the system, become virtually
impossible.

By this paper, we would like to attract the reader’s attention
to new developments of our earlier results [27–29] and their
applications to dispersions of graded hard dielectric spheres
with piecewise-continuous permittivity profiles. They are
obtained using our original method of compact groups of
inhomogeneities [27–29]. It is designed to effectively take
into account many-particle polarization and correlation effects
in a system with complex microstructure without uncontrolled
assumptions about them. The essential details of the method
are presented in Sec. II. The equation for the effective dielectric
constant of the dispersions is derived in Sec. III. This equation
still contains an unknown parameter, the permittivity of the
host in the auxiliary system; combining our approach with the
Hashin-Shtrikman variational theorem [30], this parameter is
determined in Sec. IV. The results of contrasting our theory
with other authors’ analytical and numerical results are given
in Sec. V. The application of the theory to nonconducting
dispersions of core-shell particles is discussed in Sec. VI. The
main results obtained and further suggestions are summarized
in Sec. VII.

II. SUMMARY OF THE COMPACT GROUP APPROACH

The main points of this approach in application to macro-
scopically homogeneous and isotropic systems are as follows
[27–29]:

(1) The effective quasistatic permittivity εeff of a system is
defined by the relation [19]

〈D(r)〉 = 〈ε(r)E(r)〉 = εeff〈E(r)〉, (1)

where D(r), E(r), and ε(r) are the local values of, respectively,
the electric induction, electric field, and permittivity in the
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system. The angle brackets in Eq. (1) mean either statistical
averaging or averaging by volume integration; for an infinite
system, both ways are expected to give, according to the
ergodic hypothesis [8,19], the same result.

(2) A dispersion D to be homogenized is equivalent, in
its long-wave dielectric response, to an auxiliary system S
prepared by embedding the constituents (particles and matrix)
ofD into a host (perhaps, imagined)M of some permittivity εf .
The system S can be viewed as a set of compact groups of both
particles and regions occupied by the real matrix. The compact
groups are defined as macroscopic regions whose typical sizes
d are much smaller than the wavelength λ of probing radiation
in M, but which yet include sufficiently large numbers N of
particles to remain macroscopic and retain the properties of
the entire S. The permittivity distribution in S is

ε(r) = εf + δε(r), (2)

where δε(r) is the contribution from a compact group located
at point r. The explicit form of δε(r) is modeled in accord
with the geometrical parameters and dielectric properties of
D’s constituents.

(3) The analysis of the electric field distribution E(r) in S
is based on the equation [19]

�E + k2
0εfE − grad divE = −k2

0δεE, (3)

describing the propagation of an electromagnetic wave in
inhomogeneous media. This equation is replaced by an
equivalent integral equation

E(r) = E0(r) − k2
0

∫
V

dr′ T(r,r′)δε(r′) E(r′), (4)

where E0(r) = E0 exp(i
√

εf k0 · r) and E0 are, respectively,
the incident wave field and its amplitude in M, k0 is its wave
vector in vacuum (k0 = 2π/λ0), and T(r,r′) = T(|r − r′|)
is the electromagnetic field propagator [Green’s tensor of
Eq. (3)]. Using Eq. (4), the formal solutions for E(r), D(r),
〈E(r)〉, and 〈D(r)〉 are represented in the form of infinite
iterative series.

(4) On a set of scalar, compactly supported, and bounded
functions ψ(r), T satisfies the relation [27,31]∫

V

dr T(r)ψ(r) =
∫

V

dr T̃(r)ψ(r), (5)

where the integration volume V is divided into a sphere of
radius a → 0 and the rest of V , and T̃ is the corresponding
decomposition of T into a Dirac delta function part and a
principal value part (see also the end of Sec. IV):

T̃αβ(r) = 1

3k2
δαβδ(r) eikr + 1

4πk2

(
1

r3
− ik

r2

)
× (δαβ − 3eαeβ) eikr − 1

4πr
(δαβ − eαeβ) eikr . (6)

Here, δ(r) is the Dirac delta function, δαβ is the Kronecker
delta, eα is the α component of the unit vector e = r/r , and
k = √

εfk0. The first (denoted further as T̃ (1)) and second (T̃ (2))
terms to the right of the equality sign in Eq. (6) determine the
reemission effects inside compact groups, and the third one
(T̃ (3)) determines the long-range reemission effects between
compact groups.

(5) It follows from Eqs. (4)–(6) that in the iterative series
for 〈E(r)〉 and 〈D(r)〉, all the integrals with factors T̃ (3) in the
integrands vanish in the long-wavelength limit

√
εfk0 → 0,

provided the typical linear size L of the system is finite, and
so do, due to a special form of the angular dependence of
T̃ (2) at

√
εfk0 → 0, all the integrals with factors T̃ (2) in their

integrands. Speaking more precisely, the subseries with factors
T̃ (3) in the integrands give corrections of the order εfk

2
0L

3/d to
〈E(r)〉, as compared to the contribution made by the subseries
with factors T̃ (1) alone. For a finite L, these corrections can
be decreased below any preset value by taking a sufficiently
small k0. A similar conclusion also applies to the subseries
with factors T̃ (2) in the integrands. So, the parameter d drops
out of the final solution as

√
εfk0 → 0.

Complete proofs of these statements are given in [27,29,32].
(6) The above results allow for a simple physical inter-

pretation in terms of compact groups. In the limit λ → ∞,
compact groups can be taken to be so large that the fluctuations
of particle numbers inside each group and the correlations
between different groups become negligibly small. However,
with respect to the probing radiation, such groups can still be
viewed as one-point inhomogeneities. The effects of multiple
reemissions and correlations inside them dominate in the
formation of 〈E(r)〉 and 〈D(r)〉 in the long-wavelength limit.
The contributions from these effects are formed by those
ranges of coordinate values where the propagators reveal a
singular behavior. They are singled out from all terms in the
iterative series by formally replacing the propagators T in the
integrals for 〈E(r)〉 and 〈D(r)〉 by their most singular parts T̃ (1).
As a result, for macroscopically homogeneous and isotropic
systems, we have

〈E〉 =
[

1 +
∞∑

s=1

(
− 1

3εf

)s

〈(δε(r))s〉
]

E0, (7)

〈D〉 = εf

[
1 − 2

∞∑
s=1

(
− 1

3εf

)s

〈(δε(r))s〉
]

E0. (8)

For models with bounded and piecewise-continuous δε(r),
Eqs. (7) and (8) are rigorous in the quasistatic limit. In
particular, together with Eq. (1) they reproduce the classical
result [19]

εeff ≈ ε − 1

3ε
(ε − ε)2,

which is valid, to O[(ε − ε)2/ε2], for any mixture in which
the local deviations of permittivity ε from the average value ε

[= εf + 〈δε(r)〉] are weak.
Thus, the analysis of εeff reduces to modeling δε(r),

calculating its moments 〈(δε(r))s〉, finding the sums in Eqs. (7)
and (8), and deciding on the value of εf .

III. EQUATION FOR εeff OF GRADED SPHERES

For a dispersion of inhomogeneous hard dielectric spheres,
with radius R and piecewise-continuous permittivity profile
ε1 = ε1(r), embedded in a uniform matrix, with constant
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permittivity ε0,

δε(r) = �ε0

[
1 −

N∑
a=1

θ (R − |r − ra|)
]

+
N∑

a=1

�ε1(r − ra)θ (R − |r − ra|), (9)

where �ε0 = ε0 − εf , �ε1(r) = ε1(r) − εf , θ (x) is the Heav-
iside step function, and the summation is carried out over the
position vectors ra of N spheres belonging to the compact
group at r.

For this δε(r), both direct volume integration [28,29] and
statistical averaging [33] give

〈(δε(r))s〉 = (1 − c)(�ε0)s + n

∫
�

dr (�ε1(r))s , s � 1,

(10)

where n = N/V and c = 4πR3n/3 are the number density
and volume concentration of spheres, respectively, and the
integral is taken over the sphere volume �. Then, the sums in
Eqs. (7) and (8) are found readily and together with Eq. (1)
give [29]

(1 − c)
ε0 − εf

2εf + ε0
+ n

∫
�

dr
ε1(r) − εf

2εf + ε1(r)
= εeff − εf

2εf + εeff
. (11)

In the case of isotropic spheres with radially symmetric
permittivity profile ε1 = ε1(r), Eq. (11) can be represented as

(1 − c)
ε0 − εf

2εf + ε0
+ 3c

∫ 1

0
du u2 ε1(u) − εf

2εf + ε1(u)
= εeff − εf

2εf + εeff
,

(12)

where u = r/R is a dimensionless variable and ε1(u) is the
sphere’s permittivity profile as a function of u.

For uniform spheres with ε1 = const, Eqs. (11) and (12)
reduce to the classical Maxwell-Garnett mixing rule [17,18]
if εf = ε0, and the Bruggeman mixing rule [34–36] if εf =
εeff . These choices of εf are known as the Maxwell-Garnett
and the Bruggeman types of homogenization, respectively.
Which one must be used in a particular case has been a
matter of long-lasting discussions (see, for instance, [2–4,6–
8]). To determine εf self-consistently, we use the idea [37]
to combine the compact group approach with the Hashin-
Shtrikman variational theorem [30] and require that two
different ways of homogenization, through the linear relation
(1) and through the equality of the electrostatic energies stored
in the heterogeneous and homogenized systems, give equal
results.

Typically, theorem [30] is used to determine the most
restrictive bounds for εeff of macroscopically homogeneous
and isotropic two-constituent materials which can be derived
in terms of the (definite) constituent permittivities and volume
concentrations. Attempts to make use of it to evaluate these
bounds for heterogeneous media with graded constituents were
made, for example, in [25,38] by introducing comparison
materials with microstructures different from those of the
considered heterogeneous media.

IV. HASHIN-SHTRIKMAN THEOREM AND THE
CHOICE OF εf

Let E0 and

D0 = εfE0 (13)

be the electric field and induction in M filling a large region
of volume V , provided the region’s boundary B is maintained
at a prescribed time-independent potential ψ(B) = ψ0(B) and
there are no free charges inside. Next, suppose that the whole
of the region is changed to a material with permittivity (2),
but without changing ψ(B) and adding free charges. Then,
according to the Hashin-Shtrikman variational theorem [30],
the functional (of T ≡ D − εfE)

UT = 1

8π

∫
V

[
εfE2

0 − T2

ε − εf
+ 2T · E0 + T · (E − E0)

]
dr,

(14)

subject to the subsidiary condition

εf div(E − E0) + div T = 0, (15)

is stationary for

T = (ε − εf )E, (16)

and its stationary value U s
T is the electrostatic energy stored

in V .
Note that Eq. (16) is equivalent to

D(r) = ε(r)E(r),

where ε(r) = εf + δε(r), and Eq. (15) is fulfilled.
For T given by Eq. (16), the integrand in Eq. (14) reduces

to εfE2
0 + (ε − εf )E · E0. Hence, using Eqs. (1) and (7) and

denoting

Q ≡
∞∑

s=1

(
− 1

3εf

)s

(δε(r))s , (17)

we find

U s
T = V E2

0

8π
[εf + (εeff − εf)(1 + 〈Q〉)]. (18)

It is natural to require that this value be equal to the electrostatic
energy stored in the homogenized system. Then, in view of
Eqs. (1) and (7), we also have

U s
T = V

8π
〈E〉〈D〉 = V E2

0

8π
εeff(1 + 〈Q〉)2. (19)

Finally, Eqs. (1), (7), and (8) yield

〈D〉 = εf(1 − 2〈Q〉)E0 = εeff(1 + 〈Q〉)E0. (20)

Equations (18)–(20) give a system of homogeneous linear
equations in εf and εeff :

εf + (εeff − εf )(1 + 〈Q〉) = εeff(1 + 〈Q〉)2, (21)

εf(1 − 2〈Q〉) = εeff(1 + 〈Q〉). (22)

The nontrivial solutions exist provided

〈Q〉(1 − 〈Q〉) = 0. (23)

062121-3



M. YA. SUSHKO PHYSICAL REVIEW E 96, 062121 (2017)

In the case

〈Q〉 = 0, (24)

εf = εeff . If 〈Q〉 = 1, then εf = −2εeff . The latter situation
may occur for metamaterials [39,40], but is beyond the scope
of this work.

It follows that within the compact group approach sup-
plemented by the Hashin-Shtrikman theorem [30], both ways
of homogenization (through the linear relation between the
average induction and average field, and through the equality
of the electrostatic energies of the heterogeneous and ho-
mogenized systems) are consistent provided the Bruggeman-
type homogenization εf = εeff is used. The looked-for εeff is
the solution to Eq. (24). No special assumptions about the
composition of the system, the geometry and concentration of
the constituents, and the permittivity distribution (except for
its piecewise continuity) in the system were used in the above
discussion.

It should be emphasized that our approach is not equivalent
to the classical Bruggeman mean field approximation [34] (and
for this reason, the term “Bruggeman-type homogenization”
is used for the result εf = εeff). The latter approximation is
traditionally understood as a one-particle approach where a
single particle is placed in the effective medium of permittivity
εeff (see [3]). In contrast, our theory effectively incorporates
many-particle effects, and the result εf = εeff is derived for the
situation where a macroscopically large (compact) group of
particles is placed in the effective medium of permittivity εeff .
It is the effects of interparticle polarizations and correlations
in such groups that determine the behavior of εeff in the limit
λ → ∞.

Note that Eq. (24) can be represented as〈
ε(r) − εf

2εf + ε(r)

〉
= 0. (25)

This is exactly the condition 〈ξ (r)〉 = 0 imposed on the
stochastic field ξ (r) = [ε(r) − εf ]/[2εf + ε(r)] in the strong-
property-fluctuation theory (SPFT) [7,41–48] in order to
improve the convergence of the iteration procedure applied
to an integral equation for E(r). The resulting Dyson-type
equation for 〈E(r)〉 is usually analyzed using the second-order
truncation of the mass operator series (bilocal approximation
[7,42,45–47]; on the significance of the third-order approxi-
mation, see [48]), the Gaussian statistics for ξ (r), and model
expressions for the two-point correlation function G(r,r′) =
〈ξ (r)ξ (r′)〉. The symmetry of G(r,r′) dictates the shape of
the exclusion volume required for the decomposition of the
propagator into a principal value part and a Dirac delta function
part.

Contrastingly, in the compact group approach we use,
for the propagators in the iterative series for E(r) and D(r),
the decomposition with a spherical exclusion volume, in
conformity with the requirement that both the entire system
and compact groups be macroscopically homogeneous and
isotropic. The statistical microstructure of the system comes
into play only at the final stage, as the moments 〈(δε(r))s〉 are
calculated.

For dispersions of spheres with permittivity profiles ε1 =
ε1(r) and ε1 = ε1(r), Eq. (24) reduces to, respectively,
Eqs. (11) and (12) at εf = εeff (then, their right sides vanish).

FIG. 1. εeff/ε0 versus volume concentration c for dispersions of
hard dielectric spheres with the H, L, and P types of the permittivity
profiles (see text) according to Eq. (12) with εf = εeff (solid lines) and
εf = ε0 (thin dotted lines). The thick dotted lines represent analytical
results [10].

V. COMPARISON WITH OTHER THEORIES
AND SIMULATIONS

For low values of volume concentration c and dielectric
contrast ε1/ε0, when both electromagnetic interactions and
spatial correlations are small, the Maxwell-Garnett- and
Bruggeman-type approaches are expected to give close results.
This gives a good reason to contrast our theory with that
[10] for mixtures of hard spheres with continuous radial
permittivity profiles. Two ways were used there to calculate the
polarizability of small inhomogeneous spheres in a quasistatic
field and then εeff : the internal field method to find the
dipole moment by integrating the product of the field and the
permittivity over the sphere’s volume, and the external field
method to determine the field perturbation due to the sphere
and then the amplitude of the equivalent dipole. Both ways lead
to the same results, found by solving differential equations
analytically; therefore, results [10] are free of ambiguities
typical of computer simulations using the finite-difference
method (see, for instance, [49]).

Figure 1 represents our results obtained with Eq. (12) for
εeff of dispersions of hard dielectric spheres embedded in a
medium of permittivity ε0 = 1. The spheres have the following
permittivity profiles (0 � u � 1): homogeneous ε1(u)= 2 ε0

(denoted as H); linear ε1(u) = ε0(2 − u) (L); parabolic ε1(u) =
ε0(2 − u2) (P). The agreement of our results with analytical
results [10] turns out to be surprisingly good in the entire
interval c ∈ [0,0.4], investigated in [10]. It follows that our
theory works well even in the situation where the concept of
compact groups may seem questionable.

This fact is further confirmed by the comparison of our
theory with analytical [12,13] and simulation [20] results for
hard dielectric spheres with the power-law permittivity profiles
ε1(u) = c(b + u)k; those results are shown in Fig. 2 for c = 1,
b = 2, and k = 0.25, 0.5, 1, 2. In [12,13], the local electrical
potentials for isolated spheres were derived rigorously in
terms of the hypergeometric function; then, they were used to
predict, based on the Maxwell-Garnett approach, the effective
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FIG. 2. εeff/ε0 versus volume concentration c for dispersions
of hard dielectric spheres with power-law permittivity profiles
ε1(u) = (2 + u)k at k = 0.25, 0.5, 1, and 2 according to final-element

modeling [20] ( , , , and , respectively); Eq. (14) in [13] (dotted
lines); Eq. (12) for εf = εeff (solid lines) and εf = ε0 (dashed lines).

dielectric response of the graded composites in the dilute
limit. The authors of [20] reported their effective permittivity
calculations with the finite-element method for two-phase
graded composite materials. The agreement between predic-
tions [13] and simulation data [20] is sufficiently good only for
low-contrast dispersions (c = 1, b = 2, and k = 0.25, 0.5), or
in the dilute limit. As Fig. 2 reveals, our theory reproduces
these results as well. For higher contrasts ε1/ε0 (k = 1 and 2),
the discrepancies between the theories become considerable.
Our predictions for εeff , given by Eq. (12) with εf = εeff , are
always greater than those reported in [12,13,20]. This can be
explained by the fact that our theory effectively takes into
account multiparticle effects, whereas the studies [12,13,20]
are actually one-particle approaches. It is interesting to note
that for all above k’s, the formal use of the Maxwel-Garnett
type of homogenization within our formalism [Eq. (12) with
εf = ε0] gives results that are close to simulation data [20].

VI. NONCONDUCTING DISPERSIONS OF CORE-SHELL
PARTICLES

One of the practical applications of our theory is the
prediction of the dielectric properties of microelectronic and
optoelectronic devices requiring, for their superior perfor-
mance, the use of packing materials with low dielectric
constants, low dielectric losses, and high volume resistivities
[5]. Since packaging materials are often polymer-ceramic
composites, numerous core-shell theories have been developed
(see, for instance, [50–55] and literature therein) in which
εeff of a composite is characterized by the geometric and
permittivity parameters of the polymer phase, the filler phase,
and an interphase region within the composite system. The
equation for εeff is usually derived in these theories in
several steps: (1) combining the particle and the adjacent
interphase layer into a “complex particle”; (2) finding the
effective polarizability of the isolated complex particle in a
uniform field; (3) calculating the effective dielectric constant

of the system within the standard one-particle approaches
[17–19,34,35] or their modifications. In contrast, we use only
step (1) and then calculate εeff treating the system in terms of
compact groups of such complex particles.

Suppose that each filler particle, of radius R and permittivity
ε1, is surrounded by a concentric particle-matrix interphase
shell, of inner radius R, outer radius R + t , and permittivity
ε2. Considering the particle and the adjacent interphase shell
to be a single hard particle, we readily find from Eq. (12) the
equation for εeff of dispersions obtained by embedding such
particles into a matrix of permittivity ε0:

[1 − φ(c,δ)]
ε0 − εeff

2εeff + ε0
+ c

ε1 − εeff

2εeff + ε1

+ [φ(c,δ) − c]
ε2 − εeff

2εeff + ε2
= 0. (26)

Here, δ = t/R is the relative thickness of the shell, and φ(c,δ)
is the effective volume concentration of complex particles (that
is, the sum of the volume concentration c of the filler and that
of the interphase region). For hard filler particles,

φ(c,δ) = (1 + δ)3c. (27)

Note that Eq. (26), but with different φ(c,δ), also holds in
the case where the interphase shells can be treated as fully
penetrable (freely overlapping) [56] (see also [57]). For such
systems, the scaled-particle estimate [58] gives

φ(c,δ) = 1 − (1 − c) exp

{
− [(1 + δ)3 − 1]c

1 − c

}
× exp

{
−3(1 + δ)3c2

2(1 − c)3

[
2 − 3

1 + δ
+ 1

(1 + δ)3

−
(

3

1 + δ
− 6

(1 + δ)2
+ 3

(1 + δ)3

)
c

]}
. (28)

As δ → 0, φ(c,δ) = (1 + 3δ + 3δ2)c + O(cδ3) and tends to
the value (27).

Figure 3 represents the results obtained with Eq. (26)
for εeff of model epoxy-based polymer-ceramic composites
[52], considered as dispersions of dielectric core-shell spheres.
When processing the data, we took into account that (1) the
dielectric properties of constituents can change in the com-
posite preparation process; (2) homogenization theories are
intended to provide justified functional relationships between
εeff and the parameters of the actual microstructure units in a
real composite. For equal-sized spheres with R = 4.5 μm and
t = 270 nm [52], the relative thickness δ = 0.06. As is seen
from Fig. 3, our theory exactly recovers this value of δ. It also
predicts a drop, to ε2 = 2.5, in the interphase permittivity, as
compared to the matrix permittivity. This estimate differs from
that given by theory [51], ε2 = 2.88, by about 15%. Physically,
the drop in ε2 can be attributed [52] to the chemical bonding
of the polymer to the filler particle surface.

It should be remarked that the relation of the parameter
δ, calculated with the model of equal-sized spheres, to the
actual thickness d of the interphase in a real dispersion can be
rather complicated due to the distribution of particle diameters
and shapes. In particular, applying our general results [29] to
mixtures of hard core-shell particles (not necessarily spherical)
with different core sizes Ra and fixed interphase thickness
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FIG. 3. Experimental data [52] (�) for εeff of polymer-ceramic
composite samples of near-spherical amorphous SiO2 particles
embedded randomly in an epoxy matrix, and their fits with the
Bruggeman equation [in Eq. (26), δ = 0 and φ(c,0) = c ] for two-
constituent composites (dotted line); Eqs. (26) and (27) (dashed line);
Eqs. (26) and (28) (solid line). The matrix permittivity ε0 = 2.98
and the SiO2 particle permittivity ε1 = 3.91 were extracted from
Fig. 2 in [52] as εeff at c = 0 and 1, respectively; the shell permit-
tivity ε2 = 2.5 and relative thickness δ = 0.06 were estimated by
fitting.

d � Ra , it is readily shown that εeff of such mixtures is given
by Eq. (26), but with φ = c(1 + Spd/Vp) instead of (27). Here,
Vp and Sp are the total volume and the total surface area of the
particles, respectively. Correspondingly,

d ≈ [(1 + δ)3 − 1]Vp/Sp.

A convincing example in favor of this relation was given in
[52]: after the actual particle size distribution of SiO2 particles
was taken into account, the estimate d ≈ 5 nm was obtained.
The latter is consistent with available literature data (see [52]
for references).

To finish, we also test the applicability of our theory to
high-contrast systems, such as polystyrene-barium titanate
composites [59] (see also [50]). Experimental data [59] are
widely cited, but the parameters used to process them with
existing theories and the results obtained differ considerably.
For example, for ε0 = 2.55, some reported values of ε1 are
250 [55,60] and 800 [50,54], those of ε2 are 3 [50], 7.24
[55], and 25 [54], and those of δ are 0.005 [50], 0.025
[recovered from Eq. (6) in [55] at k = 0.161], and 0.26
[54]. Our estimates (see Fig. 4) fall in these ranges. This
means that the functional structure of Eq. (26) is capable of
reproducing available experimental data. However, an in-depth
analysis of possible factors (size and shape distributions,
dielectric losses, inhomogeneities of the interphase, etc.)
behind the above discrepancies is beyond the scope of this
paper.

VII. CONCLUSION

The main results of this paper can be summarized as
follows.

FIG. 4. Experimental data [59] (◦) for εeff of polystyrene-barium
titanate composites and their fits with the Bruggeman equation
[Eq. (26) at δ = 0 and φ(c,0) = c] for two-constituent composites
(dotted line); Eqs. (26) and (27) for hard core-shell particles (solid
line). The matrix permittivity was taken to be ε0 = 2.55. The
permittivity of BaTiO3 particles, that of the interphase shells, and the
relative thickness of the shells were estimated at ε1 = 330, ε2 = 19,
and δ = 0.09, respectively.

(i) Combining the compact group approach [27–29] with
the Hashin-Shtrikman variational theorem [30] and requiring
that the two common ways for homogenization (through
the linear material equation between the induction and the
field, and through the equality of the electric energies of
the heterogeneous and homogenized systems) give equal
results, we proposed a solution, which effectively incorporates
many-particle effects in concentrated systems, to the problem
of the effective quasistatic permittivity εeff of dispersions of
graded dielectric particles. According to it, a dispersion to be
homogenized is dielectrically equivalent to a macroscopically
homogeneous and isotropic system prepared by embedding
the constituents of the real dispersion into an imagined
medium having the looked-for permittivity (Bruggeman-type
homogenization); the equation for εeff is an integral relation
obtained from Eq. (24) by summing up the statistical moments
for the local deviations of the permittivity distribution in the
model system from εeff ; this equation validates the condition
postulated for the relevant stochastic field in the SPFT. The
latter fact is a strong argument for our theory because the
SPFT has proved to be very efficient for homogenization of
composites of nongraded constituents.

(ii) The efficiency of our theory was demonstrated by
contrasting its results with analytical results [10,12,13] and
simulation data [20] for dispersions of hard dielectric spheres
with power-law permittivity profiles. The theory was also
applied to nonconducting polymer-ceramic composites con-
sidered as dispersions of dielectric core-shell spheres. The
comparison of its results with experimental data [50,52,59]
showed that the theory can be used to predict the effective
dielectric response of such systems in terms of the geometric
and dielectric parameters of their constituents, including the
interphase regions.
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The generalizations of these results are possible in two
directions, at least. First, the compact group approach is
expected to be applicable to multiconstituent dispersions of
anisotropic inhomogeneous dielectric particles, as long as
these dispersions remain macroscopically homogeneous and
isotropic. Some relevant general results for εeff of such systems
are presented in [29]. Second, this approach can be extended
to dispersions of particles with complex permittivities. In
particular, it has already been shown to be efficient for the
description of electric percolation phenomena in composites
of core-shell particles [56], two-step electrical percolation

in nematic liquid crystals filled with multiwalled carbon
nanotubes [57], and the effective structure parameters of
suspensions of nanosized insulating particles [61].
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