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Quantum heat engine with coupled superconducting resonators
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We propose a quantum heat engine composed of two superconducting transmission line resonators interacting
with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump.
The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit
cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an
all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent
electrical charging in our case. We explore the differences between the quantum and classical descriptions of
our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate
the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean
energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system.
We find evidence of a quantum enhancement in the power output of the engine at low temperatures.
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I. INTRODUCTION

Heat engines with quantum working substances, so-called
quantum heat engines (QHEs), have attracted much attention
recently [1–39]. The steam driven mechanical piston is an
archetype of classical heat engines. Quantum analogs of
piston engines have been proposed using optomechanical
models, where steam is replaced by a photonic gas [24–29].
A single-atom piston engine described by an effective op-
tomechanical model has been demonstrated in the classical
regime very recently [40]. The benefits of “quantumness”
[41,42] as well as the quantum-to-classical transition [43] in
heat engines are fundamental problems in the emerging field of
quantum thermodynamics. We propose a quantum heat engine
composed of a pair of superconducting resonators interacting
via an effective optomechanical coupling [44]. It offers an
on-chip circuit analog of a piston engine and could be used to
explore fundamental quantum properties in heat engines.

We specifically consider a system of two coupled super-
conducting resonators [44] as an alternative embodiment of
the piston cycle used in the single-atom heat engine [40]. In
our case, which is shown in Fig. 1, the resonator modes play
the role of vibrational modes of the trapped atom. One of
the resonators is periodically driven by a quasithermal pump
and interacts with the other resonator through an effective
optomechanical coupling [44]. The emergence of coherence
in one mode by incoherent excitation of the other is a typical
feature of quantum piston engines exploiting optomechanical
coupling [27]. We investigate the quantum statistics of the
resonator modes by calculating the mean number dynamics,
occupation probability distributions, and second-order corre-
lation functions. We verify that the incoherently driven mode
remains thermal while the other becomes almost coherent.
In addition, thermodynamic properties of the system are
examined by calculating the mean energy versus effective elec-
trical length of the driven resonator and the temperature versus
entropy diagrams of the engine. We identify that the system
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undergoes an Otto engine cycle. We find that, after a transient
regime, a limit cycle emerges in the thermodynamical phase
space, indicating finite power output, at the same time that the
driven mode induces steady coherent oscillations in the other
mode. Quantum coherence in the energy basis of the total
system can be formally related to the inner quantum friction
and irreversible work [45]. In our case quantum coherence is
in one of the resonator modes storing the work output.

Further, we compare the quantum mechanical results
with those obtained from the classical Langevin equations
of motion. We find significant qualitative and quantitative
differences between the classical and quantum descriptions of
the system. In particular, the power output from the quantum
piston engine is greater than that of the classical one at low
temperatures. We argue that the quantum enhancement in
power output can be observed in superconducting resonators.
We explain the effect by identifying the type of quantum
correlation behind the power output as the so-called signal-
meter correlation [46,47] and compare it with the classical
correlations. It is not a universal fact that quantum correlations
can always increase the power output of a piston engine.
Recent studies reported exactly the opposite conclusions where
quantum fluctuations cause less power output in a rotor type
piston engine [35].

This paper is organized as follows. In Sec. II, we introduce
the quantum optomechanical engine model based on coupled
superconducting transmission line resonators. In Sec. III, we
describe our numerical methods and present the results of
quantum dynamical simulations. The corresponding classical
engine model is introduced in Sec. IV and the results of the
classical Langevin equation simulations are given in Sec. V.
These results are compared to the quantum description. In
Sec. VI, we discuss the quantum character of the model
system in terms of the quantum coherence and correlations.
We conclude in Sec. VII.

II. THE QUANTUM MODEL

Our model system consists of two superconducting trans-
mission line resonators on a chip, held at temperature T0,
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FIG. 1. Circuit diagram of the quantum heat engine composed
of two superconducting microwave resonators interacting via an
effective optomechanical like coupling with strength g. Resonators
indicated by “a” and “b” have high-frequency (HF) and low-frequency
(LF) modes with ωa � ωb. The HF mode is periodically driven
by a variable amplitude attenuation (Dh) white noise source (Sh),
corresponding to an effective hot bath at Th. The resonators are
on a chip at a background temperature T0. External noise drives
are at room temperature TR . Both the LF and HF resonators are
subject to additional quasithermal sources implemented by amplitude
controlled (Da,Db) white noise drives (Sa,Sb), which are constantly
applied to the corresponding resonators.

as shown in Fig. 1. A resonator, indicated by “a” in the
figure, is terminated by a SQUID, which collects the flux
generated by the other resonator, indicated by “b,” so that an
effective optomechanical-like coupling, denoted by g, between
the resonators can be engineered [44]. We assume resonator
“a” with frequency ωa is shorter than resonator “b” with
frequency ωb such that ωa � ωb. The high-frequency (HF)
and low-frequency (LF) modes of resonator “a” and resonator
“b” can be considered as analogs of the optical and mechanical
modes of an optomechanical system, respectively. The effec-
tive optomechanical-like coupling between the resonators is
expressed as (we take h̄ = 1) [44]

Ĥsys = ωaâ
†â + ωbb̂

†b − gâ†â(b̂ + b̂†), (1)

where â (â†) and b̂ (b̂†) are the annihilation (creation) operators
for the HF and LF modes, respectively.

In addition to the cold environment at T0, we assume three
microwave white noise drives are applied to the resonators.
These drives are produced by external sources at room
temperature, TR . We consider two continuously applied noises
with power spectral densities Sa and Sb on the resonators a
and b, respectively. Their amplitudes can be controlled by
variable amplitude attenuators Da and Db. The HF resonator
is subject to another amplitude-controlled (Dh) and periodic
white noise source with a power spectral density Sh. The
power spectral densities are assumed to be narrow band,
centered at the corresponding resonator frequencies ωa and
ωb, but much wider than the bandwidth of the HF resonator.
Accordingly, each externally applied noise source approxi-
mates a one-dimensional black body (thermal) spectrum [48] at

effective temperatures that can be determined from the Planck
distribution functions (we take kB = 1),

n̄a = 1

exp (ωa/Ta) − 1
, (2)

n̄b = 1

exp (ωb/Tb) − 1
, (3)

n̄h = 1

exp (ωa/Th) − 1
, (4)

where Th, Tb, and Ta are the effective temperatures corre-
sponding to the periodic drive, continuous drive on the HF
resonator, and the continuous drive on the LF resonator,
respectively. We assume the periodic drive is used to engineer
an effective hot bath such that Th > Ta,Tb. The mean number
of excitations in the cold baths are denoted by n̄a and n̄b

for the HF and LF modes, respectively. The mean number
of excitations in the periodically modulated hot reservoir is
denoted by n̄h. The one-dimensional Planck’s law gives the
power spectral densities as Sx = ωxn̄x with x = a,b,h. We
consider engineering the two additional cold baths to get more
flexibility to reach desired steady states in the engine operation,
which may not be achieved in the case of a common single
environment at T0. A similar strategy was employed for the
case of the single-atom piston engine by using an additional
cooling laser [40].

The dynamics of the density matrix ρ̂ of the resonator pair
can be determined by a master equation [48],

˙̂ρ = −i[Ĥsys,ρ̂] + κa(n̄a + 1)D[â] + κan̄aD[â†]

+ κb(n̄b + 1)D[b̂] + κbn̄bD[b̂†]

+ κh(t)(n̄h + 1)D[â] + κh(t)n̄hD[â†]

+ κa
0

(
n̄a

0 + 1
)
D[â] + κa

0 n̄a
0D[â†]

+ κb
0

(
n̄b

0 + 1
)
D[b̂] + κb

0 n̄b
0D[b̂†], (5)

where D[α̂] := (1/2)(2α̂ρ̂α̂† − α̂†α̂ρ̂ − ρ̂α̂†α̂) refers to the
Lindblad dissipator superoperators with α̂ = â,b̂. κa and κb

are effective coupling constants of the HF and LF modes with
their local cold baths, respectively. The coupling coefficient of
the HF mode with the effective hot bath is denoted by κh(t),
which has a periodic time dependence. Small background field
excitations are denoted by na

0 and nb
0 in the corresponding

terms of the master equation describing the coupling of the
environment at T0 with the HF and LF resonators at rates κa

0
and κa

0 , respectively.
We assume a special case that each local cold bath,

engineered with the quasithermal noise drive, has the same
excitation number so that we can introduce n̄c := n̄a = n̄b,
which is possible for Ta/Tb = ωa/ωb. Accordingly, we have
Ta � Tb. It may be worth emphasizing that the local temper-
atures are “effective” and can be high (e.g., 100 K or more),
without affecting superconductivity, because very little of the
noise power is absorbed by the resonators [48].

The master equation we consider assumes the usual Born-
Markov approximations under the weak coupling with the
noise sources. Moreover, as we use local effective reservoirs
in the dissipators, it is not immediately obvious if the dynamics
are consistent with the second law of thermodynamics at all
parameter regimes [49–51]. It is usually assumed that such a
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local master equation should be reliable when the coupling
between the subsystems (here the HF and LF resonators)
is sufficiently weak [52,53]. The local master equation may
still be applicable even for relatively strong coupling if the
environmental noise has sufficiently wide bandwidth. Our
scheme involves only the thermal white noises, with relatively
small effective temperatures with respect to the resonator
frequencies. Hence we expect the validity of the local approach
[52,54].

To determine the validity regime more strictly for our case,
we also used a “global” master equation (see Appendix A)
derived for arbitrary optomechanical coupling strengths [55] to
compare the results with the “local” master equation. We found
that both local and global master equation results agree well in
the range under consideration g � ωb. The regime of g = ωb is
not exactly the ultrastrong coupling regime of optomechanics,
as we have large κa > g. In the temperature regimes we
consider, the excitation of the HF resonator is weak 〈na〉 < 1.
We explore a regime of single “photon” optomechanics which
is not well charted.

III. QUANTUM DYNAMICS OF THE ENGINE

In our simulations we use dimensionless parameters by
scaling ωb/2π = 500 MHz, g/2π = 500 MHz, κh/2π =
κa/2π = 2 GHz, and κb/2π = 50 MHz by ωa/2π = 10 GHz.
The temporal profile of the incoherent drive acting on the HF
mode is taken as a square wave κh(t) := κhs(t). The square
wave s(t) = 1 and s(t) = 0 for the heating and cooling stages,
respectively. Each stage takes the same time of π/ωb. In units
of 1/ωa the cycle duration is then tcycle = (2π )20 (cf. Fig. 2).

The mean number of excitations in the effective baths are
taken to be n̄a = n̄b := n̄c = 0.01 and n̄h > 0.1, for which
our simulations yield limit cycles for the engine operation
at steady state. This choice of identical thermal occupation
numbers is only a convenience in numerical simulations to
reduce the number of control parameters; it is not essential
for the engine operation. The corresponding effective tem-
peratures become Ta ∼ 104 mK and Tb ∼ 5 mK. A typical
environment temperature for the superconducting resonators
is T0 ∼ 20 mK. Accordingly the hierarchy of temperatures
associated with the engineered environments for the resonators
becomes Th > Ta > T0 > Tb. The temperature ranges of Th >

Ta > T0 have been successfully produced experimentally for a
single superconducting resonator using the noise drive method
[48]. The range of T0 > Tb can be engineered using proposals
for optomechanical schemes [56]. The HF resonator mode is
effectively heated to Th when the external periodic noise pulse
is on, and when the pulse is off it effectively cools to Ta . The
LF resonator is always coupled to an effective cold bath.

The quantum dynamics of the coupled resonators subject
to such effective heating and cooling stages is investigated
by solving Eq. (5) using QuTiP [57]. We neglect the last
four terms associated with the background environment in
Eq. (5) by assuming κa � κa

0 and κb
0 n̄b

0 > κbn̄b. After an intake
stage, where the resonators are at their respective initial states,
repeated action of the the heating and cooling stages will lead
the system into a limit cycle that can be considered as a heat
engine cycle with a net power output.

FIG. 2. Dynamics of the mean number of excitations (a) 〈n̂a〉 and
(b) 〈n̂b〉 in the HF and LF modes, respectively, for n̄h = 0.125 (black
solid), n̄h = 0.325 (red dashed), n̄h = 0.525 (green dotted), and n̄h =
0.725 (blue dot-dashed). (c) Dynamics of the LF field coherence is
characterized by �(〈b〉), where � ≡ Re denotes the real part. Time
is dimensionless and scaled with the HF mode frequency ωa . All the
other parameters are as explained in the text.

The system is assumed to be in an initial state ρ̂(0) =
ρ̂a(0) ⊗ ρ̂b(0), where

ρ̂a(0) = 1

Tre−ωaâ†â/Ta

e−ωaâ
†â/Ta , (6)

ρ̂b(0) = 1

Tre−ωbb̂†b̂/Tb

e−ωbb̂
†b̂/Tb , (7)
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are the initial density matrix operators of the HF and LF
modes, respectively. Initial occupations of the modes then
are n̄c since 〈n̂x〉(0) = 〈x̂†x̂〉(0) = T r(ρ̂(0)x̂†x̂) = n̄c = 0.01,
with x = a,b.

A. Quantum piston in phase space

The heating and cooling stages in the engine operation of
the coupled resonator system can be visualized by examining
the dynamics of the mean excitation numbers 〈n̂x〉 = 〈x̂†x̂〉 =
Tr(ρ̂(t)x̂†x̂), with x = a,b, which are shown in Fig. 2. The
dynamics of 〈n̂a〉 is shown in Fig. 2(a) for n̄h = 0.125.
The heating pulse duration is taken to be longer than the
thermalization time of the HF resonator. When the heating
pulse is applied, the HF mode reaches a steady state at
〈n̂a〉ss ∼ 0.0675, which is the same as the analytical result
〈n̂a〉ss = (n̄c + n̄h)/2 (see Appendix B). After the heating
pulse, the excitation number first rapidly drops and then slowly
cools back to the initial value. Analytical expressions can be
approximately given as

〈n̂a〉 =
{

n̄a+n̄h

2 − n̄h−n̄a

2 e−(κa+κh)t , 0 � t < π
ωb

;

n̄a + n̄h−n̄a

2 e−κa (t−π/ωb), π
ωb

� t < 2π
ωb

,
(8)

which is repeated indefinitely.
The dynamics of the mean excitations of the LF mode

〈n̂b〉 are shown in Fig. 2(b), which reaches a steady state
with coherent oscillations in the long-time limit. Both the
time average 〈n̂b〉 value and the amplitude of the oscillations
are larger for larger n̄h, while the frequency of oscillations
remains the same. The heating pulse duration is only long
enough to thermalize the HF resonator, while the LF resonator
is unable to equilibrate in a pulse period. The evolution of
the LF resonator will start from a different initial condition for
every pulse action. This “memory” effect leads to a higher time
average 〈n̂b〉 value than the one found under continuous drive
(cf. Appendix B). In addition, correlations between the HF and
LF resonator modes contribute to to the dynamics of the LF
mode excitations. We will explore the physical mechanisms
behind the dynamics of 〈nb〉 in more detail in Sec. VI.

Figure 2(c) plots the “electrical displacement” of the
LF mode, �(〈b̂〉) = q/2, where q = 〈q̂〉 = 〈b̂ + b̂†〉, show-
ing coherent oscillations in the steady state. The notation
�(·) stands for the real part. In contrast to the dynamics
of 〈nb〉, q has identical classical and quantum dynamics.
Its equation of motion (see the Appendix A and C) is
that of a periodically driven damped oscillator, which is
given by

q̈ + κbq̇ + ω2q = 2ωbg〈na(t)〉, (9)

where ω2 = ω2
b + κ2

b /4 and the dots over q indicate time
derivatives. This equation can be interpreted in terms of
an effective series Resistor-Inductor-Capacitor (RLC) circuit.
The cold environment of the LF resonator acts as the resistive
element dampening the LC oscillations. In the standard way,
the natural frequency ωb of the LC oscillations is further
renormalized by the damping rate κb. The HF resonator
provides the input voltage which sustains the oscillations.
Despite the thermal nature of the HF resonator, it drives the
RLC circuit into coherent oscillations because the drive only

depends on 〈na〉, which is alternating between high and low
values periodically. We note that while q is not vanishing in the
steady state, the electrical momentum p = 〈p̂〉 = i〈(b̂† − b̂)〉
becomes approximately zero (It is exactly zero according to the
global master equation as can be seen in Appendix B. However,
this may be an unphysical artifact of the secular approximation
in the global approach which may predict coherences out of
equilibrium inaccurately in some cases [58]).

The LF oscillator is in the weak damping regime (κb < ωb).
The formal solution of Eq. (9) is given by

q(t) = 2g

∫ t

0
d t ′〈na(t ′)〉e− κb

2 (t−t ′) sin [ωb(t − t ′)]. (10)

The periodic nature of 〈na(t ′)〉 leads to an intuitive under-
standing of the emergence of a coherent steady state in q(t).
Harmonics of 〈na(t ′)〉 are given by the frequencies ωk = kωb

where k is an integer. According to Eq. (10) the maximum
overlap or the resonance would occur for the first harmonic
k = 1. Besides, the higher harmonics would have relatively
smaller significance as their amplitudes get smaller with k.
Accordingly, steady-state oscillations in q(t) are dominated
by the single frequency ωb. The time average value of q, as
well as the amplitude of oscillations, increase linearly with n̄h.
In terms of our physical parameters, the approximate analytical
solution is found to be

q = n̄h + 3n̄c

2
+ 20(n̄h − n̄c)

π
sin (ωbt − 1.55). (11)

A more general solution is given in Appendix C.
We further visualize the coherence in the steady state of the

LF mode by investigating the probability distribution P (n) :=
〈n|ρb(t)|n〉, where ρb(t) = Tra[ρ(t)] is the reduced density
matrix of the LF mode, in Fig. 3. As we increase n̄h from n̄h =
0.125 to n̄h = 0.725, the the probability distribution changes
from a thermal distribution to a coherent distribution, as shown
in Figs. 3(a)–3(d).

In Fig. 4, we plot the dynamics of the mean values of
the field quadratures qb := 〈q̂b〉 := q/

√
2 and pb := 〈p̂b〉 :=

p/
√

2, where p = 〈p̂〉 := i〈(b̂† − b̂)〉, with respect to each
other. The resulting phase diagram is that of a periodically
driven damped displaced harmonic oscillator, where the slight
shift of the center of the limit cycle from the origin is the
signature of the coherent displacement induced by the thermal
drive. The HF mode reaches steady state within a single
thermal noise pulse duration as shown in Fig. 2(a). The action
of the thermal noise pulse on the HF mode is translated to
the LF mode by the optomechanical coupling. According to
Fig. 2(b), the LF mode can reach an oscillatory steady state
after the action of a several noise pulses. As the LF mode lags
behind the HF mode, there will be a transient regime before
a limit cycle is established, as we see in Fig. 4. While a limit
cycle emerges for our model, we note that the existence of a
stable limit cycle after transients is in general model and initial
condition dependent [59]. Within the approximation of 〈n̂a〉 as
a square wave drive, we find an expression for the limit cycle
(see Appendix C)

(pb − pb0)2 + (qb − qb0)2 = R2, (12)
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(a) (b) (c) (d)

FIG. 3. [(a)–(d)] The occupation probability (OP) with respect to occupation number of the Fock states nfock of the LF resonator mode at
ωat = 5000 for n̄h = 0.125 (a), n̄h = 0.325 (b), n̄h = 0.525 (c) and n̄h = 0.725 (d). All the other parameters are as explained in the text.

where

R = 4

π

√
2ωbg√

κ2
b

(
ω2

b + κ2
b

16

)
(

n̄h − n̄c

4

)
, (13)

qb0 = 2ωbg√
2ω2

(
n̄h + 3n̄c

4

)
, (14)

and pb0 ≈ 0.
The effect of coherence in the LF mode state can be

further revealed by calculating the zero-time-delay second-
order correlation function g(2)(0) := 〈b̂†b̂†b̂b̂〉/〈n̂b〉2, of the LF
mode. Figure 5 shows the time dependence of g(2)(0) of the LF
mode for the same n̄h values as in Fig. 2. Initially, g(2)(0) = 2
for all cases as the LF mode starts in a thermal state. g(2)(0)
decrease as the LF mode gains partial coherence in time. At
higher n̄h, the steady-state value of g(2)(0) gets closer to the
coherent state value g(2)(0) = 1. While perfect coherence is
not achieved within the range of values of n̄h considered, a
slow convergence to coherent state statistics can be seen in
Fig. 5. We note that the second-order coherence function can
be measured in circuit QED systems using various techniques
such as by linear detectors [60].

FIG. 4. Phase portrait 〈qb〉 − 〈pb〉 showing the dynamics of the
LF mode for n̄h = 0.125. All the other parameters are as explained
in the text.

B. Effective Otto engine cycle

In order to describe the engine cycle, we introduce an
effective HF mode frequency ωeff := ωa − gq, which can be
interpreted as the change in the frequency associated with
the variations in the electrical length of the HF resonator.
Accordingly, the effective mean energy of the working fluid
can be taken to be Ua = ωeff〈n̂a〉. This factorization ignores the
correlations between n̂a and q̂. When we calculate Ua without
the factorization assumption, we find qualitatively the same
cycle pictures and the work output is negligibly enhanced. For
the moment, we consider the explanation of the engine cycle
in this mean-field model where all correlations are neglected
and discuss the effect of quantum correlations separately in
the later sections.

In Fig. 6, we plot the dependence of Ua on ωeff in the
steady state at n̄h = 0.125 for the same set of parameters used
in earlier figures. We plot ln (Ua) in order to emphasize that
the temperature in the lower branch (D′ to A) is increasing. A
four-stage engine cycle can be identified in this picture.

The first stage is indicated by the arrow from point A to B in
Fig. 6 at ωeff ∼ 1.03 and corresponds to an isochoric heating
of the HF resonator by the incoming heat pulse. The electrical
length 1/ωeff remains constant while the incoherent energy is
received from the external noise pulse. The coherence of the

FIG. 5. Time dependence of the zero-time-delay second-order
correlation function g(2)(0) of the LF mode for n̄h = 0.125 (black
solid), n̄h = 0.325 (red dashed), n̄h = 0.525 (green dotted), and n̄h =
0.725 (blue dot-dashed). The inset is the magnification of g(2)(0) up to
10ωat . Time is dimensionless and scaled with the HF mode frequency
ωa . All the other parameters are as explained in the text.
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(a)

(b)

FIG. 6. (a) Dependence of the effective internal energy of the
HF resonator Ua = ωeff〈n̂a〉 on the effective HF mode frequency
ωeff = ωa − g(〈b̂〉 + 〈b̂†〉) for n̄h = 0.125 in the steady state. (b) The
plot shows ln (Ua) in order to emphasize that the temperature in the
lower branch (D′ to A) is increasing. The direction of the engine cycle
in the steady state is indicated by the red arrows. The points A, B,
B′, C, D, and D′ are used in the text to describe the thermodynamic
processes in the cycle. We use the frequency of the HF resonator, ωa ,
to scale our parameters. All the other parameters are as explained in
the text.

LF mode cannot follow the thermalization of the HF mode as
fast (cf. Fig. 2) so that the “piston,” or the LF mode quadrature,
remains at rest in the phase space. There is a transitional stage
from B to B′ which cannot be identified with the standard
thermodynamical processes.

The second stage, from B′ to C, is adiabatic expansion of
the HF resonator, where ωeff decreases to ∼0.96, and hence the
electrical length of the HF resonator increases. The entropy of
the HF resonator field can be calculated by

Sa = (1 + 〈n̂a〉) ln (1 + 〈n̂a〉) − 〈n̂a〉 ln (〈n̂a〉), (15)

FIG. 7. Steady-state dependence of the entropy S(ρa) on the
effective HF mode frequency ωeff = ωa − g(〈b̂〉 + 〈b̂†〉) for n̄h =
0.125. We use the frequency of the HF resonator ωa to scale our
parameters. All the other parameters are as explained in the text.

which remains constant in this stage as shown in Fig. 7. The
heating pulse is still active, but the HF mode is in thermal
equilibrium and working on the LF mode. The coherence in
the LF mode builds up in this stage as the “piston” shifts
in the phase space, converting heat to potential energy to be
harvested.

The third stage is isochoric cooling that happens from C to
D at ωeff ∼ 0.96, following the rapid decrease of the population
of the HF mode when the heating pulse is turned off (cf. Fig. 2).
There is another transitional stage from D to D′. The final stage
from D′ to A closes the cycle. It corresponds to an adiabatic
compression (cf. Fig. 7), where ωeff increases to ∼1.03. The
sign change in the coherence of the LF mode [cf. Fig. 2(c)]
leads to an increasing ωeff (decreasing electrical length) so that
the “piston” moves back to its original location in the phase
space and the cycle is complete.

C. Performance of the engine

Our four-stage engine description, other than the transi-
tional stages, can be considered an Otto cycle. The effects
of the transitional stages do not strongly influence the
temperature-entropy (T -S) diagram plotted in Fig. 8, which
closely resembles that of an Otto engine. Here we introduced
an effective temperature given by

Teff = ωeff/ ln (1 + 1/〈n̂a〉). (16)

The T -S diagram in Fig. 8, which follows a narrow cycle,
is of a similar form to that obtained experimentally for the
single-atom heat engine [40] and for a nanomechanical Otto
engine driven by a squeezed reservoir to operate with an
efficiency beyond the classical Carnot limit [61]. The area of
the effective T -S curve defines the “mechanical output” which
is stored in the coherent oscillations of the LF resonator and
not dissipated as heat. The cyclic work output of the effective
Otto engine periodically drives the coherent oscillations of the
LF resonator mode. This does not cause an ever-increasing
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FIG. 8. T -S diagram of the HF mode for n̄h = 0.125. We use the
frequency of the HF resonator, ωa , to scale our parameters. All the
other parameters are as explained in the text.

oscillation amplitude as the drive is balanced with the friction
effect of the cold baths attached to the LF resonator [cf.
Eq. (9)]. The amplitude of the oscillations as well as their
coherence can be determined using the standard methods of
coherence function measurements in circuit QED [48].

A similar principle of work storage in coherent oscillations
is employed in the trapped ion Otto engine experiment [40],
where the radial and axial degrees of freedom of the ion
are interacting through an optomechanical-like coupling. The
radial degree of freedom undergoes closed engine cycles by
successive heating and cooling. The work output of the cycles
drives the coherent oscillations along the axial direction. The
work is stored in the amplitude of the coherent axial oscil-
lations. Since the atomic piston is in principle a frictionless
system, the oscillations would increase with time. To avoid
this flywheel-like behavior, damping is introduced through
an additional cooling laser such that constant amplitude
oscillations of the axial mode are achieved in steady state.
Similar work storage principles are employed in more recent
experiments as well [62,63].

By approximating the T -S diagram in Fig. 8 by a trapezoid,
we can estimate the net work by Wa ∼ 3.5 × 10−3h̄ωa ∼
2.3 × 10−26 J. Dividing by the cycle time, which is the heating
pulse period 2π/ωb = 2 ns, we find the power from the
working fluid as Pa ∼ 1.15 × 10−17 W. The heat intake of
the HF resonator can also be determined from the diagram
and we find Qin ∼ 0.06h̄ωa , which yields an efficiency of
η = Wa/Qin ∼ 0.06%. Similar values can be consistently
found from the cycle in the 〈n̂a〉-ωeff diagram, which is
similar to Fig. 6. Approximating the cycle by a rectangular
path, we can verify that Wa ∼ h̄(nH − nL)(ωH − ωL), where
nH ∼ 0.0675 and nL = 0.01 (cf. Fig. 2) are the maximum
and minimum 〈n̂a〉, respectively. Similarly, ωH ∼ 1.04 and
ωL ∼ 0.96 (see, e.g., Fig. 7) are the maximum and mini-
mum of ωeff, respectively. The heat intake in this case can
be written as Qin ∼ h̄ωH (nH − nL). Hence, the efficiency
becomes that of an Otto engine η = 1 − ωL/ωH ∼ 0.08%.
These values increase with n̄h. For example, at n̄h = 1, we get

η ∼ 0.27%, P ∼ 2.64 × 10−16 J/s, and W ∼ 5.28 × 10−25 J.
We cannot increase n̄h indefinitely however. Optomechanical
model requires relatively small oscillations such that ωa >

g|q| at all times. This limits our considerations to a regime
n̄h < 3.25.

Alternatively, another figure of merit, called the dissipative
power, is also considered to estimate the performance of such
piston engines, which is given by [27]

P = −Tr{ωbn̂bκb[(n̄b + 1)D[b̂] + n̄bD[b̂†]]}, (17)

= ωbκb(〈n̂b〉 − n̄c). (18)

It is nonzero when the LF resonator mode is not in equilibrium
with the environment. It has the same qualitative behavior with
the mean number of excitations in the LF mode by definition
and hence is oscillatory around a mean value (cf. Fig. 2). P

is approximately the same as the heat current from the LF
resonator to its thermal bath, which is given by

Jb = Tr[L̂bĤsys] = P + g
κb

2
〈n̂aq̂〉, (19)

where L̂b represents all the Lindblad superoperators depending
on κb. The last term in the Jb expression is negligible. The
approximation of Jb ≈ P improves by including the nonlocal
effects of the reservoir-system interactions. The last two
statements are verified numerically for our parameter regimes
using the global master equation given in Appendix A.

We can find a general relation between the mechanical
power of the effective Otto engine and the dissipative power.
In terms of the electrical pressure F̂ ∼ n̂a and the elec-
trical length change dq̂, we can write a mechanical work
operator as δŴ = −gn̂adq̂, so that the mechanical power
can be expressed as Pm = 〈δŴ/δt〉 = −g〈n̂a(dq̂/dt)〉. Using
dq̂/dt = ωbp̂, mechanical work can be expressed in terms of
pressure-momentum correlation as Pm = −gωb〈n̂ap̂〉. Note
that this expression is the same with the variation dUa/dt

of the effective mean energy of the HF resonator mode
Ua = ωa〈n̂a〉 − g〈n̂aq̂〉 along the quantum adiabats at which
〈n̂a〉 is constant. We can now substitute 〈n̂b〉 = P/ωbκb + n̄b

into the equation of motion for 〈n̂b〉 (see Appendix A), which
gives

dP

dt
+ κbP = −κbPm. (20)

If the baths are continously attached to the resonators, without
timed sequential heating and cooling stages, then the system
operates as a heat transport device and in the steady state we
get Pm = −P . In our case of engine operation, however, P is
oscillatory in the steady state [cf. Fig. 2(b)] and the mechanical
work is stored in the coherent oscillation amplitude of the LF
resonator mode. We can measure Jb, which is approximately
the same as P , to assess how large these oscillations are,
as they are driving the dissipative power. Note that such a
measurement per se would not give information that the stored
energy is a coherent and can be considered as work. It should
be complemented with a coherence measurement as well (cf.
Fig. 5).

Alternatively, the mechanical output could be harvested
directly by attaching an electrical load to the open terminal of
the LF transmission line resonator [27]. This could change the
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FIG. 9. The maximum power (in units of κbh̄ωb) with respect
to average number of excitations n̄h in the effective hot bath. The
black solid, red dotted, and blue dashed curves indicate the results
of the mean field, classical, and quantum calculations. All the other
parameters are as explained in the text.

dynamics we discussed here and would need a separate study.
Moreover, there are different definitions of work reservoirs in
terms of attached loads and quantum work extraction [27,64–
66]. Here we will briefly present some intuitive and qualitative
discussion. In our case, we can envision a specific scenario to
define a task for the “piston resonator mode.” For that aim,
the power could be extracted from the resonator by attaching
a “matched” microwave system. From the point of view of
the resonator, this would look like a purely real impedance
that matches the characteristic impedance of the transmission
line. From basic microwave theory, this is the way to get the
maximum power transfer between the two systems. In this way,
modeling the system being “powered” as a resistance gives an
upper bound on the microwave power we can extract. Still, it is
quite a general model, as we can often use resonant impedance
transformation techniques to match an arbitrary load.

One more alternative method of work extraction is based
on nonpassivity of the state of the LF resonator mode. The
mechanical power of the HF resonator is used to “charge”
the LF resonator by putting it into a thermal coherent state.
Such states belong to the class of so-called thermodynamically
nonpassive states and are capable of producing useful work.
Disconnecting the LF resonator from the system would allow it
to be used as a quantum coherent resource [27,28]. In our case
we characterize the coherence properties of the LF resonator
mode by calculating the second-order coherence, as plotted in
Fig. 5. Its measurement can be used to assess the nonpassivity
of the LF resonator mode. For this particular scheme of work
extraction we would need a tunable version of the coupled res-
onator system in which the coupling coefficient g can be turned
off and the LF resonator would be tuned to couple to another
system, which would then be driven coherently [27,28].

We report the maximum power Pmax, which is evaluated
for the maximum 〈nb〉 in the steady state, in Fig. 9. After
n̄h ∼ 0.325 the coherent character of the LF mode steady
state becomes more significant than its thermal character (cf.
Fig. 5), and hence the dissipated power has more useful work
content than the incoherent energy. The other two curves
in the figure corresponds to the results of the mean field
and classical models of the system. The mean-field model,

FIG. 10. Behavior of the relative difference in the dissipative
power with respect to average number of excitations n̄H in the hot
bath. Red dashed and blue solid curves indicate (Pq − Pc)/Pq and
(Pq − Psc)/Pq , where Pq,Pc, and Psc are calculated by quantum,
classical, and mean-field methods, respectively. Power is dimension-
less and scaled with κbh̄ωb. All the other parameters are as explained
in the text.

as described in the preceding subsection about the engine
cycle, ignores the correlations and factorizes the two operator
products 〈n̂aq〉 and 〈n̂ap〉 (see their equations of motion in the
Appendix A). We will describe the classical model next and
explain the hierarchy of the curves in Fig. 9 in terms of the
classical and quantum correlations. We note that as n̄h grows,
the quantum correlations are less significant. The relative
difference between the classical and quantum descriptions
diminish with increasing temperature as shown in Fig. 10.

IV. CLASSICAL MODEL

In order to distinguish quantum features in our engine
system from its classical counterpart, we shall now treat the
model Hamiltonian in Eq. (1) as a classical model. Replacing
the operators of the fields of the resonators with the c numbers
such that â → αa and b̂ → αb we get the classical Langevin
equations

α̇a = −
(
iωa − ig(α∗

b + αb) + κh

2
+ κa

2

)
αa

+ ξh(t) + ξa(t), (21)

α̇b = −
(
iωb + κb

2

)
αb + ig|αa|2 + ξb(t), (22)

where ξi(t) with i = a,b,h represents time dependent
delta-correlated stochastic noise with 〈ξi(t)〉 = 0 and
〈ξi(t1)ξi(t2)〉 := Diδ(t1 − t2), where Di is the strength of the
noise. The parameter Di is a function of κi according to the
fluctuation-dissipation theorem [67] such that Di = κin̄i .

We define the field quadratures Xi,Yi such that αa :=
1/

√
2(Xa + iYa) and αb := 1/

√
2(Xb + iYb). By writing the

noise parameters as ξi = 1/
√

2(ξ i
x + iξ i

y), we can express the
equations to be simulated as

dXa = [ωaYa − g
√

2XbYa − κ ′
aXa]dt + dWh

x + dWa
x , (23)

dYa = −[ωaXa − g
√

2XaXb + κ ′
aYa]dt + dWh

y + dWa
y ,

(24)
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FIG. 11. Change in the internal energy U of the classical engine
with respect to the effective frequency ωeff for n̄h = 0.125. We use
the frequency of the HF resonator ωa to make our parameters scaled
and dimensionless. All the other parameters are as explained in the
text.

dXb =
[
ωbYb − κb

2
Xb

]
dt + dWb

x , (25)

dYb = −
[
ωbXb + κb

2
Yb− g√

2

(
X2

a + Y 2
a

)]
dt + dWb

y . (26)

Here dWi = 1/
√

2(dWi
x + idWi

y), where ξ i
kdt =: dWi

k , with
k = x,y, is the Wiener process with width

√
κin̄idt and κ ′

a :=
κh/2 + κa/2. For the cooling stage, κ ′

a is replaced by κa/2 and
the dWh

x ,dWh
y terms vanish.

The physical parameters used in the classical dynamical
simulations are the same as those used in the quantum case.
The equations are solved by using Mathematica 10.

V. RESULTS OF CLASSICAL SIMULATIONS

In Fig. 11, we present the change in the internal energy Ua

of the classical engine with respect to ωeff for n̄h = 0.125. The
result follows and fluctuates about the mean-field model cycle
in Fig. 6, as expected theoretically. Similarly, the phase portrait
of the classical engine in Fig. 12 is the same with its quantum
counterpart in Fig. 4. Theoretically, the quantum dynamics
of 〈n̂a〉 and the phase-space quadratures are the same for the
classical and quantum mechanical descriptions. Factorization
of the two operator expectation value 〈n̂aq̂〉 to define ωeff

makes the mean-field model Ua-ωeff cycle identical with the
classical one.

Figure 9 shows the maximum power output of the classical
engine with respect to n̄h. The power output of the classical
engine lies between the quantum and mean-field models.
The difference of quantum model from the classical and the
mean-field models is more significant in the dissipated power
output of the LF resonator in contrast to negligible difference
between the classical and quantum treatment of the extractable
work from the HF resonator. The differences diminish with
increasing temperature of the driving noise as shown in

FIG. 12. Phase portrait Xb − Yb of the classical LM resonator for
n̄h = 0.125. All the other parameters are as explained in the text.

Fig. 10. In order to explain such different effects of correlations
on different subsystems of the engine, we investigate the
classical and quantum correlations more closely in the next
section. We note that power enhancement in the coherent work
extraction relative to the stochastic one has been discussed in
the literature as a signature of the quantum character of certain
quantum heat engines, different than our system. Quantum
coherence has been suggested as the main source of the
power enhancement [41]. It has been conjectured that quantum
correlations (entanglement or discord) in multiparticle engines
could play a similar role to that of coherence in single-particle
engines. Our two-coupled-resonator setup can be envisioned
as an example to verify this conjecture. As the systems are
different, we need to elaborate explicitly if and how the
quantum and classical correlations emerge in our system and
how they lead to enhanced power output in our case.

VI. QUANTUM NATURE OF THE SYSTEM

The equations of motion for the dynamical variables of
interest in our system are given in Appendix A. In this section,
we will discuss the set of equations related to the correlations
contributing to the power and work output of our quantum heat
engine.

The extractable work depends on the pressure-displacement
correlation 〈n̂a,q̂〉, where the correlation function for two
operators ô1 and ô2 is defined as 〈ô1,ô2〉 = 〈ô1ô2〉 − 〈ô1〉〈ô2〉.
According to Eq. (20), the power output of the Otto cycle of
the HF resonator depends on the pressure-momentum corre-
lation 〈n̂a,p̂〉. Both the pressure-displacement and pressure-
momentum correlations are driven by the number fluctuations
of the HF mode which is thermally excited by the hot reservoir.
This mechanism is described by the closed system of equations
given in Appendix A. We can find the equation of motion for
〈n̂a,q̂〉 as

(
d2

dt2
+ 2C

d2

dt
+ ω2

)
〈n̂a,q̂〉 = 2gωb〈(
n̂a)2〉, (27)
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FIG. 13. Relation between the dynamics of the quantum correla-
tions 〈n̂a,q̂〉 and 〈n̂a,q̂〉. A closed cycle emerges in the steady state as
both correlations are slaved by the number fluctuation dynamics of
HF resonator. 〈n̂a,p̂〉 varies over a much wider range than the 〈n̂a,q̂〉.
All the other parameters are as explained in the text.

where C = κh + κa + κb/2 and ω = ω2
b + C2. The system

of equations for 〈(
n̂a)2〉, 〈n̂a,q̂〉, and 〈n̂a,p̂〉 is parallel to
that of 〈n̂a〉, 〈q̂〉, and 〈p̂〉. 〈(
n̂a)2〉 and 〈n̂a〉 have similar
temporal profiles, with the same periodicity but with different
amplitudes. Accordingly, 〈n̂a,q̂〉 exhibits a periodically driven
underdamped oscillatory motion, which is analogous to the
dynamics of q. In contrast to the case of q, however, the
weak damping condition C < ω is weakly satisfied and
the correlation dynamics are in a regime which is only slightly
beyond critical damping (since C ∼ 2κa � ωb).

The formal solution of the 〈n̂a,q̂〉 can be written as

〈n̂a,q̂〉 =
∫ t

0
dt ′e−C(t−t ′) sin [ωb(t − t ′)]f (t ′), (28)

with f (t) = 2g〈(
n̂a)2(t)〉. Another difference from the q

dynamics, which has a resonant drive, is that the natural
frequency ω ∼ 2κa of the correlation oscillator is far off
resonant with the drive frequency ωb. In this case, the fast
correlations adiabatically follows the slow fluctuations of the
HF resonator. We can employ integration by parts to the formal
solution to show that

〈n̂a,q̂〉 ≈ gωb

2κ2
a

〈(
n̂a)2〉(1 − e−Ct ). (29)

In the long-time limit the steady state at the end of the heating
and cooling cycles coincides with the exact steady state for
the continuous drive case discussed in Appendix B. In terms
of our parameter values, this value is too small (∼10−3) to be
of significance for the extractable work from the working HF
resonator. On the other hand, using the relation

〈n̂a,p̂〉 = 1

ωb

(
d

dt
+ C

)
〈n̂a,q̂〉, (30)

we get

〈n̂a,p̂〉 = g

κa

〈(
n̂a)2〉, (31)

(a)

(b)

FIG. 14. Dynamics of the correlation function � with respect to
the scaled time ωat for (a) n̄h = 0.125 and (b) n̄h = 1 calculated by
quantum (solid blue curves) and classical (red noisy curves) methods.
All the other parameters are as explained in the text.

which turns out to be an order of magnitude greater than 〈n̂a,q̂〉.
Their mutual dynamics are plotted in Fig. 13. According to
Eq. (20), instead of contributing to the work output, 〈n̂a,p̂〉
contributes to power output of the Otto cycle of the HF mode.

We note that a similar parameter to 〈n̂a,p̂〉 (normalized by
the variances of the n̂a and p̂) has been proposed in the context
of the quality of quantum nondemolition measurements and
called the signal-meter entanglement parameter [46]. To make
an analogous notation we use � := −〈n̂a,p̂〉. This has also
been used in optomechanical systems as an indicator of
quantum coherence [47]. When � < 0, signal-meter type
quantum correlations make a positive contribution to the rate
of increase of the power output from the LF resonator. The
time dependence of � is shown in in Fig. 14. It is oscillatory,
adiabatically following the number fluctuations in the HF
resonator, and it is always negative. Similar oscillations in �

are found for a typical optomechanical setup where the drive
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is coherent. It was proposed that the correlated state can be
used to generate a mixture of Cat states through conditional
measurement [47]. In our case, coherence and correlations are
driven by an incoherent drive.

We have also calculated the classical correlation �class =
−〈n̂a,p̂〉class. Here 〈.〉class indicates averaging over classical
trajectories. The results are plotted in Fig. 14. This shows that
there is a difference between the amplitudes of the quantum
and classical correlations. The quantum model predicts a faster
growth rate and higher maximum value for the power output
from the LF resonator relative to the classical model. Both
models predict more powerful and faster engines relative to
the mean-field model.

VII. CONCLUSIONS

In summary, we proposed and investigated a pair
of superconducting transmission line resonators with an
optomechanical-like interaction as a quantum heat engine. The
HF resonator is periodically coupled to an effective hot bath
while both resonators are coupled to continuous effective cold
baths. We found the emergence of a limit cycle in the open
system dynamics and identified that the HF resonator mode
undergoes an effective Otto cycle. The electromagnetic field
mode of the HF resonator acts as the working substance while
the mode of the LF one acts as the piston that can be used
for coherent power extraction. The superconducting resonator
engine serves as an electrical analog of a mechanical piston
engine. We found that a pistonlike motion can be identified
in the phase space by using the phase portraits and Wigner
function plots. We numerically verified, by calculating the
second-order coherence function, that the working resonator
remains thermal while the “piston” resonator is “charged”
to a thermal coherent state, which is a thermodynamically
nonpassive state that can be used to harvest useful work [28].

Extractable work and efficiency has been calculated from
the T -S diagram and from the internal energy diagram.
We found that pressure-displacement correlations could in
principle contribute to the enhancement of extractable work.
However, the effect is negligible. A practical figure of merit for
the piston engine performance is the dissipative power from
the piston subsystem. When we evaluate it, we found that
pressure-momentum correlations (also known as signal-meter
type correlations) contribute significantly. These correlations
are driven by the variance of the working resonator, which
is driven by the thermal fluctuations of the hot reservoir. By
this way, in addition to the mean number of excitations in
the hot bath, its fluctuations can be harvested through the
dissipative power of the piston resonator. This is not a universal
conclusion. In other optomechanical quantum piston engines
quantum correlations could lead to a power increase only in
limited parameter regimes [27] or could even be harmful to the
output power [35]. We compared the classical, mean-field, and
quantum engine descriptions and concluded that our engine
is inevitably a genuine quantum heat engine with enhanced
power output due to quantum correlations so that it could be
used as a test bed to explore quantum effects in quantum engine
cycles.

Here we have only considered classical noise drives;
however, our framework is applicable to the case of quantum

noise drives as well. According to our analytical results, we
conclude that the quantum enhancement in the power output
can be further increased by using quantum drives instead
of classical drives. For example, using a squeezed thermal
noise, number fluctuations could be increased to enlarge the
pressure-displacement or pressure-momentum correlations to
make the quantum enhancement in the work or power output
more significant relative to classical engines [29,61,68].

Our results could be practically significant for realiza-
tion of compact, on-chip, scalable, electronic realizations of
genuine quantum heat engines with quantum coherence and
correlations advantages relative to their classical counterparts.
It can also fundamentally be used as a testbed to explore
the quantum-to-classical transition of heat engines and to
illuminate the role of quantum correlations in the operation
of quantum heat engines.
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APPENDIX A: QUANTUM DYNAMICS
OF THE MODEL SYSTEM

A “gobal” master equation, also called the “dressed state
master equation” (DSME), which is applicable to a system with
arbitrarily strong optomechanical coupling, has been derived
in Ref. [55] and expressed in the Schroödinger picture as
(h̄ = 1,kB = 1)

˙̂ρ = −i[Ĥsys,ρ̂] + κa(n̄a + 1)D[â] + κan̄aD[â†]

+ κh(t)(n̄h + 1)D[â] + κh(t)n̄hD[â†] + α2κdD[â†â]

+ κb(n̄b + 1)D[b̂ − αâ†â] + κbn̄bD[b̂† − αâ†â],

(A1)

where α = g/ωb characterizes the “nonlocal” effects of the
reservoirs and κd = 4κbTb/ωb is the dephasing rate of the HF
resonator mode. This expression is obtained under the assump-
tion that the bath of the LF resonator has an Ohmic spectral
density. The interaction of the HF resonator mode with the
baths attached to it remain approximately local as ωa � ωb so
that “phonon” side modes do not change the spectral densities
of the baths of the HF resonator. This requires the spectral
densities to be slowly varying near the resonance frequency
ωa . These are consistent with the conditions we employ on the
noise drives applied to the resonators.

Equations of motions for the relevant dynamical observ-
ables of our system are determined from the master equation
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and given by

d

dt
〈n̂a〉 = A − B〈n̂a〉, (A2)

d

dt
〈p̂〉 = −ωb〈q̂〉 − κb

2
〈p̂〉 + 2g〈n̂a〉, (A3)

d

dt
〈q̂〉 = ωb〈p̂〉 − κb

2
〈q̂〉 + ακb〈n̂a〉, (A4)

d

dt
〈(
n̂a)2〉 = A + (2A + B)〈n̂a〉 − 2B〈(
n̂a)2〉, (A5)

d

dt
〈n̂a,p̂〉 = −C〈n̂a,p̂〉 − ωb〈n̂a,q̂〉 + 2g〈(
n̂a)2〉, (A6)

d

dt
〈n̂a,q̂〉 = −C〈n̂a,q̂〉+ωb〈n̂a,p̂〉+ακb〈(
n̂a)2〉, (A7)

d

dt
〈n̂b〉 = −κb(〈n̂b〉 − n̄b) + g(〈n̂a,p̂〉 + 〈n̂a〉〈p̂〉)

+α
κb

2
(〈n̂a,q̂〉 + 〈n̂a〉〈q̂〉), (A8)

where q̂ = b̂ + b̂†, p̂ = i(b̂ − b̂†), A = κan̄a + κhn̄h, B =
κa + κh, and C = B + κb/2. Correlation function between
the two dynamical observables with the operators ô1 and
ô2 are denoted by 〈ô1,ô2〉 = 〈ô1ô2〉 − 〈ô1〉〈ô2〉. The terms
with parameter α are due to the nonlocal effects of the
reservoir-system interactions. In the range of our interest,
g � ωb, we did not find any significant effects resulting from
them, except a negligible increase in 〈n̂a,q̂〉. We use the local
master equation and the corresponding equations of motion by
taking α = 0 unless otherwise noted in the paper.

We note that the closed dynamics that we have found for the
set of thermodynamically relevant observables cannot be found
for all dynamical variables of the system. The optomechanical
Hamiltonian has a special symmetry in which the number
operator of the HF resonator mode is a constant of motion.
The steady state of the HF resonator and the associated
local observables for the HF mode are independent of the
optomechanical coupling coefficient g [69]. The first three
equations of motion form a closed set of dynamics for the
q-p phase-space trajectories, driven by 〈n̂a〉. The second set
of three equations form another, independent, closed set of dy-
namics for the “pressure-displacement,” 〈n̂a,q̂〉, and “pressure-
momentum,” 〈n̂a,p̂〉 correlations, driven by the quantum
fluctuations 〈(
n̂a)2〉. The baths of the HF resonator mode
prepare the pressure (∼〈n̂a〉 and quantum noise drives for these
independent dynamics. Both dynamics contribute to the evolu-
tion of the excitations in the LF mode given in the last equation.

APPENDIX B: STEADY STATE OF THE QUANTUM
DYNAMICS UNDER CONTINUOUS HEATING

While the dynamics of the LF mode is different under
pulsed thermal drive, the HF resonator reaches approximately
its steady state identical with a continuous drive case, for
the pulse duration is longer than its thermalization transition
time. In order to highlight the effect of pulsed drive relative
to continuous drive on the LF mode dynamics, and to
give steady-state values of the HF dynamics as well, we
provide the solutions of the quantum dynamical equations
in Appendix A in the long-time limit below and note some

common characteristic behaviors,

〈n̂a〉SS = A

B
= κan̄a + κhn̄h

κa + κh

, (B1)

〈q̂〉SS = 8gωb + 4ακ2
b

4ω2
b + κ2

b

〈n̂a〉SS, (B2)

〈p̂〉SS = 4gκb − 4ακbωb

4ω2
b + κ2

b

〈n̂a〉SS = 0, (B3)

〈(
n̂a)2〉SS = A(A + B)

B2
, (B4)

〈n̂a,p̂〉SS = 2gC − ακbωb

ω2
b + C2

〈(
n̂a)2〉SS, (B5)

= 2gB

ω2
b + C2

〈(
n̂a)2〉SS, (B6)

〈n̂a,q̂〉SS = 2gωb + ακbC

ω2
b + C2

〈(
n̂a)2〉SS, (B7)

〈n̂b〉SS = n̄b + g

κb

(〈n̂a,p̂〉SS + 〈n̂a〉SS〈p̂〉SS)

+ α

2
(〈n̂a,q̂〉 + 〈n̂a〉〈q̂〉). (B8)

According to our parameters we have κa = κh so that 〈n̂a〉SS =
(n̄c + n̄h)/2. In addition, the variance becomes 〈(
n̂a)2〉SS ∼
(n̄a + n̄h)(n̄a + n̄h + 2)/4. Exact solution of the pulsed-drive
case yields these value to a very good approximation, conform-
ing that the pulse duration is sufficiently long to thermalize the
HF resonator. The steady-state values of the LF resonator gives
smaller 〈n̂b〉SS in the case of continuous drive. A common
behavior under both the continuous or pulsed drive is the
quadratic increase of 〈n̂b〉SS with n̄h. Both the correlation
term 〈n̂a,p̂〉SS and the factorized (mean-field) term 〈n̂a〉SS〈p̂〉SS

increase quadratically with n̄h. This behavior is translated
to the power output of the engine, which is proportional to
P ∝ 〈n̂b〉SS − n̄b.

APPENDIX C: STEADY STATE OF THE ELECTRIC
DISPLACEMENT UNDER PERIODIC HEATING

The equation motion of q,

q̈ + κbq̇ + ω2q = 2ωbg〈na(t)〉, (C1)

with ω2 = ω2
b + κ2

b /4, can be solved in steady state by
approximating the 〈n̂a〉 by a square wave with period T =
2π/ωb. Transforming q → q = Q + q0, we write

Q̈ + κbQ̇ + ω2Q = 2ωbg〈Fa(t)〉, (C2)

where F (t) is made to be periodically alternating between
±(n̄h − n̄c)/4 by taking

q0 = 2ωbg

ω2

(
n̄h + 3n̄c

4

)
. (C3)

First harmonic at frequency ωb is then given by

Q = 4

π

2ωbg√
κ2

b

(
ω2

b + κ2
b

16

)
(

n̄h − n̄c

4

)
sin (ωbt + α), (C4)

where

α = arctan

(
κbωb

ω2
b − ω2

)
. (C5)
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Multiatom quantum coherences in micromasers as fuel for
thermal and nonthermal machines, Entropy 18, 244 (2016).

[18] D. Türkpençe and Ö. E. Müstecaplıoğlu, Quantum fuel with
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