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Anomalous interfacial temperature profile induced by phonon localization
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Through the integration of the power spectral density, we obtain temperature profiles of both multisegment
harmonic and anharmonic systems, showing the presence of an anomalous negative temperature gradient inside
the interfacial segment. Via investigating patterns of the power spectral density, we found that the counterintuitive
phenomenon comes from the presence of interfacial localized phonon modes. Two out-band localized modes of
the harmonic model, which make no contributions to local temperature due to the absence of phonon interactions,
result in the concave temperature profile and overcooling effect. For the anharmonic model, thanks to the
phonon-phonon interactions, the localized modes are excited and make considerable contributions to interfacial
temperature, which is clearly shown by examining the temperature accumulation function. When anharmonicity
is considerably large, the negative temperature gradient is absent since the localized phonon modes are fully
mixed. The presence of localized modes are evidently demonstrated by the inverse participation ratio and normal
mode analysis for the isolated harmonic model. The localized modes make contribution to interfacial temperature
profiles of the harmonic system when they are excited in initial conditions of simulations.
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I. INTRODUCTION

In general, there will be a temperature discontinuity at
an interface between two different materials when heat is
transported across the interface. This effect, first observed at
the interface between a metal and liquid helium [1], was char-
acterized by interfacial thermal resistance (Kapitza resistance).
Two phenomenological models, namely the acoustic mismatch
model [2] and the diffuse mismatch model [3,4], have
been developed to estimate the interfacial thermal resistance.
However, these models lack accuracy that can sometimes be
deviated by orders of magnitude since they neglect the built-in
atomic structures of interface and corresponding interfacial
phonon states [5].

When feature dimensions in micro/nanoelectronics con-
tinue to shrink, interfacial thermal resistance becomes one
of the critical factors determining the performance of nan-
odevices. In particular, as characteristic lengths of materials
approach the energy carriers’ mean free paths, the transport
processes are no longer dominated by scattering inside the
bulk materials but are dominated instead by scattering at
heterojunction interfaces. Recently, there have been extensive
studies on interfacial thermal conduction through systems
of atomic structures via analytical calculations [6–10] and
nonequilibrium molecular dynamics (NEMD) simulations
[11–13]. Meanwhile, experimental studies have shown that
interfacial structures and bonding can have a marked effect
on thermal transport [14–18]. Nevertheless, previous studies
have mainly focused on the interfacial thermal resistance
but the temperature jump alone from a microscopic aspect
has been rarely explored. When an interface with built-in
atomic structures is concerned, quantitative understanding of
the temperature discontinuity remains an unsolved issue.

Recently, an interesting phenomenon called “negative
temperature jump” has been observed in one-dimensional
inhomogeneous harmonic and φ4 chains using the Langevin
equations and Green’s function (LEGF) method and NEMD
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simulations [19]. The negative temperature jump nontrivially
indicates the violation of Fourier’s law in the interfacial part of
systems. It has been shown that the existence of the anomalous
interfacial temperature profile does not result from the system
integrability or the sharp discontinuity of particles’ interactions
at interface. For the latter a multisegment model has been
proposed, enabling proper resolution of the molecular structure
of the interface with a gradual variation of the molecular
interactions. Despite the fact that the presence of the negative
temperature jump has been verified from several aspects, a
satisfactory explanation to elucidate its microscopic origin has
yet been absent.

In this paper, we gain access to the underlying physical
mechanism of the anomalous interfacial temperature profile in
multisegment chains of oscillators. In terms of Parseval’s the-
orem [20], we establish the relation between local temperature
and the power spectral density (PSD). Temperature profiles
can then be evaluated though the integration of the PSD and
an anomalous negative temperature gradient is recovered in the
interfacial segment. By investigating the patten of PSD [21],
we observe the presence of localized phonon modes of sys-
tems, which results in the occurrence of a negative temperature
gradient. The significant role played by anharmonicity is then
investigated. The presence of phonon localization is evidently
demonstrated by the inverse participation ratio (IPR) [22,23]
and normal mode analysis for the harmonic system isolated
from heat baths.

The paper is organized as follows. In Sec. II, we introduce
the model and methods used in this study. In particular, we
build the relation between PSD and temperature. In Sec. IV,
we calculate temperature profiles via the integration of PSD
and explain the underlying physical mechanism of the negative
temperature gradient through investigating the PSD pattern and
normal modes of the system. Finally, we summarize our main
conclusions in Sec. IV.

II. MODEL AND METHODS

The present study is mainly to investigate temperature
profiles of systems in a nonequilibrium steady state, for which
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we consider a one-dimensional chain of coupled atoms with
nearest-neighbor interactions. The system isolated from heat
baths is described by a Hamiltonian of the form

H =
N∑

n=0

p2
n

2m
+ 1

2
kn(xn+1 − xn)2 + U (xn), (1)

where pn and xn denote the instantaneous momentum and the
displacement from the equilibrium position of nth oscillator,
respectively. m is the mass of the particles. We use a fixed
boundary condition, i.e., x0 = xN+1 = 0. U (x) represents the
φ4 on-site potential taking the form

U (x) = 1
4λx4, (2)

where λ denotes the strength of the quartic potential. kn is the
coupling strength of the (n + 1)-th particle to the nth particle.
As mentioned above, what we mainly concerned is the tem-
perature profile inside an interface of particular microscopic
structure between two molecular junctions. For this purpose,
we consider a three-segment system of smoothly varied
coupling strengths inside the interfacial segment [19]. The
distribution of coupling strengths of the chain is given by the
following: kn = 1 for 0 � n < n1; kn = 1 + exp(− (n−N/2)2

l
)

for n1 � n � n2; and kn = 1 for n2 < n � N . Here the
parameter l is used to control the variation steepness of kn.
The interface is modeled by the small intermediate segment
with particles indexed from n1 to n2. The setup of smoothly
varying coupling strengths is to avoid the sharp discontinuity
of a temperature jump at the interface, for which one can get
more details of the “temperature jump” and the corresponding
interfacial thermal resistance.

The isolated system reduces to a multisegment harmonic
chain (MHC) when λ = 0, for which one can use the normal
mode analysis. In this case, normal modes of the harmonic
lattice can be obtained by the following equation:

Kep = ω2
pMep, (3)

where M is the mass matrix of the system and ωp and ep
represent the eigenfrequency and eigenvector of the pth mode.
Since we use the fixed boundary condition, the force matrix of
the system K (Hessian matrix) can be written as

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

k0 + k1 −k1 0 · · · 0
−k1 k1 + k2 −k2 · · · 0

0 −k2 k2 + k3
. . .

...
...

...
. . .

. . . −kN−1

0 0 · · · −kN−1 kN−1 + kN

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(4)

For a given mode, the degree of localization can be
characterized by the IPR [22],

P −1 =
∑

n a4
n( ∑

n a2
n

)2 , (5)

where an is nth component of the eigenvector of a given mode.
For a completely delocalized state, P −1 takes the value 1

N
. On

the other hand, P −1 takes the value 1 for a fully localized state.
When there exists anharmonicity (λ �= 0), the normal

mode analysis fails. One can generally apply direct NEMD

simulations to study properties of thermal transport through
the multisegment anharmonic chain (MAC). In this case, the
particles at two ends (i.e., n = 1 and n = N ) are connected to
the Langevin heat baths [24,25] at temperatures TL and TR ,
respectively. The equations of motion are given by

mẍn = − ∂H
∂xn

− γnẋn + ηn, (6)

where γn = γ (δn,1 + δn,N ) and ηn = ηLδn,1 + ηRδn,N . The
noise terms ηL,R denote a Gaussian white noise with zero
mean and variance of 2γ kBTL,R according to the fluctuation-
dissipation theorem, where γ is the friction coefficient and kB

is the Boltzmann constant. The local temperature is defined

by Tn = 〈p2
n

m
〉 [24,25], for which the notion 〈· · · 〉 denotes

the long-time average with respect to a dynamical trajectory.
In order to compute the temperature profile, the equations
of motion [Eq. (6)] are integrated using a stochastic Verlet
algorithm and a time step of 0.005. In our simulations, we
employ the zero initial conditions if it is not specified, namely
xn(0) = 0 and vn(0) = 0, for which possible vibrational modes
can be excited only by the heat baths. Tn is computed for an
average time of the order of 1011 time steps after the system
reaches the stationary regime, which is signatured by the fact
that the average local heat current is constant along the chain
[24]. In our following discussions, the friction coefficient γ ,
the Boltzmann’s constant kB , and the mass m are set as units,
i.e., γ = 1,kB = 1,m = 1.

Since NEMD simulations cannot identify the spectral
contributions of phonon modes to local temperature, we hereby
present a numerical approach to quantify the temperature
profile based on its spectral property, which is described by
the PSD with respect to the momentum. The PSD can be
conveniently calculated through the Fourier transform:

Sn(ω) =
∣∣∣∣ lim
τ→+∞

1

τ

∫ τ

0
pn(t)e−iωtdt

∣∣∣∣
2

. (7)

According to Parseval’s theorem [20], we have
∫ ∞

0

∣∣p2
n(t)

∣∣dt =
∫ ∞

0

∣∣∣∣
∫ ∞

0
pn(t)e−iωtdt

∣∣∣∣
2

dω. (8)

Since the time average with respect to finite-time simulations
is concerned in our study, we divide both sides of Eq. (8) by
a time interval τ . By taking τ → +∞ and noting that pn(t) is
real and positive, one gets

lim
τ→+∞

1

τ

∫ τ

0
p2

n(t)dt =
∫ ∞

0
Sn(ω)dω. (9)

The left side of Eq. (9) is the time average of the kinetic energy
〈p2

n(t)〉. According to the definition of temperature and noting
that m = 1, we have

Tn =
∫ ∞

0
Sn(ω)dω. (10)

Equation (10) can be regarded as the spectral decomposition
of temperature, which indicates that the local temperatures
are equivalent to the integration of the PSD at local sites,
respectively. Note that Eq. (10) can be also obtained from
the Wiener-Khinchin theorem by setting the autocorrelation
time lag equal to zero [26]. The local PSD Sn(ω) defined in
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FIG. 1. The temperature profiles evaluated by both the PSD
approach [Eq. (10)] and NEMD simulations for (a) the multisegment
harmonic chain (MHC) and (b) the multisegment anharmonic chain
(MAC). For the two cases, λ is equivalent to 0 and 0.5, respectively.
The inset in (b) gives the enlarged plot for the interfacial temperature
profile enclosed by the dotted rectangle. One can see a nice
consistence between the PSD approach and NEMD simulations.
The distribution of spring constants for the system is given by
kn = 1 for 0 � n < 7N/16, kn = 1 + exp[−8(n − N/2)2/25] for
7N/16 � n � 9N/16, and kn = 1 for 9N/16 < n � N . Here TL =
0.4, TR = 0.6, and N = 64.

Eq. (7) can be evaluated numerically using the fast Fourier
transformation. In our calculations, the time series’ length
of the instantaneous momentum pn(t) is 219 and the sample
interval 
 = 1000h with the time step h = 0.001 for the
integration. PSD is averaged over 1000 realizations to reduce
numerical fluctuations.

The advantage of this approach is that one can not
only obtain the temperature profile basing on PSD but also
identify the spectral contributions of phonon modes to local
temperature, particularly for anharmonic systems. To clarify
the spectral contributions, we further define a temperature
accumulation function

T accum
n (ω) =

∫ ω

0
Sn(ω′)dω′, (11)

which identifies the local temperature due to the accumulation
of phonon modes with frequency less than ω.

III. RESULTS AND DISCUSSIONS

According to Eq. (10), temperature profiles obtained in
terms of the integration of PSD are shown in Fig. 1 for
both MHC and MAC. As one can see from Fig. 1(a), the
“negative temperature jump” [19], namely an anomalous
negative temperature gradient against the direction of heat

FIG. 2. Patterns of the PSD for (a) the homogeneous harmonic
chain (HHC), (b) MHC, and (c) MAC, respectively. The horizontal
and vertical coordinates represent the index of particles along chain
and frequency, respectively. The color represents the magnitude of
PSD. For the case of HHC, the coupling strength is given by kn = 1.
For the case of MHC and MAC, parameters are given the same as
that for Fig. 1.

flow, is recovered here and shown in the concave interfacial
temperature profile of MHC. Interestingly, the interfacial
segment is anomalously “overcooled” for the harmonic model,
i.e., temperatures inside the central part are much lower than
TL. As a comparison, the temperature profile for the φ4 chain
is illustrated in Fig. 1(b), where a negative temperature jump
still exists in the interfacial segment when λ = 0.5. However,
the concave degree of the temperature profile is smaller than
that for the harmonic chain. The validity of the PSD approach
is examined by the nice consistency with the results obtained
directly by NEMD simulations.

As to understand the existence of the anomalous tem-
perature gradient, we analyze the PSD through identifying
the contributions of phonon modes to temperature profiles.
Figure 2 shows the patten of PSD for both MHC and MAC
with respect to frequencies and lattice sites. As a comparison,
we also evaluate PSD for the homogeneous harmonic chain
(HHC), where the coupling strengths kn = 1 for all sites.
From Figs. 2(a) and 2(b), one can see that the PSD for the
interfacial segment of MHC is smaller than that of HHC,
particularly in the middle- and high-frequency regions. Thus
temperature in the interfacial segment of MHC is less than that
for HHC according to Eq. (10). As we will see below, there
are two phonon modes out of the phonon band (see Fig. 6
below) which fail to be excited by the heat baths and are
fully localized and forbidden to transport due to the absence
of phonon interactions. This means that the localized modes
make no contribution to local temperature, which results in the
overcooling effect. However, the two phonon modes (modes I
and II) are delocalized (partly extended) in the presence of
anharmonicity (λ = 0.5), which is illustrated in Fig. 2(c). In
this case, two out-band modes are excited in the middle of the
interfacial segment and make considerable contributions to
temperature thanks to the phonon-phonon interactions. Note
that the phonon band (the allowed-frequency range) of the φ4
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FIG. 3. Comparing temperature accumulation function T accum(ω)
for (a) the 32nd particle of HHC and MHC and (b) the 33rd and
34th particles of MAC, respectively. Inset: Enlarged plot for the
region enclosed in the dotted rectangular, showing that T34 < T33.
The parameters are the same as that for Fig. 1.

model moves up with a cut-off frequency [see Fig. 2(c)], which
is caused by the presence of the on-site potential and can be
approximately evaluated by the self-consistent phonon theory
[27,28].

The contribution of delocalized modes can be clearly shown
by the temperature accumulation function T accum(ω) in terms
of Eq. (11). In Fig. 3(a), we plot the temperature accumulation
function for the 33rd particle of MHC and HHC, respectively.
As we can see, the contribution of high-frequency modes are
significantly suppressed in the presence of localized modes.
Thus the temperature of the 33rd particle in MHC is much less
than that in HHC. The same analysis can be applied to other
particles and one can see that the concave temperature profile
of MHC comes from the presence of interfacial localized
modes that are not involved in thermal transport. Similarly,
we plot T accum(ω) for the 33rd and 34th particles of MAC in
Fig. 3(b). As mentioned above, the presence of anharmonicity
leads to the delocalization of the two localized modes and
makes them play a part in thermal transport through phonon-
phonon interactions. The sharp increment of T accum

33 (ω) and
T accum

34 (ω) comes from the contribution of mode I and mode
II, respectively. Since the low-frequency mode is easier to
be delocalized, and thus more extended in the chain than
the high-frequency one [see Fig. 2(c)], mode I has more
concentrated energy and correspondingly larger PSD than
mode II. Thus the temperature of the 33rd particle is higher
than that of the 34th particle, which indicates the presence of
the negative temperature gradient.

When anharmonicity increases, the phonon-phonon inter-
actions increase, resulting in the enhancing mixing of the
localized modes with in-band modes. For the case of strong
anharmonicity (λ = 10), the delocalized modes mix with each
other intensively and have more extensive distribution of the
PSD from the center of the system, as is illustrated in Fig. 4(b).
The difference of their contributions to local temperature
comes to diminish. Thus the negative temperature gradient
inside the interfacial segment is absent [see Fig. 4(a)].

(a) (b)

FIG. 4. (a) Temperature profile for the multisegment φ4 chain
with strong anharmonicity λ = 10. The inset is the enlarged plot for
the interfacial temperature profile enclosed in the dashed rectangle,
showing the absence of the negative temperature gradient. (b) The
corresponding pattern of PSD. The color represents the magnitude of
PSD. The horizontal and vertical coordinates represent the index of
particles along chain and frequency, respectively. Other parameters
except λ are given the same as that for Fig. 2(c).

Localized states occur in a solid when the translational
invariance is lost. For gaining insights into the interfacial
localized modes, we apply the normal mode analysis to MHC
through the diagonalization of Eq. (3) and then obtain the
eigenvalues and eigenvectors. The inset of Fig. 5 shows that
there are indeed two normal-mode frequencies are displaced
outside the phonon band of HHC. The particular frequencies
that experience this displacement are associated with localized
modes whose space-dependent factor decreases rapidly with
distance from the middle parts.

In order to measure the degree of localization, we calculate
the IPR for MHC using Eq. (5), as shown in Fig. 5. As a
comparison, we also plot IPR for HHC. In the case of HHC, the

FIG. 5. Inverse participation ratio for MHC and HHC. Inset:
Dispersion relations for MHC and HHC, which show that the last
two normal modes have frequencies outside the bands of HHC. This
corresponds to the large magnitude of the inverse participation ratio
for the last two normal modes.
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FIG. 6. Square of wave amplitudes of (a) the first, (b) the 56th,
(c) the 63rd, and (d) the 64th normal modes for both MHC and HHC.
The localization of wave amplitudes for the 63rd and 64th normal
modes is evident.

IPR of every normal mode has the same value, as is expected.
Note that the value is slightly larger than 1

N
, which comes

from the finite-size effect. For MHC, the IPR of low-frequency
normal modes are closely equal to the IPR of HHC since the
low-frequency modes with wavelengths longer than the size of
system are extended. The IPRs of the last two normal modes,
which have out-band frequencies, are much larger than others,
corresponding to highly localized states.

We plot some typical eigenvectors of normal modes for
both MHC and HHC, as illustrated in Fig. 6. Note that we plot
square of the wave amplitudes a2

n in stead of an here in order
to avoid showing the negative an. The eigenvector of the first
normal mode of MHC are identical with that of HHC since
the long wave-length mode of MHC are fully extended and
the interface is “transparent” for the mode [see Fig. 6(a)].
For the 56th mode, a modulation of the amplitude at the
interfacial sites can be seen. In other words, the mode is
no longer a “perfect” plane wave since the translational
symmetry is broken [see Fig. 6(b)]. Figure 6(c) and 6(d) show
that the 63rd and 64th normal modes are completely local-
ized inside the interfacial segment, whose space-dependent
amplitude decreases rapidly with distance from the center
of the interfacial segment. This coincides with the above
analysis on IPR. The two normal modes of MHC play
significant roles in understanding the anomalous temperature
gradient. Due to the absence of phonon-phonon interactions,
the out-band phonon modes are completely localized inside
the interfacial segment and cannot be excited in the process
of thermal transport. Moreover, defected wave amplitudes
in the interfacial segment [see Fig. 6(b)] correspond to
small PSD in the middle-frequency region, leading to the
concave temperature profile and the negative temperature
gradient. The two modes still “survive” in the presence of
small anharmonicity (corresponding to mode I and mode II,
respectively) although they are partly destabilized. Although
the modes are outside the band, they are excited in the process
of thermal transport via the interactions of phonons. The
components of their eigenvector are large for the interfacial

FIG. 7. Temperature profiles for MHC by employing (a) the 10th,
(b) the 63rd, and (c) the 64th normal modes as the initial conditions
for velocities, respectively. As a comparision, the temperature profilea
for zero initial conditions are also plotted. Panels (d)–(f) are patterns
of the PSD corresponding to (a)–(c), respectively.

segment, which results in large PSD and a negative temperature
gradient.

Note that localized modes cannot be excited by heat baths
attached at the two ends of the harmonic chain (see Fig. 2), in-
dicating that their energy is determined by the initial condition
and unable to decay. Thus it is interesting to excite a localized
mode initially and see its effects on temperatures. Here we
calculate the temperature profiles for MHC by employing the
localized modes (the 63rd and 64th modes) and an arbitrary
nonlocalized mode (the 10th mode is employed here) as
the initial conditions for velocities, respectively. Namely, the
initial conditions are given by xn(0) = 0 and vn(0) = a

p
n for

the pth mode. When the nonlocalized mode is employed
as the initial condition, it is shown in Fig. 7(a) that the
system has the same temperature profile with the overcooling
effect as that for the zero initial condition. However, when
the localized modes are employed as initial conditions, as
shown in Fig. 7(b) and 7(c), they make contributions through
increasing the temperature of the localized region as compared
with the case of zero initial condition. The presence of the
initially excited localized modes is clearly shown in Figs. 7(e)
and 7(f). This is consistent with our understanding that the
overcooling effect shown in Fig. 1(a) comes from the absence
of contributions of localized modes. As for the φ4 model, the
temperature profile is independent of initial conditions thanks
to the anharmonicity-induced coupling among the modes.

IV. SUMMARY

In summary, we studied temperature profiles of the mul-
tisegment harmonic and anharmonic systems in the nonequi-
librium stationary states. In terms of Parseval’s theorem, one
is capable of establishing the relation between temperature
and PSD and then obtaining the spectral decomposition of
temperature. Through the PSD approach, we recovered the
counterintuitive temperature profile in the interfacial segment,
where the local temperature gradient is anomalously against
the direction of heat flow. By inspecting the PSD patterns
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and identifying the contributions of phonon modes, one
can understand that the concave temperature profile and
the overcooling effect in MHC come from the presence of
out-band localized modes, which are forbidden to transport
and make no contribution to local temperature. However, for
anharmonic systems, those modes are (partly) delocalized and
make contributions to local temperature thanks to phonon-
phonon interactions, which can be seen by investigating
the temperature accumulation function. With the increase
of anharmonicity, the localized modes come to mix with
the in-band modes, leading to the vanishing of the negative
temperature gradient. The calculation of IPR and normal
mode analysis evidently show the localization of two out-band
phonon modes, which is consistent with the PSD analysis.
Since the localized modes of the harmonic system cannot be
excited by the heat baths, they will make contributions only
when energy is initially assigned to them.

Our further simulations show that a similar anomalous
temperature profile can be observed in other multisegment
anharmonic systems, e.g., the Fermi-Pasta-Ulam-β lattice.
Note that the spectral decomposition of temperature can also
be obtained by the LEGF method [19]. However, it cannot be
applied to anharmonic systems in comparison with the PSD
approach. Furthermore, the PSD analysis can be applied to dis-
ordered anharmonic systems [25,29,30] and possibly help to

understand the interplay between anharmonicity and disorder.
Nanotechnology nowadays has the ability to manipulate the
interfacial structure and bonding, which allows for a gradual
changing of interfacial properties [17,18]. For example, recent
experiments have demonstrated that inserting a thin Ti layer at
Au-Si interfaces [16] or bridging the metal-carbon-nanotube
interface with covalently bonded organic molecules [31] can
dramatically enhance the interfacial thermal conductance.
By elucidating the origin of the anomalous temperature
profile, our study is expected to enlighten further understand-
ing the Kapitza resistance from the microscopic viewpoint
and possibly aid in designing nanoscale devices for heat
manipulation.
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