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Divergence of activity expansions: Is it actually a problem?
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For realistic interaction models, which include both molecular attraction and repulsion (e.g., Lennard-Jones,
modified Lennard-Jones, Morse, and square-well potentials), the asymptotic behavior of the virial expansions for
pressure and density in powers of activity has been studied taking power terms of high orders into account on the
basis of the known finite-order irreducible integrals as well as the recent approximations of infinite irreducible
series. Even in the divergence region (at subcritical temperatures), this behavior stays thermodynamically adequate
(in contrast to the behavior of the virial equation of state with the same set of irreducible integrals) and
corresponds to the beginning of the first-order phase transition: the divergence yields the jump (discontinuity)
in density at constant pressure and chemical potential. In general, it provides a statistical explanation of the
condensation phenomenon, but for liquid or solid states, the physically proper description (which can turn the
infinite discontinuity into a finite jump of density) still needs further study of high-order cluster integrals and,
especially, their real dependence on the system volume (density).
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I. INTRODUCTION

Analytical studies of first-order phase transitions have a
long history. For statistical mechanics, this problem has turned
out to be particularly challenging. There are only two specific
statistical examples of the condensation phenomenon: the Lee-
Yang solution for a two-dimensional lattice gas [1,2] (a discrete
model with a realistic interaction potential, i.e., the potential,
which includes both repulsion and attraction), and the van
der Waals–Maxwell equation of state [3,4] (a mean-field
model). Unfortunately, more general statistical approaches,
based on the local particle-distribution functions [5] as well
as various approximations for the system partition function or
its expansions in powers of a small parameter [6], could not
describe the condensation even qualitatively.

In particular, the well-known problem of statistical me-
chanics is the divergence of the virial series in powers of
activity and density. Mayer’s cluster expansion [7] transforms
the partition function to a complex sum of integrals. Additional
summation at the thermodynamic limit (N → ∞; V → ∞)
for the corresponding grand partition function yields the
equation of state,

P
kBT

=
∞∑

n=1
bnz

n

ρ =
∞∑

n=1
nbnz

n

⎫⎪⎪⎬
⎪⎪⎭

, (1)

where the quantity

z = λ−3 exp

(
μ

kBT

)

is the activity (or, sometimes, fugacity) related to the chemical
potential μ and de Broglie wavelength λ = h/

√
2πmkBT , and

{bn} are the so-called reducible cluster integrals defined in
accordance to the actual interaction potential (see their detailed
definition in Mayer’s book [7]).
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It should be noted that Eq. (1), is an exact representation of
the grand partition function (its logarithm as the series for
pressure and the derivative of the logarithm as the series
for density) in terms of the cluster integrals and activity,
provided that the set {bn} is also exact and completely known.
In the case of a more general (and complex) definition
of the cluster integrals {bn}, Eq. (1) remains formally cor-
rect even for nonadditive interactions and multicomponent
systems [7].

From this point of view, a possible divergence of the infinite
series for pressure and density in Eq. (1) at some real finite
value of activity can hardly be interpreted as the true behavior
of the grand partition function: the divergence in the negative
direction corresponds to the vanishing of the partition function,
and the divergence in the positive direction corresponds to
the divergence of the partition function itself, but both these
options have no physical meaning.

The general mathematical properties of this divergence
(or, conversely, the corresponding convergence conditions)
have been studied for decades [5,8–12]. However, the actual
behavior of the pressure and density series at the vicinity of the
divergence point remains almost unknown due to the difficulty
of evaluating the complete (or a large enough) set {bn} for a
certain interaction model.

It is shown here that the real nature of such mathematical
divergence in Eq. (1), for realistic models of matter at subcrit-
ical temperatures does not actually contradict thermodynamic
laws and has an obvious statistical meaning, which directly
indicates the beginning of the condensation process. Moreover,
the nonphysical behavior of Eq. (1), in very dense states
(liquid or solid states beyond the condensation region) can
also be clearly explained as the result of some simplifications
in evaluating the macroscopic (thermodynamic size) cluster
integrals.

Even in dense states of a fluid, each reducible integral
bn for a microscopic cluster of n molecules (n � N ) in
a macroscopic system (N → ∞) can exactly be expressed
(for a single-component system with the interaction energy
independent of the internal exited states of molecules) in terms
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of the irreducible integrals {βk} [7],

bn = n−2
∑
{jk}

n−1∏
k=1

(nβk)jk

jk!
, (2)

where all possible integer sets {jk} must satisfy the condition

n−1∑
k=1

kjk = n − 1. (2a)

Each irreducible cluster integral βk in Eq. (2) is directly
related to the corresponding virial coefficient, i.e., the power
coefficient of the well-known pressure expansion in powers
of density (virial equation of state, VEOS) [7]. There is great
experience accumulated in calculation of virial coefficients
that in principle allows evaluation of the reducible integrals
{bn}, but the direct use of relation (2) [along with condition
(2a)] can hardly be implemented in practice for high-order
integrals.

On the other hand, Eqs. (2) and (2a) may be transformed to
much more effective and convenient expressions,

bn = An,n−1

n2
, (3)

where

An,i = n

i∑
k=1

k

i
βkAn,i−k, An,0 = 1.

Although this recursive algorithm cannot be considered ab-
solutely new (it may be found, in somewhat different forms,
in a number of studies [13–17]), it has not yet been used to
investigate the large series of Eq. (1).

For any known set of irreducible integrals {βk}, Eq. (3)
allows the evaluation of the corresponding reducible integrals
{bn} to an arbitrary large order, which, in turn, provides the
opportunity to study the true behavior of Eq. (1) (in fact, the
behavior of the grand partition function, where the molecular
interactions are accurately or approximately defined by the
full or truncated set of irreducible integrals {βk}), and check
the adequacy of the VEOS with the corresponding (full or
truncated) set of virial coefficients.

Such calculations were performed by using the different sets
of virial coefficients known for various realistic interaction
models (e.g., Lennard-Jones [20–22], modified Lennard-
Jones [23,24], Morse [25], and square-well [26] potentials).
In all these cases, the subcritical isotherms of Eq. (1) (with the
activity series truncated at very high orders), demonstrate a
similar behavior (see Fig. 1): once the isothermal bulk modulus
vanishes at some density ρC , it stays constant at any higher
density, i.e.,

(
∂P

∂ρ

)
ρ�ρC

≡ 0.

This behavior fundamentally differs from that of the VEOS
isotherms, which can have a negative bulk modulus (thermo-
dynamically forbidden) and an interval similar to the “van der
Waals loop” (for set {βk} truncated at low orders).
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FIG. 1. Isotherms of Eq. (1) truncated at different orders n (solid
lines) and one isotherm of the VEOS (dotted line). Virial coefficients
in the VEOS and reducible integrals in Eq. (1) are calculated on the
basis of the first three irreducible integrals {β1,β2,β3} for the Lennard-
Jones model [18,19] at subcritical temperature T = 1.28ε/kB (ε and
σ are the parameters of the Lennard-Jones model).

Mayer’s derivation of the VEOS is limited by the conver-
gence condition of the series

∑
n2bnz

n [7,27–29],

z � zC = ρC exp

⎛
⎝−

∑
k�1

βkρ
k
C

⎞
⎠, (4)

where ρC is defined in the equation∑
k�1

kβkρ
k
C = 1 (5)

as the density (mentioned above), where the isothermal bulk
modulus of the VEOS or Eq. (1), vanishes (up to this density,
there is no difference between these equations). Thus, the
VEOS as a conventional and more convenient “substitute”
for Eq. (1), can be adequate only in the region where Eq. (1),
converges (i.e., at any density lower than ρC), which puts the
issue of the activity series convergence at the forefront (in
contrast to the convergence of the VEOS itself).

In accordance with the Cauchy-Hadamard theorem, the
series for pressure and density in Eq. (1), are both diverging
(and the results of calculations additionally confirm that
behavior) at the divergence point of the series

∑
n2bnz

n [the
activity zC defined in Eq. (4) or the density ρC defined in
Eq. (5)]. However, the coefficient n in the series for the density
makes it increase much more rapidly than the pressure in
the vicinity of zC . At the thermodynamic limit (n → ∞),
such divergence of Eq. (1), causes a jump (discontinuity)
of the density under constant values of pressure and activity
(chemical potential), which corresponds to the thermodynamic
signs of the first-order phase transition.
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FIG. 2. Isotherms of Eq. (1) truncated at different orders n (solid
lines) and one isotherm of the VEOS truncated at order i = 6000
(dotted line). Virial coefficients in the VEOS and reducible integrals
in Eq. (1) are calculated on the basis of the extrapolation [30] for
the modified Lennard-Jones model [31,32] at subcritical temperature
T = 0.7ε/kB .

For a number of realistic interaction models an extrapo-
lation of the virial coefficients was proposed [25,30], which
allows the evaluation of the reducible integrals {bn} on the
basis of the infinite set of irreducible ones {βk} (i.e., allows
the calculation of each bn with regard to all its irreducible
parts up to the order k = n − 1). It makes the isotherms of
Eq. (1), qualitatively similar to the real isotherms in the vicinity
of the condensation point ρC (as a dry saturated point): the
tangent of the isotherms has a discontinuity there (see Fig. 2).
Recently, another extrapolation has been proposed for the
virial coefficients of the Lennard-Jones model [33]. Although it
quantitatively yields somewhat different results, the qualitative
behavior of the corresponding theoretical isotherms remains
the same.

It is important to note that the observed behavior of
Eq. (1), agrees exactly with that of equations (not based on
the VEOS) where the dependence on activity is excluded: in
terms of reducible cluster integrals [13] (for finite systems)
and irreducible integrals [27–29,34,35] (for finite as well as
thermodynamic systems).

However, in contrast to these equations, the present ap-
proach provides an obvious statistical interpretation of the
condensation phenomenon. The divergence of a series always
means the principal increase in its high-order terms. In dilute
states (z < zC ; ρ < ρC), the value of different terms (nbnz

n) is
a monotonically decreasing function of the order n (see Fig. 3)
and, hence, the determinative contribution to the partition
function (logarithm of the grand partition function and its
derivative) belongs to the smallest (microscopic) clusters.
When the activity exceeds the zC defined in Eq. (4) [and the
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FIG. 3. Contributions to the density series of Eq. (1) for terms
(nbnz

∗n) of various orders n at different activities (z∗ = zσ 3). The
bold red line corresponds to the divergence activity zC defined in
Eq. (4). Reducible integrals in the series and zC are calculated on
the basis of the first six irreducible integrals {β1,β2,β3,β4,β5,β6} for
the Morse model (the parameter of that model ασ = 4.0) [36] at
subcritical temperature T = 0.8ε/kB .

density exceeds the ρC defined in Eq. (5)], the contribution
function becomes increasing for high orders (in Fig. 3, this
function is shown for large but finite orders). For the grand
partition function of a real thermodynamic system (N → ∞),
the contribution of the largest clusters (n → ∞) rapidly
becomes essential exactly at the point zC that causes the dis-
continuity of density in Eq. (1), beyond the ρC . Therefore, the
condensation begins when the statistical weight of high-order
cluster integrals turns to an increasing function of the order.

Moreover, if the reducible integrals for the largest (macro-
scopic) clusters stay constant (similarly to the microscopic
ones), the density discontinuity is essential (to infinity) and
the condensation process cannot stop (pressure and activity
also stay constant even when ρ → ∞).

Actually, the constancy of reducible integrals [their def-
inition by Eqs. (2) and (2a) for the infinite macroscopic
volume] can only be adequate for the microscopic clusters
(and, therefore, in dilute states, when ρ < ρC). For the
macroscopic clusters, whose contribution cannot be neglected
when condensation begins (ρ � ρC), any changes in the
system volume automatically mean considerable changes in
the integration limits; each high-order cluster integral must
be a certain function of the volume (or density). This makes
the relation between the reducible and the irreducible integrals
[i.e., Eqs. (2) and (2a) or Eq. (3)] incorrect for large clusters
in the condensation region, and furthermore, the definition
of irreducible integrals becomes irrelevant there: any βk

of a microscopic cluster stays volume independent, while
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the corresponding βk (of the same order k) belonging to a
macroscopic cluster must depend on the volume.

The compression first affects the long-distance positive
(i.e., attractive) part of the integrands (products of Mayer’s
functions [7]), and it, in turn, must reduce the value of the
high-order cluster integrals or even change their sign. Only
these changes of the power coefficients in Eq. (1) can transform
the essential (infinite) discontinuity of the density into a jump
(finite) discontinuity (i.e., stop the condensation at some high
density—the boiling point) and cause the increasing pressure
(as well as activity) in denser states (liquid or solid) in a certain
balance of molecular attraction and repulsion.

Of course, the presented analysis cannot be considered a
complete statistical theory of condensation. It just demon-
strates a possible general way to describe the physical
phenomenon of condensation based on statistical mechanics.
The most important conclusion is that the cluster-based

statistical approach, in general, and Eq. (1), in particular, stay
absolutely adequate in all states of matter—from gaseous to
liquid (or solid), including the phase-transition region—and
any nonphysical features of their behavior can only be due to
some simplifications or approximations used for the evaluation
of the corresponding cluster integrals [namely, all the equations
obtained before in terms of the irreducible integrals or virial
coefficients [27–29,34,35] use such simplification of the
infinite volume in Eq. (2)].

Thus, the construction of a rigorous statistical theory for
first-order phase transitions should be focused on the equations
in terms of the reducible cluster integrals (instead of the
equations in terms of the irreducible ones, which cannot
describe the boiling point in principle). This theory also needs
further thorough studies to provide accurate data on high-order
reducible integrals and, especially, their real dependence on the
volume or density.
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