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Dissipation, lag, and drift in driven fluctuating systems
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This work deals with thermostated fluctuating systems subjected to driven transformations of the internal
energetics. The main focus is on generally multidimensional systems with continuous configurational degrees
of freedom over which overdamped Markovian fluctuations take place (diffusive regime of the motion). Mutual
bounds are established between the average energy dissipation, the deviation between nonequilibrium probability
density and underlying equilibrium distribution due to the system’s lag, and the statistical properties of the
components of the directed flow induced by the transformation itself. The directed flow is here expressed in
terms of time-dependent “drift velocity” associated with the probability current in a advection-like formulation
of the nonstationary Fokker-Planck equation. Consideration of the drift makes that the bounds achieved here
extend the inequality derived by Vaikuntanathan and Jarzynski [Europhys. Lett. 87, 60005 (2009)] involving
only dissipation and lag. The key relations are then specified for the so-called stochastic pumps, i.e., systems
that reach a periodic steady state in response of cyclic transformations and that are prototypes of nonautonomous
dissipative converters of input energy into directed motion; a one-dimensional case model is adopted to illustrate
the main features. Complementary results concerning bounds between the evolution rates of dissipation and lag,
valid for both overdamped and underdamped dynamics, are also presented.
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I. INTRODUCTION

In recent years, especially thanks to the progress in
mechanical manipulation at the nanoscale, there has been an
ever-growing interest in the physics of fluctuating systems
undergoing transformations driven by external means. This
has led to development of the body of the so-called “stochastic
thermodynamics” discipline [1], and devising the theoretical
and computational machinery for making quantitative pre-
dictions about the dynamical response of a driven system.
Three general and intuitive features characterize a fluctuating
system when it is taken away from the thermal equilibrium
state: (1) an out-of-equilibrium situation develops, (2) an
amount of energy is dissipated, or “wasted,” just because
the operation is performed with a finite progression rate,
and (3) a directed dynamical response (i.e., a “drift” in the
system’s configurational space) may be induced. The present
work is aimed at establishing some interrelations between
these three facets of the irreversible transformations at the
nanoscale; namely, mutual bounds on quantitative descriptors
of dissipation, lag, and drift will be derived.

Great attention is put nowadays on “thermodynamic un-
certainty relations” linking the amount of dissipation to the
statistical distribution of the currents induced in an out-
of-equilibrium system (see, for example, Refs. [2–6] and
references therein). While these studies focus mainly on
discrete and autonomous systems taken to a nonequilibrium
steady state by means of fixed or stochastic external causes,
here we deal with continuous and nonautonomous systems
subjected to a controlled finite-time transformation (transient
case), or that eventually reach a periodic steady state if the
transformation is cyclic and lasts indefinitely (e.g., the case of
“stochastic pumps” discussed below).

Let us consider a fluctuating system in contact with a
thermal bath of fixed temperature T . Let x be the set of
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continuous variables associated with the relevant degrees of
freedom. The basic assumption is that the dynamics of x can
be modeled as a Markov process, namely, a stationary process
when the system is at equilibrium, and nonstationary during
the transformation [7,8]. At this stage, x may comprise both
configurational variables (q in the following) and the related
momenta (p) in a phase-space representation. In such a general
situation, the regime of the motion is “underdamped” (i.e.,
“semi-inertial”). If the relevant variables x are only of pure
configurational type, the regime of the motion is “overdamped”
(or “diffusive”).

Suppose that the system is initially at equilibrium and that
an external means (some device in abstract sense) starts to
modulate the internal energetics of the system according to a
time-dependent deterministic protocol, for example, by acting
on some internal coordinates or parameters of the system.
Such driving causes the creation of an out-of-equilibrium
situation associated with a nonequilibrium distribution p(x,t).
In all generality, henceforth p(x,t) may be intended either as
a distribution of states (in a statistical-ensemble view) or as a
probability density (in a single-system view). The evolution of
p(x,t) from an initial distribution p(x,0) is described by the
nonstationary Fokker-Planck equation for the underdamped
(Kramer-Klein form) or overdamped (Smoluchowski form)
regimes of motion [7,8]. At any time t , let peq,t (x) be the
“underlying” equilibrium distribution that would be reached,
in an indefinitely long relaxation phase after the time t , if the
protocol were stopped at that time and the constraints imposed
by the external means were kept fixed.

The out-of-equilibrium condition can be quantified in terms
of deviation of p(x,t) from peq,t (x) by means of the scalar
Kullback-Leibler divergence, or relative entropy, expressed
by [9]

D(t) ≡ D(p||peq,t ) =
∫

dx p(x,t) ln
p(x,t)

peq,t (x)
. (1)
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Such a dimensionless quantity is non-negative and null only
if the two distributions are identically equal. The presence
of the inevitable “lag” due to the fact that the system
cannot instantaneously equilibrate with respect to the changing
constraints makes that D(t) � 0.

Concerning the energy dissipation, an extra amount of
energy (properly defined in the next section) has to be put into
play just as a penalty for operating out-of-equilibrium since
the transformation is conducted with a finite progression rate.
Such a wasted quantity of energy, which constantly increases
as the transformation proceeds, is here denoted as wdiss(t)
where the overbar can be intended in a twofold way: (1) an
average taken over the statistical ensemble of realizations
of the same transformation or (2) an expectation for the
single transformation underway. A milestone in stochastic
thermodynamics was the finding [10,11] that the Clausius-
Duhem inequality, which is one of the facets of the Second
Principle of Thermodynamics for systems transformed in
contact with a thermal reservoir [12], can be recovered at
the scale of fluctuating systems if the average dissipation is
considered:

wdiss(t) � 0, (2)

where the equality holds in the quasistatic limit. Notably, such
an inequality follows mathematically as a corollary of the
celebrated Jarzynski’s equality [10,11,13]. Later in Ref. [14]
the following inequality was derived:

β wdiss(t) � D(t) � 0, (3)

where β = (kBT )−1. Note that Eq. (3) is an inequality sharper
than Eq. (2) since D(t) sets a lower bound to the average
dissipation: one can state that if some transformation has
produced a certain lag quantified by D(t) at the time t ,
then the average energy dissipation was surely not less than
kBT D(t). Remarkably, the relation Eq. (3) holds regardless
of the dynamical regime of the fluctuations, underdamped or
overdamped. Actually, it can be proved that Eq. (3) follows as
a consequence of a more stringent inequality concerning the
time derivatives:

β
dwdiss

dt
� dD

dt
. (4)

The integration of Eq. (4) between time 0 [with wdiss(0) = 0
and D(0) = 0] and time t yields Eq. (3). Although Eq. (4) is
probably well known to researchers active in this field, to our
knowledge is does not appear explicitly in past publications
and it is worthwhile to frame it clearly. We mention that a
special form of Eq. (4), however, can be found in Ref. [15]
[see Eqs. (13)– (15) therein] for the case of one-dimensional
underdamped motion in a parabolic potential. Here Eq. (4)
will be derived in all generality, as a by-product of our
main inspection, from the elaboration of the nonstationary
Fokker-Planck equation for the evolution of p(x,t) in both
underdamped and overdamped regimes of motion.

Finally, the possible directed flow due to the external
intervention on the system’s energetics is quantified by the
time-dependent probability current in the system’s configura-
tional space. Let us focus directly on the case of overdamped
dynamics so that the ensemble x is constituted solely by
configurational variables q. The probability current, J(q,t),

is such that, given an oriented hypersurface δ�+, the flux∫
δ�+

dσ (q) n̂(q)T J(q,t) gives the rate of probability transfer
through that surface [in the integral, dσ (q) stands for the area
of a surface element centered in q, and n̂(q) is the unit vector
normal to such oriented element]. At thermal equilibrium, the
probability current is null at each configuration q; in constrast,
an evolving and non-identically null current is present in an
out-of-equilibrium situation.

Instead of dealing with J(q,t), here we shall consider the
associated drift velocity defined as

v(q,t) := J(q,t)/p(q,t). (5)

In abstract terms, by analogy with the equations of fluid
dynamics, v(q,t) would correspond to the velocity field of
a virtual “medium” that transports the “extensive property”
probability in the configurational space (just like the motion
of a real fluid transports the matter dissolved in it across the
three-dimensional space). It will be seen that v(q,t), rather
than J(q,t), is the proper vector field directly related to lag
and energy dissipation; namely, the time-dependent second
moments of the evolving distribution on the drift velocity
components, i.e., the averages 〈v2

i 〉t defined later in Eq. (22),
will play a crucial role.

On these bases, in the present work we shall derive
quantitative interrelations between the lag D(t), the average
dissipation wdiss(t), and the features of the drift velocity v(q,t).
The main result is constituted by the inequalities Eqs. (33)
and (34) presented later in Sec. III B. These relations are an
extension of Eq. (3) in a twofold sense: a positive lower bound
is given for the quantity βwdiss(t) − D(t), and an upper bound
is also provided. With reference to Eq. (34), it will be seen that
these lower and upper bounds are determined by the extreme
values taken by the averages 〈v2

i 〉t between time 0 and the
actual time t , and by other quantities introduced as scaling
factors to account for the possible inhomogeneity of the nature
of the variables qi .

After the presentation of such general results, in Sec. IV
we shall specify the inequalities for systems transformed
cyclically with some schedule of period τ . In this situation,
a periodic steady state is asymptotically attained as the
number of performed cycles increases; correspondingly, the
probability distribution, the probability current, and the drift
velocity settle respectively on some limits p∞(q,t), J∞(q,t),
and v∞(q,t), all featuring time periodicity τ . The inequalities
take the form given later in Eq. (36) where all quantities
are referred to one cycle at the periodic steady state. An
illustration will be given for a one-dimensional toy model
consisting of a hindered rotor-like diffusive system with an
intrinsic configurational energy featuring two equivalent wells
separated by two different barriers. The energy profile is
cyclically modulated in the way that the symmetry is broken
and both the depth of the wells and the height of the energy
barriers change. Such a system is one of the model cases
recently investigated in Ref. [16] (see “Case 2” in that work)
where the target was to establish a quantitative connection
between the average energy dissipation per cycle and the
internal modes of fluctuation.

We remark that cyclically driven systems, conventionally
termed “stochastic pumps,” have been intensively studied
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since they are prototypes of converters of input energy (as
work) into directed dynamical response with dissipation.
In particular, a remarkable “no-pumping theorem” specifies
the general conditions under which a net drift cannot be
present at the periodic steady state [17–20] or, conversely,
under which conditions a directed flow may be sustained.
Concerning the dissipation at the periodic steady state, we
mention the theoretical work of Harada and Sasa, who derived
an equality, for overdamped systems, that relates the rate of
energy dissipation to the extent of violation of the fluctuation-
response relation [21]. Finally, we also mention recent efforts
in the characterization of the periodic steady states within
the framework of the linear nonequilibrium thermodynamics
(“fluxes-affinities” relations) [22,23].

The remainder of the paper is structured as follows. In
the next section, the average energy dissipation wdiss(t) is
defined and related to D(t) (some technical details are given
in Appendix A). For the general situation of underdamped
and overdamped dynamics, the key result will be the equality
Eq. (15), which yields the inequality Eq. (4). Beginning in
Sec. III, the focus will be on overdamped dynamics. The drift
velocity v(q,t) is introduced and elaborated in Sec. III A (some
insights are provided in Appendix B), while the lower and
upper bounds for the quantity βwdiss(t) − D(t) are provided in
Sec. III B. Section IV is devoted to the special case of stochastic
pumps: the bounds of the average dissipation per cycle are
given in Sec. IV A, and the explanatory case is illustrated in
Sec. IV B. Section V summarizes the outcomes.

Remarks on the mathematical notation: Throughout the
text, bold symbols will denote arrays (matrices and vectors);
the vectors are meant to be arranged as column vectors; the
symbol “T” denotes the transposed array; ∂

∂x stands for the
column-vector gradient operator on the set of variables x.

II. DISSIPATION AND LAG FOR MARKOV DYNAMICS

Let us consider a fluctuating system subjected to a guided
change of internal energetics while it fluctuates in contact with
a thermal bath of temperature T . According to the notation
given in the Introduction, peq,t (x) is the underlying equilibrium
distribution reached if the protocol is interrupted at time t and
the system is left to relax under the constraints imposed by
the external means, that is, limt<τ→∞ p(x,τ ) = peq,t (x). At
thermal equilibrium, peq,t (x) is the canonical distribution

peq,t (x) = Zt
−1e−βVt (x), Zt =

∫
dx e−βVt (x) (6)

where the potential Vt (x) has to be interpreted on the basis of
the physical nature of the variables x (see below), and Zt is the
canonical partition function. With reference to the underlying
equilibrium state at time t , the Helmholtz free energy is
defined as

At = const(T ) − β−1 ln Zt, (7)

where const(T ) is an immaterial offset at the fixed temperature.
The amount of energy exchanged between the system

and the external means during the guided transformation is
identified as work [24,25]. Let us denote with w(t) the average
amount of work. Such an average can be interpreted either as
average over the statistical ensemble of realizations, or as a

probabilistic expectation value in a single-system view. The
time derivative of such an average can be expressed as

dw(t)

dt
=

∫
dx p(x,t)

∂Vt (x)

∂t
, (8)

where p(x,t) is the nonequilibrium distribution developed at
time t [the initial condition is p(x,0) = peq,0(x)]. The time
integration of Eq. (8) from time 0 up to a generic time t ,
considering that w(0) = 0, yields the value of w(t).

At any time, the difference between the average work and
the variation of free energy gives the average dissipated work:

wdiss(t) := w(t) − (At − A0). (9)

As stated in the Introduction, wdiss(t) � 0. By combining
Eqs. (7)–(9), a few steps yield

β
dwdiss(t)

dt
=

∫
dx �diss(x,t) p(x,t), (10)

where the function

�diss(x,t) = −∂ ln peq,t (x)

∂t
(11)

specifies the transformation protocol in terms of rate of change
of the underlying system’s energetics. A few more elaborations
allow one to get the identity

�diss(x,t) p(x,t) = −∂p(x,t)

∂t
−

[
ln

p(x,t)

peq,t (x)

]
∂p(x,t)

∂t

+ ∂

∂t

[
p(x,t) ln

p(x,t)

peq,t (x)

]
. (12)

By adopting D(t) in Eq. (1) to quantify the “lag” between
nonequilibrium and underlying equilibrium distributions at
time t , and considering that the normalization

∫
dx p(x,t) = 1

holds at any time, the integration on x at both members of
Eq. (12) yields

β
dwdiss(t)

dt
= dD(t)

dt
−

∫
dx

[
ln

p(x,t)

peq,t (x)

]
∂p(x,t)

∂t
. (13)

To go further, the specification of the time derivative
∂p(x,t)/∂t on physical grounds is required.

Under the assumption that the fluctuations of x can be mod-
eled as a Markov process, the evolution of the nonequilibrium
distribution is governed by the nonstationary Fokker-Planck
equation [7,8]

∂p(x,t)

∂t
= −	̂(t)p(x,t), (14)

where 	̂(t) is the evolution operator. The mathematical form
	̂(t) depends, as will be indicated later, on the specific
regime of the motion (diffusive or semi-inertial) and hence
on the nature of the variables x themselves. The explicit time
dependence borne by the operator arises from the deterministic
control on some coordinate(s) of the system. A constraint on
	̂(t) is that the relaxation of p(x,t) towards peq,t (x) must be
ensured if the transformation protocol is stopped at a time t .
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By inserting Eq. (14) in Eq. (13) it follows that

β
dwdiss(t)

dt
= dD(t)

dt
+ ρ(t), (15)

where ρ(t) is the time-dependent rate

ρ(t) =
∫

dx
[

ln
p(x,t)

peq,t (x)

]
	̂(t) p(x,t). (16)

In Appendix A we prove that

ρ(t) � 0 (17)

regardless of the dynamical regime, diffusive or semi-inertial.
This implies that the equality Eq. (15) turns into the inequality
in the key relation Eq. (4). Then Eq. (3) readily follows as a
corollary.

III. OVERDAMPED DYNAMICS

A. Out-of-equilibrium drift

Let us focus on Markov dynamics in the overdamped
regime of motion. In such a context, the variables x are
identified with pure configurational variables q. Let p(q,t)
be the nonequilibrium probability density (distribution) on
such degrees of freedom. Given a generic function f (q,t),
the following compact notation will be adopted to indicate the
ensemble average at a time t :

〈f 〉t ≡
∫

dq p(q,t)f (q,t). (18)

The evolution of the nonequilibrium distribution is gov-
erned by the nonstationary Fokker-Planck equation in the
Smoluchowski form [7,8], with the evolution operator [see
Eq. (A7) in Appendix A] ensuring that limt<τ→∞ p(q,τ ) =
peq,t (q) if the transformation is stopped at time t . The
Smoluchowski equation can be put in the form

∂p(q,t)

∂t
= − ∂

∂q

T

[p(q,t)v(q,t)], (19)

where v(q,t), defined in Eq. (5), is interpreted as the out-
of-equilibrium drift velocity associated with the probability
current J(q,t) ≡ p(q,t) v(q,t). Explicitly,

v(q,t) = −D(q,t)
∂�t (q)

∂q
, (20)

where �t (q) is the time-dependent scalar field

�t (q) = ln
p(q,t)

peq,t (q)
(21)

and D(q,t) is the diffusion matrix generally dependent on the
configuration and, possibly, also time-dependent in response to
the transformation protocol [26]. Equation (19) has the same
structure of an “advection-like equation” for the probability
density field, where the velocity of the virtual “transporting
medium” is the drift velocity determined by the probability
density itself. We stress that v(q,t) must not be confused with
the drift field that enters the Langevin equation associated
with the Smoluchowski equation [27]. In fact, that drift field
is present even for dynamics at equilibrium, whereas v(q,t) is
a genuine out-of-equilibrium property.

Some general statements about v(q,t) can be made just on
the basis of the structure of Eq. (20) (see Appendix B), while
more insights require a case-by-case inspection of the specific
system; for instance, Is the configurational space of the system
open or bounded? Are there periodic coordinates?

The important fact here is that, at a given time, the
drift velocity has a certain statistical distribution ρ(v,t) ≡∫

dq p(q,t) δ[v − v(q,t)] where δ(·) stands for the Dirac’s
delta function. In the next, the variances of such a distribution,
i.e., ultimately, the averages

〈
v2

i

〉
t
=

∫
dq p(q,t)vi(q,t)2 (22)

will play a crucial role in the quantification of the lower and
upper bounds for βwdiss(t) − D(t).

B. Dissipation, lag, and drift

By introducing the vector u(q,t) = ∂�t (q)/∂q, the inver-
sion of Eq. (20) yields u(q,t) = −D(q,t)−1v(q,t). Then, from
Eq. (A8) in Appendix A, the rate ρ(t) results as

ρ(t) =
∫

dq p(q,t) [v(q,t)T D(q,t)−1v(q,t)]. (23)

To get rid of the fact that the variables qi may have
a different physical nature, the strictly positive diagonal
elements of the diffusion matrix are employed as scaling
factors to build homogeneous quantities. For the sake of
notation, let us introduce

Dmin
ii (t) = min

q
{Dii(q,t)},

Dmax
ii (t) = max

q
{Dii(q,t)}. (24)

Then let D̃(q,t) be the positive-definite matrix with dimen-
sionless elements

D̃ij (q,t) = [D(q,t)−1]ij
√

Dii(q,t) Djj (q,t). (25)

Finally, let us introduce the following time-dependent param-
eters:

εmin(t) = min
q,ŵ | ŵT ŵ=1

{ŵT D̃(q,t)ŵ},
εmax(t) = max

q,ŵ | ŵT ŵ=1
{ŵT D̃(q,t)ŵ}. (26)

Note that εmin(t) and εmax(t) correspond, respectively, to the
extreme values (over all the system’s configurations) taken
by the minimum and maximum eigenvalues of the matrix
D̃(q,t), respectively. With these positions, a few steps reported
in Ref. [28] lead us to establish that

εmin(t)
∑

i

〈
v2

i

〉
t

Dmax
ii (t)

�∗ β
d[wdiss(t) − D(t)]

dt

�∗ εmax(t)
∑

i

〈
v2

i

〉
t

Dmin
ii (t)

, (27)

where the averages 〈v2
i 〉t have been introduced in Eq. (22). We

stress the important point that the inequalities in Eq. (27) are
due only to the possible q dependence of the elements of the
diffusion matrix, and to the possible spread of the eigenvalues
of D̃(q,t); for “isotropic” and constant diffusion matrices, these
inequalities are replaced by exact equalities. The informal
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notation “�∗,” here and below, serves to recall such a kind
of order relation.

The integration of both members of Eq. (27) between two
times t1 and t2 gives

β[wdiss(t2) − wdiss(t1)]

�∗ D(t2) − D(t1) +
∑

i

1

dmin
ii (t1,t2)

∫ t2

t1

dt
〈
v2

i

〉
t

(28)

and

β[wdiss(t2) − wdiss(t1)]

�∗ D(t2) − D(t1) +
∑

i

1

dmax
ii (t1,t2)

∫ t2

t1

dt
〈
v2

i

〉
t
, (29)

where

dmin
ii (t1,t2) = min

t1�t�t2
{Dii(t)/εmax(t)},

dmax
ii (t1,t2) = max

t1�t�t2
{Dii(t)/εmin(t)}. (30)

Weaker inequalities (in the sense of less tight) are then
derived by considering the upper and lower bounds of the
integral

∫ t2
t1

dt 〈v2
i 〉t on the basis of the extreme values that

〈v2
i 〉t can take in such a time interval, namely,

β[wdiss(t2) − wdiss(t1)] � D(t2) − D(t1)

+ (t2 − t1)
∑

i

1

dmin
ii (t1,t2)

max
t1�t�t2

{〈
v2

i

〉
t

}
(31)

and

β[wdiss(t2) − wdiss(t1)] � D(t2) − D(t1)

+ (t2 − t1)
∑

i

1

dmax
ii (t1,t2)

min
t1�t�t2

{〈
v2

i

〉
t

}
. (32)

The above relations hold regardless of the system’s state
at the initial time t1 (equilibrium or nonequilibrium state). A
relevant case, which also reflects the typical situation in the
experimental practice, is that of transformations starting from
an equilibrium state. In this case, Eqs. (28) and (29), taken
together, reduce to

D(t) +
∑

i

1

dmax
ii (0,t)

∫ t

0
dt ′

〈
v2

i

〉
t ′ �∗ βwdiss(t)

�∗ D(t) +
∑

i

1

dmin
ii (0,t)

∫ t

0
dt ′

〈
v2

i

〉
t ′ , (33)

and the inequalities Eqs. (31) and (32) become

D(t) + t
∑

i

min0�t ′�t

{〈
v2

i

〉
t ′
}

dmax
ii (0,t)

� βwdiss(t)

� D(t) + t
∑

i

max0�t ′�t

{〈
v2

i

〉
t ′
}

dmin
ii (0,t)

. (34)

Note that the relation D(t) � βwdiss(t) [14] is implicit in
Eqs. (33) and (34), since the terms added to D(t) at the left
member are strictly positive.

In passing from Eq. (33) to Eq. (34), one deals only with the
extreme values taken by the variances 〈v2

i 〉t ′ in the course of the
transformation, but at the price of accepting weaker bounds.
We emphasize that Eq. (34) can be viewed from different

angles. In particular, providing that everything is known
about the diffusion matrix and its possible time dependence,
the quantity [βwdiss(t) − D(t)]/t ultimately sets a global
constraint between the maximum values of the variances;
namely, they must be such that

∑
i max0�t ′�t {〈v2

i 〉t ′ }/dmin
ii (0,t)

is not less than that quantity. In one dimension the picture
is clear: during the transformation of duration t , it happens
for sure that 〈v2〉t ′ [as a measure of the broadening of the
distribution ρ(v,t ′) for 0 � t ′ � t] goes beyond the value
dmin(0,t) × [βwdiss(t) − D(t)]/t .

IV. PERIODIC STEADY STATES IN CYCLIC
STOCHASTIC PUMPING

A. General relations

Let us consider a system subjected to a cyclic energy
transformation of period τ . From now on, we shall use also
the term “energy perturbation” to stress that the external means
intervenes on the energetics of the unperturbed system.

According to Floquet’s theory applied to periodically driven
stochastic systems [29], in the long-time limit the system
reaches a unique “periodic steady state” in the presence of the
external driving. Throughout in the following, the superscript
“∞” will serve to denote such a condition. The periodic
steady state is such that, for all configurations q, the invariance
condition p∞(q,t0 + τ ) = p∞(q,t0) holds for any t0. Thus, all
out-of-equilibrium properties also own such a τ periodicity.
The features of the periodic steady state clearly depend on
the kind of energy perturbation. In addition, there is also a
subtle dependence on the initial distribution p(q,0) when the
perturbation is turned on [in the present context, p(q,0) =
peq,0(q)] and on the phase of the cyclic perturbation [29].

With reference to the periodic steady state conditions, let us
introduce the average dissipated energy per cycle given by [30]

w∞
diss := lim

t0→∞[wdiss(t0 + τ ) − wdiss(t0)]. (35)

Clearly w∞
diss depends on τ . We mention that an analytic

expression for such a dependence on τ has been recently
derived [16] in the limit of weak enough perturbations and
for the initial condition Vt=0(q) = V0(q) where V0(q) is the
mean-field potential of the unperturbed system up to time 0−
(this fixes the initial phase mentioned above).

Due to the periodicity of the probability density, it follows
that D(t0) = D(t0 + τ ) as t0 → ∞. By using this condition
and considering Eq. (35), Eqs. (34) reduce to

τ
∑

i

〈
v2

i

〉∞
min

d
∞,max
ii

� βw∞
diss � τ

∑
i

〈
v2

i

〉∞
max

d
∞,min
ii

(36)

with 〈
v2

i

〉∞
min = lim

t0→∞ min
t0�t�t0+τ

{〈
v2

i

〉
t

}
,

(37)〈
v2

i

〉∞
max = lim

t0→∞ max
t0�t�t0+τ

{〈
v2

i

〉
t

}

and

d
∞,min
ii = lim

t0→∞ dmin
ii (t0,t0 + τ ),

d
∞,max
ii = lim

t0→∞ dmax
ii (t0,t0 + τ ). (38)
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From Eq. (22), one can also write

〈
v2

i

〉∞
min = min

t0�t�t0+τ

∫
dq p∞(q,t) v∞

i (q,t)2,

(39)〈
v2

i

〉∞
max = max

t0�t�t0+τ

∫
dq p∞(q,t) v∞

i (q,t)2

for t0 sufficiently long, where v∞
i (q,t) stands for the ith

component of the drift velocity at the periodic steady state.
Finally, the division of βw∞

diss by the period τ gives the
time-averaged (over one cycle) rate of entropy production,
σ∞

S , in kB units. Thus, Eq. (36) yields also lower and upper
bounds for σ∞

S .
Let us focus now on some features of the probability current,

namely, on the q-dependent probability current time-averaged
over one period of perturbation starting from a generic time t0:

J(q,t0) := 1

τ

∫ t0+τ

t0

dt J(q,t). (40)

As t0 is taken ever longer so that the periodic steady state is
asymptotically reached, the integral over an interval of duration
τ becomes independent of t0. Thus, the limit t0 → ∞ does
exist:

lim
t0→∞ J(q,t0) = J

∞
(q). (41)

By integrating both members of Eq. (19) on t between t0 and
t0 + τ , then using the definition Eq. (40) and taking the limit
t0 → ∞, one gets

lim
t0→∞ [p(q,t0 + τ ) − p(q,t0)] = −τ

∂

∂q

T

J
∞

(q). (42)

Since the left-hand side of Eq. (42) vanishes due to the periodic
steady state condition, it follows

∂

∂q

T

J
∞

(q) = 0 for all q, (43)

that is, J
∞

(q) is a divergence-free vector field. Clearly Eq. (43)
is equivalent to state that the flux of J

∞
(q) through any closed

and oriented surface δ�+ embedded in the configurational
space is null:

∫
δ�+ dσ (q) n̂(q)T J

∞
(q) = 0 with the notation

already specified in the Introduction.
Equation (43), together with the proper boundary condi-

tions at the border of the configurational space for the specific
system, imposes some constraints on the vector field J

∞
(q).

The conditions at the border may be the “natural” ones in the
case of energy boundedness, or they may be the reflecting or
periodic boundary conditions on the probability current [7].
The analysis of the multidimensional case is not trivial since,
in all generality, J

∞
(q) is not a conservative field [31] and

a case-by-case inspection is required to make fully explicit
the constraints imposed by Eq. (43) with the proper boundary
conditions. On the contrary, as reported in the next section, the
one-dimensional case has a simple and unequivocal solution.

B. One-dimensional systems and a case model

Let us consider underdamped one-dimensional systems
with a single variable q defined in a domain [qmin,qmax].
First, the inequalities Eq. (36) apply directly for the single

FIG. 1. Energetics of the one-dimensional case model subjected
to cyclic energy perturbation. (a) Contour plot of the system’s energy
Vt (q) as function of coordinate q and time t over one period of the
perturbation (the quantities are scaled as indicated); (b) contour plot
of the underlying equilibrium distribution peq,t (q); (c) contour plot of
the nonequilibrium distribution at the periodic steady state for τ = 1.

contribution in place of the summations. Then, if the system
is bounded by either “natural” or reflecting boundaries, one
can state that J

∞
(q) = 0 for all q, whereas for a periodic

system (i.e., if q is a periodic coordinate with qmin = 0
and qmax = 2π ) one has that J

∞
(q) ≡ J

∞
for all q. In the

latter situation, the constant J
∞

may be null or non-null
depending on the kind of energy transformation. In a series
of papers, a remarkable “no-pumping theorem” has been
formulated to state under which operative conditions the
one-period-averaged probability current (i.e., the constant
J

∞
in our notation) would be null for sure. That theorem,

initially formulated for Markov jumps among discrete sites
whose energy levels are externally modulated [17–19], has
been later extended to the continuous case [20]. In essence,
the one-period-averaged probability current may be non-null
only if the perturbation modulates the background energy
profile V0(q) in a way that both the energy level of the wells
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FIG. 2. Trajectories in the plane of the variables β�A(t) and
D(t) for the one-dimensional case model under the cyclic energy
perturbation with τ = 1 starting from thermal equilibrium (thin black
line). The medium-thickness blue line corresponds to the first cycle.
The thicker red line corresponds to a cycle when the periodic steady
state is considered to be reached (see the text for details).

and the heights of the well-to-well barriers are affected; the
one-dimensional toy model treated in the following satisfies
such a requisite. Finally, J

∞
and the time-dependent average

of the drift velocity, 〈v〉∞t = ∫ qmax

qmin
dq p∞(q,t)v∞(q,t), are

related by the integral expression
∫ t0+τ

t0

dt 〈v〉∞t = 2πτ J
∞

(44)

for t0 → ∞ (in practice, for any sufficiently long t0). Unfortu-
nately, this relation does not provide useful information about
the values of 〈v2〉∞min and 〈v2〉∞max that enter the one-dimensional
version of Eq. (36).

For illustrative purposes, let us adopt the simple one-
dimensional system already studied in Ref. [16] (see the
situation termed there as “Case 2”). The system features
a single angular variable q. The unperturbed energetics is
described by a double-well symmetric potential βV0(q) =
α1 cos(q) + α2 cos(2q) with α1 = 1 and α2 = 3 in the calcula-
tions. The energy perturbation is such that the time-dependent
potential is βVt (q) = βV0(q) + �ε(t) cos[q + φ ε(t)] where
ε(t) = sin(2πt/τ ). For the calculations we set φ = 0.7 and
� = 4 as in Ref. [16]. The motion is diffusive with constant
diffusion coefficient D. The time variable is meant to be
expressed in some physical units, and D = 1 is employed.
The Smoluchowski equation for the evolution of p(q,t) from
p(q,0) = peq,0(q) has been solved numerically by means
of forward-Euler propagation steps and a finite-differences
scheme on the q variable under application of periodic
boundary conditions at q = 0 and q = 2π . Technical details
are given in Ref. [16].

Figure 1(a) shows the contour plot of βVt (q) over one period
of the perturbation, and Fig. 1(b) shows the corresponding
underlying equilibrium probability density. In Fig. 1(c) is
shown, again over one period, the nonequilibrium probability
density attained at the periodic steady state; such a contour

FIG. 3. Profiles of the probability current (a) and of the related
drift velocity (b), versus the coordinate q, for the one-dimensional
case model at the periodic steady state under cyclic energy perturba-
tion with τ = 1. The panels show profiles at various advancements
over one cycle.

plot refers to the case τ = 1, a value for which the amount of
average energy dissipation per cycle was found to be close to
a maximum [16].

In Fig. 2 the reaching of the periodic steady state is
displayed in a geometric representation where the (time-
dependent) free energy difference �A is plotted against the
(time-dependent) lag D. The profile refers to the case τ = 1.
It can be noted that the curve settles down on a limit closed
path that corresponds to a cycle at the periodic steady state.
On computational grounds, we adopt here the criterion that,
for a given value of τ , the nc-th cycle is considered to occur
under periodic steady state conditions if the relative variation
[D(nτ ) − D((n − 1)τ )]/D[(n − 1)τ ] is less than 0.01%, in
modulus, for both n = nc and n = nc − 1. In the figure,
the thicker red line corresponds to the first performed cycle
(nc = 34 in this case) for which such a condition is fulfilled.

Figures 3 and 4 characterize the out-of-equilibrium drift
under periodic steady state conditions. Figure 3 refers to τ = 1;
both J∞(q,t) and v∞(q,t) are plotted versus q for several
advancements �t/τ over one cycle. Then it has been verified
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FIG. 4. τ dependence, on the logarithmic scale, of the steady state
probability current integrated over one cycle of perturbation for the
one-dimensional case model (filled circles). The dashed line is the fit
with a Gaussian function.

that J
∞

(q) is practically independent of q, in agreement
with the fact that such a quantity should be constant. For
example, the variations with respect to the average value,
which are likely due to a residual displacement from the
periodic steady state, are at most of ∼6% for τ = 10 and
of ∼0.5% for τ = 100. In Fig. 4 the probability current
integrated over one period, �∞ = ∫ t0+τ

t0
dt J∞(q,t) ≡ τJ

∞
,

is plotted versus τ in a logarithmic abscissa scale. Note
that values �∞ 
= 0 are in accord with the no-pumping
theorem [17–20] since the perturbation of V0(q) modulates
both the energy of the wells and the well-to-well barriers.
Interestingly, the values of �∞ versus τ in the logarithmic
scale can be well fitted by a Gaussian profile. This means
that ln |�∞(τ )| � a − b(ln τ/τc)2 with a, b, and τc system-
dependent parameters. Such a feature is here reported only as
empiric observation, while its formal rationale is left to future
inspections [32].

FIG. 5. τ dependence of the average energy dissipation per cycle,
βw∞

diss, and of the provided upper and lower bounds, for the one-
dimensional case model at the periodic steady state under cyclic
perturbation. The inset shows the same profiles on a wider range.

Figure 5 contains the main outcome. In the double-
logarithmic scale, the filled black circles show the profile of
βw∞

diss versus τ , and the empty blue squares and the empty
red circles refer to the upper and lower bounds, respectively;
these bounds follow directly from Eq. (36) taking into account
that the summations reduce to a single contribution and that
the diffusion coefficient is constant: τ 〈v2〉∞min/D � βw∞

diss �
τ 〈v2〉∞max/D. The inset shows the same profiles on a wider
range. The dependence of βw∞

diss on τ has been investigated
in Ref. [16] in the limit of weak energy perturbations. In
particular, the two local maxima, which correspond to maxima
of the average rate of energy dissipation (or, equivalently, of
entropy production), fall at frequencies 2π/τ that match the
intrinsic rates of some internal modes of fluctuation of the
system at the unperturbed equilibrium. Note that the upper
bound also displays a similar profile, at least for the present
case model.

V. REMARKS AND CONCLUSIONS

In this work we have established a connection, in terms of
mutual bounds, between average energy dissipation, system’s
lag, and out-of-equilibrium drift for a thermostated fluctuating
system subjected to a driven energy transformation. Although
many of the introductory statements hold regardless of the
regime of the motion, the key relations in Eqs. (33) and
(34) are valid for overdamped dynamics on configurational
degrees of freedom. Those relations express that the difference
βwdiss(t) − D(t), which was previously established being
greater than zero [14], is bounded by quantities related to the
time-dependent distribution of the drift velocity v(q,t), Eq. (5),
associated with the probability current in the configurational
space.

The inequalities Eq. (34) have been then specified for
the widely studied “stochastic pumps” in which a cyclic
transformation can be exploited to induce out-of-equilibrium
currents [17–20]. The main results are represented by the
inequalities in Eq. (36), which have been illustrated and tested
for the one-dimensional system already studied in Ref. [16].

In essence, this work establishes some connection between
two aspects of the physics of driven fluctuating systems that, at
least in our opinion, are still scarcely interfaced for continuous
and nonautonomus systems: the energy dissipation (stochastic
thermodynamics context) and the induction of directed flow
(stochastic dynamics context). The development here was to
turn from the probability current to the drift velocity field
v(q,t), which was revealed to be the crucial quantity to work
out quantitative relations. Future efforts will be devoted to
better characterizing such a drift velocity field and, hopefully,
to confer on it a “physical guise” beyond the definition in
Eq. (5) and mere mathematical properties like those presented
in Appendix B.

APPENDIX A: PROOF OF Eq. (17)

Here we prove the validity of Eq. (17), and hence of
Eq. (4), for two classes of nonstationary Markov dynamics
under the requisite that the relaxation towards peq,t (x) occurs
once the driving protocol is stopped. First, we shall consider
the situation of semi-inertial (underdamped) dynamics. In
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this case, x contains both configurational variables q and
the conjugate momenta p. Then we shall turn to diffusive
(overdamped) motions in which the relevant variables are
only of a configurational type. The latter situation might
appear redundant if it is meant to derive by reduction of the
semi-inertial situation in the case of high friction and when
the dynamics is observed at time intervals long enough so
that the momenta lose the time correlation with the preceding
state. However, it is worthwhile to treat explicitly also the
diffusive situation since, in all generality, the variables q, or at
least some of them, may be generalized variables without an
associated momentum. In such a case, the diffusive context is
self-standing, and it cannot be obtained by reduction from an
“upper” semi-inertial level.

1. Semi-inertial regime of motion

In the semi-inertial regime, the potential Vt (q,p) corre-
sponds to the mechanical energy of the system’s microstate,
that is, to the Hamiltonian function H (q,p,t) = U (q,t) +
Ekin(p) with U (q,t) the time-dependent potential energy and
Ekin(p) = pT M−1p/2 the kinetic energy (M is the mass
matrix of the multibody system). At the given temperature,
the underlying Maxwell-Boltzmann equilibrium distribution
at time t is peq,t (q,p) ∝ exp{−βH (q,p,t)}. Then let ξ (q,t)
be the friction matrix. Such a matrix, which is required
to be positive-definite on physical grounds, is generally
configuration-dependent and, possibly, also time-dependent as
a consequence of the deterministic control on some system’s
coordinate(s). For x ≡ (q,p), the Fokker-Planck operator takes
the Kramers-Klein form (subscript “KK”) [7,8]:

	̂KK(t) = L̂(t) − ∂

∂p

T

ξ (q,t)M−1p − β−1 ∂

∂p

T

ξ (q,t)
∂

∂p
.

(A1)

The first addend in Eq. (A1) is the classical Liouville operator,

L̂(t) = ( ∂H (q,p,t)
∂p )

T ∂
∂q − ( ∂H (q,p,t)

∂q )
T ∂

∂p (we follow Zwanzig’s
proposal, see section 2.1 of Ref. [8], about absorbing the
imaginary factor into the operator’s definition); the second and
third addends provide the dissipation-fluctuation contribution.
With a few algebraic steps, Eq. (A1) can be put in the form

	̂KK(t) = L̂(t) − β−1 ∂

∂p

T

ξ (q,t)peq,t (q,p)
∂

∂p
peq,t (q,p)−1.

(A2)

The Liouville operator gives a vanishing contribution to
ρ(t) in Eq. (16). To prove this, let us adopt the following
form of the Liouville operator (arguments of the functions are
omitted for brevity) [33]:

L̂(t) = β−1 ∂

∂q

T

peq,t

∂

∂p
p−1

eq,t − β−1 ∂

∂p

T

peq,t

∂

∂q
p−1

eq,t .

(A3)

For the sake of notation, let us introduce �t (q,p) =
ln[p(q,p,t)/peq,t (q,p)]. The identities peq,t [∂(p/peq,t )/∂q] ≡
p∂�t/∂q and peq,t [∂(p/peq,t )/∂p] ≡ p∂�t/∂p allow us to

express the contribution of L̂(t) to Eq. (16) as∫
dq

∫
dp �t (q,p,t)L̂(t)p(q,p,t)

= β−1
∫

dp
∫

dq �t

∂

∂q

T (
p

∂�t

∂p

)

−β−1
∫

dq
∫

dp �t

∂

∂p

T (
p

∂�t

∂q

)
. (A4)

The integrals in the addends at the right-hand side are solved
by doing a first integration by parts. In the integration by
parts on q (for the first addend) consider that p∂�t/∂q
vanishes at the boundaries of the configurational space in
the case of energetically bounded systems [p(q,p,t) → 0
at the boundaries of the q-space], or it takes equal values
in the case of periodic coordinates (periodic boundary con-
ditions); in the integration by parts on p (for the second
addend) consider that p∂�t/∂p vanishes at the boundaries
of the momenta space as |pi | → ∞. As a whole, the net
contribution to Eq. (16) for the KK operator results in being
ρKK(t) = −β−1

∫
dq

∫
dp �t

∂
∂p

T
ξ (q,t)peq,t

∂(p/peq,t )
∂p . Integra-

tion by parts on p, with the consideration that peq,t (q,p)
vanishes at the boundaries of the momenta space, yields the
final result:

ρKK(t) = β−1
∫

dq
∫

dp p(q,p,t)

× [u(q,p,t)T ξ (q,t)u(q,p,t)], (A5)

where u(q,p,t) is the column vector:

u(q,p,t) = ∂ ln[p(q,p,t)/peq,t (q,p)]

∂p
. (A6)

Since the friction matrix is positive-definite, the scalar quantity
within square brackets in Eq. (A5) is non-negative, hence also
the integral itself non-negative; actually, ρKK(t) = 0 only in
the case the vector u(q,p,t) is identically null in the whole
phase space, that is, only if p(q,p,t) coincides with peq,t (q,p)
(no system’s lag).

2. Diffusive regime of motion

In the diffusive regime (variables x ≡ q), Vt (q) is inter-
preted as mean-field potential [34], and the evolution operator
takes the Smoluchowski form (subscript “S”) [7,8]:

	̂S(t) = − ∂

∂q

T

D(q,t)peq,t (q)
∂

∂q
peq,t (q)−1, (A7)

where D(q,t) is the diffusion matrix generally dependent on the
configuration and, possibly, also time-dependent in response
to the deterministic control exerted by the external means
[26]. The diffusion matrix must be positive-definite to ensure
the relaxation to the underlying equilibrium distribution.
In adopting Eq. (A7) it is implicit that the “drift” and
the “diffusion” contributions in the Fokker-Planck equation
[7] (and in the corresponding overdamped Langevin-type
equation as well [27]) are detailed linked in the way that
limt<τ→∞ p(q,τ ) = peq,t (q) if the transformation is stopped
at a time t .
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By inserting Eq. (A7) in Eq. (16), and integrating by
parts on the q variables by considering (as above) that
peq,t ∂(p/peq,t )/∂q vanishes at the boundaries, or it gives
identical contributions that cancel, it is readily shown that

ρS(t) =
∫

dq p(q,t) [u(q,t)T D(q,t)u(q,t)], (A8)

where

u(q,t) = ∂ ln[p(q,t)/peq,t (q)]

∂q
. (A9)

Again, the quantity within square brackets in Eq. (A8) is non-
negative since the diffusion matrix is positive-definite. This
implies that the integral is also non-negative, and equal to zero
only if p(q,t) coincides with peq,t (q), that is, in the absence of
a system’s lag.

As a whole, the rate ρ(t) in Eq. (16) is always non-negative
regardless of the kind of motion, diffusive or semi-inertial.

APPENDIX B: SOME GENERAL PROPERTIES
OF THE VELOCITY FIELD v(q,t)

The following general properties of the drift velocity field
v(q,t) can be deduced from the structure of Eq. (20):

(1) The stationary points (local maxima and minima in
the configurational space) of �t (q) = ln[p(q,t)/peq,t (q)] are
points of zero drift at the time t .

(2) The value of �t (q) decreases monotonically moving
along the “streamlines” of the drift velocity field v(q,t) at a
fixed t ; as a consequence, these streamlines must originate
from points of local maximum of �t (q) and end at points of
local minimum.

Assertion (1) follows immediately from Eq. (20). To prove
assertion (2), let us focus on the “static picture” at a fixed
time t . By considering u(q,t) = ∂�t (q)/∂q, it follows that the
vector field −D(q,t)−1v(q,t) [which corresponds to u(q,t)]
is a conservative field associated with the “potential” �t (q).
Then let γt be a “streamline” of the velocity field v(q,t)
at fixed t , that is, the curve generated by integration of
dqγt (t̃)/dt̃ = v(qγt (t̃),t) from a given initial point with t̃

a progression variable having physical dimension of time.
First, moving along γt , the quantity p(qγt (t̃),t)/peq,t (qγt (t̃))
decreases. In other terms, for any two points on such a curve
it holds

t̃2 � t̃1: p(qγt (t̃2),t) � p(qγt (t̃1),t)
peq,t (qγt (t̃2))
peq,t (qγt (t̃1))

.

This property can be proved by considering that the line
integral of the vector u(qγt (t̃),t) along the streamline
gives

∫ t̃2
t̃1

dt̃ u(qγt (t̃),t)T dqγt (t̃)
dt̃

= �t (qγt (t̃2)) − �t (qγt (t̃1)).
By inserting the expressions for u(qγt (t̃),t) and
dqγt (t̃)/dt̃ it follows �t (qγt (t̃2)) − �t (qγt (t̃1)) =
− ∫ t̃2

t̃1
dt̃ v(qγt (t̃),t)T D(qγt (t̃),t)−1v(qγt (s),t). Since the

diffusion matrix is positive-definite, the integral at the
right-hand side of such equation is non-negative, hence
�t (qγt (t̃2)) � �t (qγt (t̃1)). This corresponds to assertion (2).
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