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Collapse transition in polymer models with multiple monomers per site and multiple bonds per edge
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We present results from extensive Monte Carlo simulations of polymer models where each lattice site can be
visited by up to K monomers and no restriction is imposed on the number of bonds on each lattice edge. These
multiple monomer per site (MMS) models are investigated on the square and cubic lattices, for K = 2 and 3,
by associating Boltzmann weights wy = 1, w; = €”', and w, = e to sites visited by 1, 2, and 3 monomers,
respectively. Two versions of the MMS models are considered for which immediate reversals of the walks
are allowed (RA) or forbidden (RF). In contrast to previous simulations of these models, we find the same
thermodynamic behavior for both RA and RF versions. In three dimensions, the phase diagrams, in space
B> x By, are featured by coil and globule phases separated by a line of ® points, as thoroughly demonstrated
by the metric v,, crossover ¢,, and entropic y, exponents. The existence of the ® lines is also confirmed by the
second virial coefficient. This shows that no discontinuous collapse transition exists in these models, in contrast
to previous claims based on a weak bimodality observed in some distributions, which indeed exists in a narrow
region very close to the ® line when f; < 0. Interestingly, in two dimensions, only a crossover is found between

the coil and globule phases.
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I. INTRODUCTION

Lattice (random) walks have long been used as simplified
models for linear polymers in solution. Usually the monomers
are represented by a sequence of nearest-neighbor (NN) lattice
sites which are connected by bonds placed on the lattice edges
[1-3]. A key ingredient in such modeling is the inclusion of
self-avoidance, to represent the excluded volume present in
real systems, which turns the walks a nontrivial problem and
place them in a central stage into statistical mechanics. The
simplest way to consider this exclusion is imposing that each
lattice site can be occupied by at most one monomer, leading
to the so-called self-avoiding walks (SAWSs). On the other
hand, when the exclusion is imposed on the lattice edges, so
that each one can be occupied by at most one bond, one has
bond-avoiding walks (BAWSs), also known as trails.

Beyond the excluded volume, the inclusion of self-
attraction in the walks is also worthy for modeling collapsing
polymers [4,5]. In SAWs this is usually done by introducing
an attractive interaction between nonbonded NN monomers,
yielding the celebrated interacting SAW (ISAW) model
[1,2,5], which indeed undergoes a collapse transition at the
so-called ® point. More specifically, for high temperatures
T > Tp (or good solvents) the effect of the excluded volume
dominates and the polymer chains are swollen, similarly
to ordinary SAWSs. In opposition, for T <« Tg (or poor
solvents) they are collapsed in globular conformations, due
to the dominance of self-attraction. At 7T = T (or in a “®
solvent”) there is a balance (on average) between exclusion
and attraction, giving rise to ideal chains: the ® polymers.
From the O(n) field theory (in the limit n — 0) the ® point
is recognized as a tricritical point [2,6]. In three dimensions,
which is the upper critical dimension of this transition, the
® exponents are expected to assume mean-field values [2,5]
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except by logarithmic corrections [7-9]. In two dimensions,
notwithstanding, the situation is more complex, and the generic
critical behavior at the ® point have been subject of a long
debate (see, e.g., Refs. [10,11] for detailed discussions), but
several instances of numerical evidence [12-15] suggest that
the robust critical exponents are those derived by Duplantier
and Saleur (DS) [16], provided that the walks do not cross
themselves [11].

Collapse (coil-globule) transitions have also been found
in BAW models where attractive interactions are on-site, i.e.,
associated to monomers at multiply visited sites rather than
to NN ones. This is the case, for example, in the interacting
self-avoiding trail (ISAT) model [17], where each lattice edge
can have at most one bond, while the number of monomers per
site is limited only by the lattice coordination. When crossings
are forbidden in the ISAT model on the square lattice, the
so-called vertex interacting SAW (VISAW) model [18] is
obtained. Bl6te and Nienhuis (BN) [18] solved this model and
found a tricritical point different from the DS one, and it was
suggested in Ref. [19] that it could be the generic ® point.
However, recent evidence against this exists coming from
numerical [20,21] and field theory [10] works. Controversies
exist also on the ISAT collapse transition [22-28], which
have motivated several recent studies on this model and
generalizations of it [29-35]. Noteworthy among these works
is the field theory by Nahum et al. [30] showing that the
ISAT collapse transition in two dimensions is multicritical
with infinite order.

Another interesting class of models for polymer collapse,
with multiple monomers per site (MMS) and on-site interac-
tions, was introduced a decade ago by Krawczyk et al. [36],
inspired by the Domb-Joyce model. In such MMS models,
self-avoidance is introduced by imposing that each lattice site
can be occupied by at most K monomers, and, in contrast
to BAWS, no restriction exists on the number of bonds on
each lattice edge (beyond that naturally imposed by K).
Actually, apart from the on-site interactions, this is exactly
the so-called K-tolerant walks, first defined and discussed
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by Malakis [37] and further investigated in several 1980s
papers [22,38—41] focusing on the comparison of these walks
with SAWs and BAWSs. In the MMS model, the maximal
number of possible bonds on each lattice edge depends also on
whether immediate reversals of the walk are allowed (RA) or
forbidden (RF). Krawczyk et al. [36] studied both RA and RF
models with K = 3 on the square and simple cubic lattices,
via Monte Carlo simulations, by assigning Boltzmann weights
wy =1, w; = P, and wy = € to sites visited by one, two,
and three monomers, respectively. Even though very few data
were explicitly shown in Ref. [36], it was claimed there that
the existence of the collapse transition in these models depends
sensitively on their details and on system dimension. In short,
for the RF model in three dimensions a rich phase diagram
[in space (B;,B8,)] was found, with coil and globule phases
separated by continuous and discontinuous transition lines
“which possibly meet at a multicritical point, possibly located
in the region of attractive interactions” [36]. Regarding the
universality class of the continuous transition line, Krawczyk
et al. said only that “It may be the case that it is of the same
type as ISAW collapse in three dimensions”, but no evidence
of this was presented. Interestingly, for the model RA in two
dimensions no evidence of a phase transition was found, but
only a smooth crossover. Furthermore, it was concluded in
Ref. [36] that models RA in three dimensions and RF in two
dimensions display similar thermodynamic behavior, with a
collapse transition existing in the region of 8; < 0 (whose
order was not explicitly stated), but with inconclusive results
for the rest of the parameter space.

In contrast with these numerical results, the same thermo-
dynamic behavior has been found for RA and RF models in
exact solutions of them on hierarchical (Bethe and Husimi)
lattices [42,43]. In such solutions, coil and globule phases are
always separated by lines of continuous transitions, being a
tricritical line in the region of 8, < 0 (with 8; > 0) and a line
of critical end points (CEPs) for 8; < 0 (with 8, > 0), both
meeting at a multicritical point [43]. As an aside, note that
the region 8; > 0 and B, < 0 is somewhat related to the field
theory by des Cloizeaux and Duplantier [44,45] considering
attractive (repulsive) two- (three-) body interactions. Since
the hierarchical lattices are mean-field approximations for the
models on regular ones, they yield classical critical exponents,
and so they do not provide the universality class of the
transitions. Moreover, it is not possible to analyze the effect
of dimensionality on the behavior of the models, because
these lattices have infinite dimension. Even so, the results in
Refs. [42,43] strongly suggest that the collapse transitions in
MMS models (1) are not dependent on their details and (2) are
always continuous.

In order to resolve these controversies about these MMS
models, we investigate them here through extensive Monte
Carlo simulations (for walks’ lengths 10 times larger than
those studied in Ref. [36]) on the square and simple cubic
lattices. From the analysis of scaling exponents, as well as of
the second virial coefficient, we find strong evidence that RA
and RF models always have similar phase diagrams. In three
dimensions, they are featured by a ® line separating coil and
globule phases in the entire region of parameters analyzed.
In two dimensions, on the other hand, only a crossover is
observed (for both models).
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The rest of this work is organized as follows. In Sec. II we
define the model, give some details on the simulation method,
and define the main quantities calculated. The thermodynamic
behavior of the models on the cubic and square lattices is
presented in Secs. III and IV, respectively. In Sec. V we make
our final discussions and give our conclusions.

II. MODELS AND QUANTITIES OF INTEREST

We investigate the MMS model, also known as K -tolerant
walks, where each lattice site can be occupied by up to K
monomers. Following Krawczyk et al. [36], on-site interac-
tions are introduced by assigning energies &;_; to sites with i
monomers, with ¢;_; = 0 fori < 1. Thereby, walks composed
only by sites with a single monomer (i.e., ordinary SAWs) have
a null energy here. Hence, the energy of a given configuration
S, with N steps, reads

K
En(S)=—)_ Mi(S)ei 1, ()
i=2

where M;(S) is the number of sites occupied by i monomers in
the walk S. Here we will restrict ourselves to cases with K < 3,
so that En(S) = —M»(S)e; — M3(S)e,. Two versions of the
MMS model will be considered, according to the possibility
of immediate reversals of the walks:

(1) For reversals allowed (RA), a walk can visit a site j,
then one of its NNs k, and immediately return to j.

(2) For reversals forbidden (RF), a sequence of the type
j-k-j cannot occur in the walks.

Note that each lattice edge can have up to 2K — 1 bonds in
the RA model and K bonds in the RF one, and so the ensemble
of walks (i.e., the number of allowed configurations for a given
K and N) is larger in the RA case. Following the notation
in Refs. [36,43], we define the parameters §; = ¢;/kgT and
B> =¢er/kpT, where kg is the Boltzmann’s constant and T
is the temperature. So, the canonical partition function of
a system with walks of N steps is Zy = Y ge E&/ksT =
ZS eM2(HBi+M3(S)p2

To obtain an estimative of Zy and other relevant quantities
one uses the pruned enriched Rosenbluth method (PERM)
[46], which is a powerful Monte Carlo method to sample long
polymers chains, as well as various other systems [47]. We
analyze here walks with up to N = 10000 steps, with up to
10% (and at least 10°) samples in the statistics for each set of
parameters (81, ,). For detailed descriptions of the method
see, e.g., Refs. [47,48]. Here we recall only that PERM is
based on the classical Rosenbluth-Rosenbluth method [49],
where walks are grown in a biased way by trying to insert new
monomers at available NN sites at their ends. Note that while
available means empty sites in SAWSs, in the MMS models
it means sites occupied by i < K monomers. To correct the
statistics, a weight Wy (S) is associated with each generated
walk. A simple way to do this is as follows. If /, is the
number of available NN sites at the step n — 1, the jth of
these sites is chosen with probability p; = 1/1,, and a “local”
weight w” = I,e~Ei/kT is associated to step n. Thence, the
Rosenbluth weight of a configuration S with N steps is given

by Wy(S) = ]_[,1:’:1 wflj”) . Note that when a walk becomes
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trapped, so that [, = 0, it will have Wy = 0. Thereby, if L
and Iy denote respectively the numbers of walks started and
walks successfully generated (with N monomers), the partition
function of the system will be given by Zy =~ Zle W(S)/ Iy,
and so the expected value of an observable Ay is obtained
from (Ay) = 1 ASHW(S;)/ Sk, W(S;). In the PERM
algorithm, everything proceeds as above, but at each stage of
the growth of a walk it can be either duplicated (whenever its
weight becomes larger than a parameter 7;,) or pruned (if its
weight is smaller than a parameter ¢,). We set T,, /¢, = 10 [46]
in our simulations.

By keeping 8; fixed (with j = 1 or 2) and varying ; (with
i =2 or 1, respectively), the average end-to-end distance Ry
(and similarly the radius of gyration) of a chain with N steps
is expected to scale near the criticality as [2,6]

(RY) ~ N* f(;N?), )

where v, and ¢, are the tricritical metric and crossover
exponents, respectively, 7, = |8; — Bi.el, and f(x)is a scaling
function, expected to behave as [50-52]

x(ZVSAW*ZVr)/%’ if x — oo,

if x=0, 3)

if x —> —oo.

const,
|x |(2/d—2v,)/¢, ,

fx)~

Therefore, for fixed (81, 82), one must have (R3,) ~ N?’, with
exponents v = vgaw in the coil phase, v = v, at the ® point
and v = 1/d in the globule phase. Hence, by calculating
metric exponents from a In (R]z\,) x In N scale for different
B; and lengths N, they are expected to have the same value
at the ® point, so that curves of v(B;) x B; for different
N should intersect each other at (8;.¢,v,). Similarly, curves
of rescaled end-to-end distance (R]z\,) /N? versus B;, for
different N, are expected to intersect at a single point, the
® point, provided that the correct exponent v, is used. In three
dimensions, the tricritical exponents are believed to assume
the mean-field values v, = ¢; = 1/2 [2,5]. In two dimensions,
the DS exponents have the values vt(DS) =4/7and qb,(DS) =3/7
[16], while the metric exponent for the BN tricritical point is
v BV = 12/23 [18].

From Eq. (2), the derivative Ry, = d1In(R})/97; is ex-
pected to scale, at the ® point, as

Ry ~ N*, )

so that the exponent ¢, can be estimated from plots of
InRy, xInN (at the ® point). We calculate R} numeri-
cally here from R}, = [In (R%V)(ﬂ,-,@ + A;)—In (Rlz\,)(ﬂi,@ —
A;)]/2A; and robust values were found for different A; (< 1)
and fori =1 or 2.

For B; > Bi e, the partition function of the system is
expected to scale as

Zy ~ pVNYT )

where p is the connectivity coefficient and y is the entropic
exponent, which can be calculated from the expression
2Zon/(ZyuN) =27. At the © point, y; = 1 in three dimen-
sions, while in two dimensions it is known that yz(Ds) =8/7
[16] and BN = 53/46 [18].
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Since at the ® point the polymer chains should display
an ideal behavior in three dimensions, in an expansion of the
osmotic pressure I for low monomer concentration p, namely,
I1/RT = p/N + Ayp> + O(p?), the second virial coefficient
A, shall vanish at the ® point (when N — o00). Indeed,
Ar(B1,B2,N — 00) =0 is the simplest and more physical
definition of the ® point (B e,02.0) [3]. For finite walks,
one has A, = 0 at the Boyle temperature 7*(N) [a “Boyle
parameter” B7(N) in our case] and then [9,53]

Bi(N) — Bio = bN '/, (6)
The second virial coefficient can be calculated as
ZC
Ay = ——N | 7
2T TNz @

where Zf, is the partition function relative to two chains
[3]. To calculate it, we follow the same procedure done in
Refs. [9,53], namely, a pair of walks (say, 1 and 2, for the
same parameters B and $, and length N) are independently
generated and then placed together on the lattice with origins
at positions O; and O,. While O is kept fixed, O, is variated
in the neighborhood of chain 1, assuming all positions that
yield a superposition of the two chains. For each of these
positions, we determine the points where walks 1 and 2 cross
each other. Note that the superposition constraint implies that
they will cross at least in one point. If one of these crossing
points has four or more monomers, we will say that the chains
(for that O,) are “overlapped” in MMS models with K =3
and then the counter of “overlappings” Co is appropriately
increased. Otherwise, we determine how many of the crossing
sites have two and three monomers and increase their counters
(C, and Cj, respectively) according. After generating a very
large number (at least 10°) of pairs of walks and varying
O, for each one of them, accurate estimates of (Cp), (C>),
and (C3) are obtained, from which A, is calculated following
Ref. [53]. Note that when a crossing site has two monomers
their interaction is simply S, but if it has three monomers the
net two-chain interaction will be given by 8, — ;.

III. RESULTS FOR THE CUBIC LATTICE

In this section results from simulations of the RA and RF
models on the simple cubic lattice are presented.

A. K=2

First, we analyze the simplest MMS models where each
lattice site can be visited by at most two monomers, so that
each lattice edge can have at most three and two bonds in the
RA and RF models, respectively. Figures 1(a) and 1(b) show
curves of (RIZ\,) /N2 x B for different chain lengths, with
v; = 1/2, for both models. As already noticed, these curves
are expected to intersect each other at the ® point, if it exists.
This is indeed the case in Fig. 1, where the intersections occur
in a very narrow region of g, from which we estimate the
® points By = 0.960(15) for RA and B ¢ = 0.259(9) for
RF model. (The numbers in parentheses are the uncertainties.)
Very similar values for the ® points are obtained from the
intersections of curves of v exponents against 8 for different
N (not shown). In this case, beyond B g, the intersections give
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FIG. 1. Rescaled average squared end-to-end distance (R?)/N
against B; for (a) RA and (b) RF models in three dimensions with
K = 2. In both panels, the insertions show the extrapolation of S}
to N — oo, where the solid lines are linear fits of the data for the
largest chain lengths, and the dashed lines show the central values of
Bi1.e estimated from the intersections in the main plots.

also estimatives of v;, being v, = 0.51(1) for both RA and RF
models, in striking agreement with the ® class.

A final confirmation of the existence of the ® points
is obtained from the second virial coefficient A,, whose
curves (not shown) against f;, for a given N, cross the
zero at a parameter Sj(N). Extrapolations of B(N) for
N — oo are displayed in the insertions of Figs. 1(a) and
1(b). The linear behaviors observed confirm the reliability of
scaling relation (6) and allow us to estimate ;¢ = 0.955(8)
for the RA and B = 0.257(1) for the RF model. It is
noteworthy that such values, very close to those found from
the intersections of (R?)/N?" x B; and v x B, curves, were
obtained from extrapolations of data for chains of lengths
up N = 200. This indicates that, for these models, possible
finite-size corrections to scaling relation (6) are negligible;
namely, by assuming B/ (N) — Bie = bN~'2[1 + a N~ +
ayN~% +...], one has a; N~% =~ 0 even for small L.

At first glance, it seems that immediate reversals of the
walks could facilitate the formation of globular configurations,
and then the collapse transition would happen at a smaller
parameter B, g in the RA model than in the RF one. However,
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the tricritical points found [ﬂ{Rg )~ 4/3;?@};)] demonstrate an

opposite behavior. In fact, as already noticed in Ref. [43], in
the RA model walks with a large number of double visited sites
are not necessarily collapsed, since they can be formed mostly
by sites (say, j) visited twice in a sequence j — k — j, with k
being a NN of j. Such sequences, which are obviously absent
in RF walks, hinder the formation of globular configurations,
due to the larger number of double visited sites created along
the RA walks. Namely, these sites give rise to a large effective
self-avoidance in the RA model and, consequently, a large

Bi.e.

B. K=3

Now we investigate the more general models where each
site can be visited by at most three monomers, so that
each lattice edge can have at most five bonds in the RA
and three bonds in the RF model. Once one has to deal
with two thermodynamic parameters (8; and f,), the critical
properties are determined (following the same lines from the
previous subsection) by keeping B, fixed and varying f;,
with {i,j} = {1,2} or {2,1}. For the entire set of parameters
analyzed, continuous coil-globule transitions consistent with
the ® class were found; namely, curves of (RIZV) /N v B; for
several chain lengths N intersect each other at approximately
the same f; [similarly to Figs. 1(a) and 1(b)], when one
sets v, = 1/2. Once again, the coordinates of the ® points
(B1,0,P2.0) obtained from these intersections agree, within
the error bars, with those from v x §; curves. An example
of such curves is shown in Fig. 2(a), for the RF model with
fixed 1 = —0.20. Similar data are obtained for other values
of fixed B; (with j =1 or 2) for both RA and RF models
around the transition points. From the intersections of these
curves the tricritical metric exponent v, is estimated, whose
values are depicted in Fig. 2(b) as a function of the ratio
R = B2.6/P1.e- The excellent agreement of these exponents
with the mean-field value (v; = 1/2) strongly suggests that
the coil and globule phases are separated by lines of ® points
(® lines), in both RA and RF models, in the broad range of
parameters analyzed.

Along the transition lines, the crossover exponents ¢, are
estimated from derivatives of In (RIZV), following Eq. (4). Such
exponents are displayed in the insertion of Fig. 2(b) as a
function of the ratio R. In contrast with v,, the central values of
¢, agree well with the ©® value (¢, = 1/2) only for R > 0, pre-
senting larger fluctuations for R < 0. One possible explanation
for this are the larger uncertainties in the loci of the ® points
in the regions of repulsive interactions (see Fig. 4 below).
Moreover, since we are neglecting logarithmic corrections
when estimating the exponents, some small deviations can
be expected. Anyhow, the ¢, exponents are always close to
1/2 and far from 1, discarding the possibility of discontinuous
coil-globule transitions in the MMS models.

At each tricritical point, curves (for different N) of the
entropic exponents y as function of the connectivity coefficient
u are expected to intersect at a single point, from which the
tricritical exponent y; is estimated, as well as the value of
the connectivity u,. Figure 3(a) shows an example of this
kind of plot, where indeed one observes the expected behavior
(similar plots are found along the entire transition lines). The
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FIG. 2. (a) Exponent v against 3, for fixed §; = —0.2 in the RF
model in three dimensions. The vertical (dotted blue) line indicates
the value of B, where the probability distribution of sites with
three monomers seems to have two peaks (see Fig. 5). (b) Metric
v, (main plot) and crossover ¢, (inset) exponents versus the ratio
R = B2.0/PB1.0, for RA (blue triangles) and RF (black circles) models
in three dimensions, calculated along the ® lines (see Fig. 4). The
horizontal (dashed, red) lines indicate the ® class exponents, and
open (full) symbols are data for B;.¢ > 0 (81,0 < 0).

values of y, obtained from these intersections are depicted in
Fig. 3(b) against the ratio R, where the variation of u,; with
Bi1.e and B, e is also shown. For both RA and RF models, the
exponents agree quite well with the mean-field value y, = 1,
providing additional confirmation of the ® universality class
of the transitions.

The values of u at the coil-globule transition are larger in
the RA model than in the RF one, as expected. Interestingly,
while u, is always smaller than the lattice coordination (g = 6)
in the RF model, for the RA model it becomes larger than
q, and saturates at u, ~ 7 for large B, 9 < 0. We note that
s > q have also been observed in a generalized ISAW model
with competing NN and next-NN interactions [15]. For large
negative 3 @, the saturation value for the RF model is u, ~
5.08, which is intriguingly close to the ® point value for the
ISAW model: V) ~ 5.04 [15,51].

Figures 4(a) and 4(b) display the phase diagrams for the
RA and RF models, respectively. In both models, the ® lines
for negative B, converge to asymptotic values corresponding
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FIG. 3. (a) Exponent y versus the connectivity coefficient u
calculated at the ® point (8;.e,52.0) = (—0.2,0.55) for the RF model
in three dimensions. (b) Tricritical entropic exponent y, against the
ratio R = B,.0/PB1.e for RA (blue triangles) and RF (black circles)
models in three dimensions. In both panels, the horizontal (dashed
red) line indicates the ® exponent ¥, = 1. In panel (b), open (full)
symbols are data for 816 > 0 (B1.¢ < 0), and the insertions display
the connectivity constants u, as functions of B, ¢ (left) and B, e
(right) for both RA and RF models in three dimensions.

to those of the K = 2 models, which is expected since the
MMS models with K = 2 correspond to the limit 8, — —o0
of the K = 3 case. This strongly suggests that both ® lines
will extend to B, ¢ — —o0.

The ® lines seem also approach asymptotic limits for large
negative B,. However, with PERM and other standard Monte
Carlo methods to generate polymer chains, it is not possible
to demonstrate this by sampling the limiting case 8; — —oo,
where sites with two monomers (dimers) are forbidden while
sites with three monomers (trimers) are allowed. The reason
is obviously that to achieve a conformation with trimers the
walk should first pass through (forbidden) configurations with
dimers. Indeed, we observe that the more negative §; becomes,
the larger are the fluctuations in the data and more samples
are needed to yield reliable results for the transition. This
problem, which is worse in the RF model, has limited our
analysis to 8; 2 —1 in the RA and B; 2 —1/2 in the RF
model. This is certainly related to the difficult of sampling
characteristic conformations of large 8; < 0 (and 8, > 0)—
i.e, with high (low) density of trimers (dimers)—with chain-
growing methods.
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FIG. 4. Phase diagrams for (a) RA and (b) RF models in
three dimensions with K = 3. In both panels, circles (blue) and
triangles (red) are the tricritical points obtained, respectively, from the
intersections of (R2,)/ N curves and from the second virial coefficient.
The dashed vertical lines (black) indicate the values of 8; ¢ for the
case K = 2. A comparison between the ® lines for RA and RF models
is shown in the insert in (b).

The insert in Fig. 4(b) shows a comparison of the ® lines for
RA and RF models. For 81 ¢ 2 —0.45 the coordinates of the
O points for the RA model are always larger than those for the
RF one, showing that the coil-globule transition is facilitated
when immediate reversals of the walks are forbidden, as
already discussed. For B¢ S —0.45, notwithstanding, an
inverse situation seems to arise, with B, ¢ becoming larger
for the RF model. Though with our data we can only infer
this, one see that such a scenario has indeed been found
in the mean-field solutions of these models on the Bethe
lattice [43]. For instance, for a Bethe lattice with coordination
q = 6, the tricritical line in the limit 8, — —oo for RA (RF)
model is located at 8y ~ 0.53 (8; = 0), while the line of
critical end points in the limit of 8; — —oo is at §, =~ 0.86
(B2 &~ 1.13) [43]. In fact, for large B; < O, the creation of
dimers is quite difficult, and, since the immediate reversals of
the walks contribute to this, the collapse transition turns out to
be facilitated in the RA model.
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FIG. 5. Probability distributions of the number of sites visited by
three monomers, for the RF model in three dimensions with fixed
B1 = —0.2 and several values of .

Figures 4(a) and 4(b) also show the ® lines obtained from
extrapolation of the zero points of the second virial coefficient
Aj,. In general, the agreement between these curves and the
ones obtained from the intersections in rescaled data is quite
good, giving a final and undoubted confirmation that the
coil-globule transitions in the MMS models are continuous
and belong to the ® class. One notices that in the RA model
strong fluctuations arises in A, for large f, < 0, preventing
a reliable estimate of the ® points, whereas the RF model
presents a smooth behavior in such region. In opposition, for
large B; < 0, one observes that corrections to scaling (6) are
more severe in the RF model. Indeed, in this region the ®
points estimated from A, are systematically smaller than those
from the intersections in the RF case. These problems are
possibly due to the small walks’ lengths considered to calculate
A, (N = 200), as opposed to N = 10000 used in the other
analyses. Unfortunately the numerical procedure to obtain A,
is very demanding computationally, and thus investigating this
quantity for long walks is very hard.

At this point, we note that these problems with A, are,
in some sense, consistent with previous MC results for the
MMS models [36]. For instance, for the RA model in the
region of negative f,, Krawczyk er al. [36] were not able
to determine whether a coil-globule transition exists or not.
Moreover, for 8; < 0, they suggest that the transition in the
RF model is discontinuous, which could be explained by the
strong finite-size corrections found here (in the continuous
transition). Actually, the conclusion that a first-order transition
exists for B; < 0 was also based on probability distributions
with a “weak bimodality” in Ref. [36]. Indeed, we found
evidence of a very weak bimodality in the distributions for
the number of sites with trimers [P(M3)] (as well as with
dimers and monomers) in the RF model with 8; < 0. An
example of this is shown in Fig. 5 for fixed §; = —0.2, where
only pronounced ‘“‘shoulders” are seem in the distributions,
rather than two well-defined peaks. It is noteworthy that such
“shoulders” appear only in a very tiny range of parameters,
for example, 0.585 < B, < 0.595 in Fig. 5 (see also Fig. 4
in Ref. [36]). Moreover, we do not find any evidence of a
building up of bimodality as the polymer length increases,
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indicating that these “shoulders” are not related to a true
phase coexistence. We notice that if a coexistence line would
exist here, it would be very close to the ® line. For instance,
for f; = —0.2 one has B, ¢ = 0.550(3) and the coexistence
would be at 8, . ~ 0.58 [see Fig. 2(a)], and the same would
happen for other parameters. We remark that a coil-globule
transition very close to a first-order “globule-crystal” transition
has been reported for the bond fluctuation model for finite
flexible chains [54-57]. However, the rise of a stable ordered
(crystalline) phase in the MMS models, without the addition
of any local chain stiffness on them, seems quite unexpected.
In fact, no evidence of the existence of a third phase in
the canonical phase diagrams was found here or elsewhere
[36,42,43].

IV. RESULTS FOR THE SQUARE LATTICE

Now we turn to the analysis of the MMS models on the
square lattice.

Once again, the same thermodynamic behavior is observed
in the RA and RF models. In contrast to the 3D case, however,
here we do not find a coil-globule transition. Instead, a smooth
crossover seems to exist between these phases. Evidence of
this is obtained from the variation of the v exponents with
Bi, for a fixed B;, whose curves for different lengths do not
intersect at any point. Examples of this behavior are shown in
Figs. 6(a) and 6(b) for the RA and RF models, respectively,
and similar results are found for a broad range of parameters
analyzed: —1 < B; < land —1 < B, < 1, as well as the limit
B, — —oo (the K =2 case). The absence of intersections,
and consequently of a ® behavior, is also observed in plots of
(RIZ\,)/NZW if one assumes that v, = vpg = 4/7 or v, = vgN =
12/23.

This result for the RA model agrees, for the first time in
this work, with the findings by Krawczyk et al. [36]. For
the RF model, however, it was claimed in Ref. [36] that a
coil-globule transition exists for 8; < 0, while our analysis
strongly suggests that it is absent also in this case, at least for
B Z —L

V. FINAL DISCUSSIONS AND CONCLUSIONS

We have presented an extensive numerical analysis of the
polymer models by Krawczyk et al. [36], where lattice sites can
be visited by up to K = 3 monomers, and Boltzmann weights
wo = 1,w; = P, and w, = e are associated, respectively, to
sites occupied by one, two, and three monomers. In these MMS
models the maximal number of bonds per lattice edge (V;) can
be larger than one and depends on whether immediate reversals
of the walks are allowed (RA model, where N, = 2K — 1) or
forbidden (RF model, where N, = K). This is akey distinction
between these systems and other classical lattice models used
to investigate the polymer collapse transition, such as ISAW,
ISAT, and VISAW, where N, = 1. Obviously, systems with
N, > 1 have an ensemble of walks much closer to simple
random walks than those with N, = 1. Moreover, N, > 1
turns the lattice system highly nonplanar in two dimensions,
which could explain the absence of a coil-globule transition
in the MMS models on the square lattice, as observed here
for both RA and RF models and also previously for the RA

PHYSICAL REVIEW E 96, 062111 (2017)
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FIG. 6. Metric exponents v against 8, for (a) RA and (b) RF
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is fixed at §; = 0in(a) and B; = —0.20in (b). The dashed and dotted

horizontal lines indicate the exponents expected for the Duplantier-
Saleur (DS) and Blote-Nienhuis (BN) universality classes.

one [36]. However, the effect of the lattice coordination ¢ can
also be playing an important role at this point, so that further
numerical investigations of these models on other lattices (e.g.,
the triangular one) are worthy. Moreover, we believe that these
results will motivate the development of field theories mapping
on walks on 2D lattices with multiple bonds per edge, in order
to verify whether this can yield a breakdown of the collapse
transition.

In the simple cubic lattice, we have found strong evidence
that coil and globule phases are always separated by a ®
line, in both the RA and RF models, as confirmed by several
scaling exponents and extrapolations of the zeros (8;) from
the second virial coefficient (A;). This scenario is different
from that suggested in previous simulations of these models
[36], with continuous (discontinuous) transitions in the region
of B, <0 (B; < 0) in the RF model, while in the RA one
for B, < 0 those authors were not able to decide between
a transition or a simple crossover. Indeed, our data for A,
(for N < 200) deep inside the region of 8, < 0 in the RA
model present strong fluctuations, which prevent us from
performing reliable extrapolations of 8. This suggests that
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for this model (and region) short walks do not present the
equilibrium conformations expected for this parameter set.
This seems to be confirmed by the fact that for long walks our
results (for other quantities) in the same model (and region)
are well behaved. In the RF model with 8; < 0, rather than
large fluctuations in B, strong corrections to scaling relation
(6) are found, in a way that large effective crossover exponents
are observed for very short chains. This may explain the strong
buildup of fluctuations (in the number of sites with trimers)
reported in Ref. [36]. All these results point to the fact that
the difficulty in determining the existence of the transitions,
as well as the first-order one claimed in Ref. [36], can be
a consequence of the not so large chain lengths investigated
there.

Finally, we notice that in some respect the ® lines in
the RA and RF models in three dimensions are consistent
with the behavior of these models on the Bethe lattice.

PHYSICAL REVIEW E 96, 062111 (2017)

Even though for B; < O the tricritical lines give way to
CEP lines in such lattice, it is pretty possible that in such
mean-field approaches the order of the coil-globule transition
is being underestimated (from tricritical to CEP). To further
confirm this, it would be worthwhile developing methods for
investigating the interesting limit §; — —oo, where dimers
are forbidden and trimers are allowed in the walks, since
with known methods it does not seem possible to study this
case.
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