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Mechanisms of cooperation and competition of two-species transport in narrow nanochannels
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Flow of particles of two different species through a narrow channel with solely two discrete spatial positions is
analyzed with respect to the species’ capability to cooperate or compete for transport. The origin of the latter arises
from particle-channel and interparticle interactions within the channel, i.e., blocking the position of a particle, and
its interaction with its neighbors in the channel. The variety of occupation options within the channel defines the
state space. The transition dynamics within is considered as a continuous Markov process, which, in contrast to
mean-field approaches, conserves explicitly spatial correlations. A strong repulsive interaction between particles
of the same kind and a very attractive empty channel imply a strong entanglement of transport of both species. In
the limiting case of perfect coupling, flows in state space are restricted to a cyclic subspace, where they become all
equivalent in the steady state. In particular, this implies equal particle flows of the two species. Entanglement of
transport implies that the species mutually exert entropic forces on each other. For parallel directed concentration
gradients this implies that the species’ ability to cooperate increases with the degree of entanglement. Thus,
the gradient of one species reciprocally induces a higher flow of the other species when compared to that in
its absence. The opposite holds for antiparallel gradients where species mutually hamper their transport. For a
sufficient strong coupling, the species under the influence of the stronger concentration gradient drives the other
against its gradient, i.e., the positive mixing entropy production of the driving species becomes the motor for the
negative mixing entropy production of the driven one. The degree of effectiveness by which negative entropy
production emerges at the cost of positive entropy production increases with the coupling strength. This becomes
evident from location and connectivity of the sources of entropy production in state space.

DOI: 10.1103/PhysRevE.96.062109

I. INTRODUCTION

Transport of particles through channels and its regulation
is of paramount importance in biological systems as well
as in applications in nanotechnology [1,2]. Besides this, the
conceptual framework describing channel transport may be
easily extended also to describe nonspatial “transport,” e.g.,
along the reaction coordinate of enzymatic reactions.

The transport itself depends on thermodynamic forces, e.g.,
concentration gradients between the domains connected by the
channel, electrical drift forces as well as on particle-channel,
and interparticle interactions. In this context, mixed-species
transport is of particular interest as the species may mutually
affect each others’ translocation dynamics inside the channel.
Based on a 1D exclusion model [3], Chou [4,5], and Lohse
[5] studied solvent-solute transport in a narrow channel
connecting baths with different concentrations of the solute.
This corresponds to transport of two species, with antiparallel
directed concentration gradients, the latter obtained from the
respective molar fractions of solute and solvent. The mutual
effect on flow varied with the channel-particle binding strength
and elongation of the channel, e.g., the latter increased the
capability, that one species drives the other against its concen-
tration gradient [4,5]. An intriguing question of mixed-species
transport is as follows: under which circumstances do parti-
cles of different species with parallel directed concentration
gradients cooperate, mutually, at the cost of its own species,
promote the other one; or solely compete for transport. This
sophisticated behavior was recently shown by us in a simple
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Markovian model of channel transport [6], which, in contrast to
mean-field models, explicitly conserved spatial correlations of
interparticle interactions and was numerically exactly solvable.
We could demonstrate that the capability for cooperation of
the two species increases with the length of the channel.

The origin of the mutual effect of each species on the
flow of the other is the interparticle interaction between the
species. Due to concentration gradients, the probability of
such interactions is distributed asymmetrically within the
channel. From this asymmetry, entropic forces emerge which
act on particles of one species in the direction of the others
concentration gradient. However, interparticle interaction and
its implications on flow is janiform. On the one hand, they are
the sources of entropic forces by which the species mutually
interact, e.g., drive each other. On the other hand, these
interparticle interactions hamper flow of either species as a
particle blocks its spatial position and thereby its access by
other particles.

The yet-unsolved question is as follows: how do the
sometimes opposing effects of interparticle interactions and
their perhaps complex arrangement affect the coupling of
transport of two species? Is there a strategy for choosing
interparticle and particle-channel interactions to achieve an
optimum coupling? This will be addressed in this paper.
Optimum coupling would imply that the thermodynamic
driving forces of the species, i.e., the concentration gradient
related differences of chemical potentials, would add in their
effect on flow of either species. Hence, it is suggestive that an
optimum coupling should make the thermodynamic driving
forces act in series. The way towards this scenario is made
evident in state space, and the transition dynamics, reflected
by flows, within. As the approach must hold for the shortest
channel which allows interparticle interaction inside, we focus
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FIG. 1. The nine-dimensional state space � = {σ |σ = (σ2,σ1), σi = 0,A,B}, with transition rates between states. Right: A sketch of the
channel connecting the two baths.

on the minimalist model of a discrete channel with solely two
spatial positions inside.

The paper is structured as follows: First, an outline of
the model is given, in which we introduce its state space,
the Markovian transition dynamics between the states, and
the implications for occupation probability and particle flow
in the steady state. In the third section we identify which
transitions in state space a stochastic path must contain, that
it realizes particle transport between the baths. An optimum
coupling of transport of the two species implies that these
paths must visit certain states and avoid others. This defines
the inter- and intraspecies interactions to achieve this optimum
coupling. On the way towards optimum coupling of transport,
its quality is studied. For parallel-directed concentration
gradients, this quality implies the capability of the two species
to cooperate, to profit at the cost of the other, or solely to
compete for transport. In this context, cooperation means
that transport of any species profits from the existence of
the other’s concentration gradient, whereas sole competition
denotes the opposite. Profit at the cost of the other implies that
transport of one species is enhanced by the other’s gradient,
whereas its own gradient hampers flow of the other. In the
fourth section it is shown how mixing entropy production of
the species is related to its sources, i.e., entropy production
related to transitions in state space. This is analyzed as a
function of the coupling strength, which measures the degree
of entanglement of both transport processes.

II. THE MODEL

Our channel model was recently described in detail [6].
Briefly, the channel connects two baths (1 and 2) with particles
of two species X = A, B with respective concentrations,
c

(X)
1 , c

(X)
2 , inside. Our minimalist model shall only allow two

spatial positions for particles inside the channel, each of which
may at most be occupied by only one particle. This implies that
any particle transition to a position in the channel demands its
vacancy. A channel state is completely described by the state
variable σ = (σ2, σ1), where the values of σi indicate whether
the position i is empty (σi = 0) or occupied by a particle
of species A (σi = A) or B (σi = B). These states form a
32 = 9-dimensional state space � (see Fig. 1).

For simplicity the particle-channel interactions is consid-
ered to be homogeneous, i.e., its profile inside the channel
is flat. This implies that the transition rates between the two
positions are equal, i.e., r(X,0)→(0,X) = r(X,0)←(0,X). In addition,
we assume the rates to be the same for the two species. This
rate r , which is a measure of the particles mobility in the
channel, shall define the time constant τ = r−1, to which we
normalized all temporal parameters, i.e.,

τ = r−1 = 1. (1)

Further, we assume symmetric exchange dynamics of particles
at the channel ends with the respective baths. This, and the
flat particle-channel interaction profile, imply that particle
transport is merely driven by concentration gradients and
not by any energetic potential differences between the baths.
Hence, the free-energy gain of particles, when passing from
the bath with higher particle concentration (e.g., bath 1) to that
with the lower one, is determined from the difference of the
chemical potentials as [7]

�μ(X) = ln
(
c

(X)
1 /c

(X)
2

)
. (2)

Transitions from and to a bath are restricted to respective
adjacent channel positions. If we had solely the blocking
interparticle interaction, then the transition rate describing
the access dynamics from the bath to a vacant channel
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position would be proportional to some rate constant k+
times the particle concentration in the respective bath. In
contrast, particles would leave such a position toward the
adjacent bath with a rate k−, where the potential difference
�� = − ln(k+/k−) describes the binding strength the channel
exerts on the particle [8]. The access of particles from the bath
solely requires an empty adjacent channel position and would
be independent from the occupation state of the nonadjacent
site. However, we now want to consider a more sophisticated
interparticle interaction than simple blocking. This can be
realized by energetic differences, influencing the bath-channel
exchange dynamics, which depend on the occupation state
of the nonadjacent channel site. So we introduce an energetic
difference, which a particle has to pass on its way from the bath
to a vacant spatial position if the channel is already occupied
by a particle of the same species X. This, for example, holds
for a transition (0A) → (AA). If EAA > 0, then this energetic
barrier acts as a repulsive interaction between particles of the
same species. The corresponding rates for transitions, i.e., in
this case at the left side of the channel, then become [9]

r(0X)→(XX) = k+ e−EXX/2 c
(X)
2 ,

(3)
r(XX)→(0X) = k− eEXX/2.

The same holds symmetrically for right side of the channel.
Bath-channel transitions of particles which enter a channel
occupied by a particle of a different species shall solely be
described by the rate constants k+, k−. We also introduce an
energy difference E00 describing the affinity of the empty
channel (σ = (00)) to absorb a particle, i.e., this energy is
gained when a particle enters an empty channel. These rates
are [9]

r(0,0)→one particle in channel = k+ eE00/2 cX,
(4)

roneparticleinchannel→(0,0) = k− e−E00/2.

This affinity of the empty channel is assumed to be identical
for the two species.

Transition dynamics on the state space is that of a
continuous stationary Markov process. The evolution of
the probabilities P = (Pσ (t))σ∈� to find the channel in the
respective states is then determined by a master equation,

d

dt
P(t) = � P(t), (5)

with the 3 × 3 matrix � = (λσ ,ς ) containing the transition
rates λσ ,ς = λσ←ς from channel states ς to σ [10]. They are
given by Eqs. (1)–(4) and can be depicted from Fig. 1.

As the system must be in some state, conservation of
probability holds, i.e., d/dt

∑
σ Pσ = 0. This determines the

diagonal matrix elements of � as

λς ,ς = −
∑
σ∈�
σ �=ς

λσ ,ς . (6)

The transition rates between the states σ � ς define a free-
energy difference,

�εσ ,ς = − ln

(
λσ ,ς

λς ,σ

)
, (7)

which results either from energetic differences and/or that of
entropic forces related to particle exchange. This free-energy
differences acts as the driving force for the net flow of
probability between the respective states. They are given by

Jσ←ς = Jσ ,ς = λσ ,ςPς − λς ,σPσ . (8)

With Eq. (6), one can rewrite the master Eq. (5) in the form of
a continuity equation of probability,

d

dt
Pσ =

∑
ς∈�

Jσ ,ς . (9)

The latter describes that the change of probability to find the
system in state σ results from the probability net flows directed
to it from all other states ς .

When the concentration gradients between the baths vanish,
the stationary state of the system is that of thermodynamic
equilibrium for which detailed balance holds. Then, all flows
between the states in Eq. (8) cease, and the equilibrium
probabilities P (e), rates λ(e), and corresponding free-energy
differences �ε

(e)
σ ,ς fulfill the condition

P (e)
σ /P (e)

ς = λ(e)
σ ,ς/λ(e)

ς ,σ = e−�ε
(e)
σ ,ς . (10)

In this case, we can assign the states a potential

φσ = − ln
(
P (e)

σ

)
, (11)

i.e., the free-energy differences between states are that between
the corresponding potentials

�ε(e)
σ ,ς = φσ − φς . (12)

This implies that we have a conservative field of driving forces
in the state space, i.e., the free-energy difference along a path
[start = σ 1 · · · σN = end] in state space,

N∑
i=1

�ε(e)
σ i+1,σ i

= φend − φstart, (13)

solely depends on the start and end state of the path. In
particular, it vanishes for closed paths.

Nonvanishing concentration gradients of particles between
the baths imply a nonconservative field of driving forces on
state space, i.e., there exist closed paths in state space in which
free energy is gained related to particle transport between
the baths. For example, the closed path [0A − A0 − 00 −
(0A) · · ·] describes particle transport of species A from bath
1 to bath 2 for which we gain the free energy ln(c(A)

1 /c
(A)
2 ).

In the following, we want to restrict our study to stationary
nonequilibrium conditions, i.e., the system is in its steady state,
implying that the probability distribution P s remains constant
in time. Hence,

d

dt
P s(t) = � P s ≡ 0, (14)

holds, which, with Eq. (9), implies the conservation of flow
around any state σ (Kirchhoff’s cicuit laws)∑

ς∈�

Jσ ,ς = 0. (15)

Particle flow between the baths implies flow at the channel
ends. For example, flow of species A at the left channel end
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(see Fig. 1) results from transitions between the states (0,σ ) �
(A,σ ). Hence,

J (A) = J(0A),(AA) + J(00),(A0) + J(0,B),(AB). (16)

The conservation of flow in the steady state [see Eq. (15)] then
implies that this flow must equal to that within the channel,
J(A0),(0A) [note that J(A0),(0A) = −J(0A),(A0)], and that at the right
channel end J(AA),(A0) + J(0A),(00) + J(BA),(B0). The same holds
for species B. Hence, we obtain for particle flow between the
baths

J (A) = J(A0),(0A) and J (B) = J(B0),(0B). (17)

In the following we determine steady-state probabilities
from Eq. (14) numerically and from this the flows between the
states [Eq. (8)] and of particles through the channel [Eq. (17)].

III. COOPERATION AND COMPETITION

Within the state space our system undergoes stochastic
transitions according to the master Eq. (5). The net ther-
modynamic driving forces for particle transport across the
channel are the concentration gradients of particles between
the respective baths. A nonvanishing net particle transport of
species X (X = A, B), e.g., from bath 1 to bath 2, requires
the repetitive visit of the states (0X) and (X0) [Eq. (17)].
So the stochastic path of successive states may be built up
from closed paths which contain the segment (0X)−(X0). The
entanglement of the species’ transport should mainly depend
on the options particles have to interact within the channel.
In order to realize this interaction, our minimalist channel
model with only two spatial positions inside offers solely two
states, (AB) and (BA). Hence, interparticle interactions and
particle channel interactions which favor visits to these states,
or, vice versa, which hamper access to states that are not
involved in paths leading to these two states, should favor
cooperation or competition. So, entanglement of different
species’ transport is realized on closed paths which contain
the segments (0A)−(A0) and (0B)−(B0) as well as the states
(AB) and (BA). However, cooperation and competition do
not merely depend on the presence of states in which different
species coexist in the channel. Instead, being in these states,
the species must mutually exert some force on each other.
Here, it is an entropic force which results from the left-right
bias of occupation inside the channel, which itself results from
the concentration gradients.

For simplicity, from now on in this paper, we set the
affinity of the empty channel E00 to attract any particle
and the repulsive interaction energies EAA, EBB , impeding
occupation of the channel by particles of the same species,
equal and define this new energetic quantity

�E = E00 = EAA = EBB (18)

as the coupling strength with which transport of the two
species are entangled. Obviously, a high coupling strength
favors transition to channel states occupied by a single particle
of any species inside as well as to states occupied by different
species. According to the previous paragraph, the first are a
prerequisite for transport and the second for interaction of
both species. The significance of this will become evident in
the following.

FIG. 2. Flows and occupation probabilities in state space. Dif-
ferent energetic levels of the empty channel state and channel states
occupied by two particles of the same species are considered. For
simplicity, all are set equal to �E = E00 = EAA = EBB , i.e., the
coupling strength quantifying entanglement of transport of the two
species [see Eq. (18)]; �E = 0 (a), �E = 7 (b), and �E = 15 (c).
Values for probabilities are color coded (see bar). So are flow values,
which were normalized to that with the maximum magnitude. In
addition, flow magnitude is coded by the thickness of the arrows,
which indicate the flow direction. Particle concentrations of species
A in the right (1)and left (2) bath are c

(A)
1 = 10 and c

(A)
2 = 0.1,

respectively. k
(A)
+ and k

(A)
− were set equal to 1. Concentrations of

B were set equal in both baths, and jump-in rates were chosen to be
k

(B)
+ c

(B)
i = e1 × 0.1, i = 1, 2 and jump-out k

(B)
− = e−1. This choice

of rates implied a moderate attractive particle-channel interaction
��(B) = − ln(k(B)

+ /k
(B)
− ) = −2 for species B compared with that of

A, ��(A) = − ln(k(A)
+ /k

(A)
− ) = 0. Note that with increasing �E, flow

is mainly present on the cyclic state space CS (yellow color) (19).

The second law of thermodynamics favors paths in which
free energy is gained. In the steady state this translates into
the direction and magnitude of stationary flows between states
[see Eq. (8)]. From this flow pattern one can infer which paths
are favored. In Fig. 2 a concentration gradient drives particles
of species A from bath 1 to bath 2. Concentration of species
B was chosen to be equal in both baths, i.e., transport of the
latter solely depends on its interaction with species A. For the
native set up, i.e., for a vanishing coupling strength, which
implies an indifferent affinity of the empty channel to attract
particles, nor a repulsive interaction impeding occupation by
particles of the same species, �E = E00 = EAA = EBB =
0, the most favored cyclic path is (0A) − (A0) − (AA) −
(0A) · · · [Fig. 2(a)]. On this path the free energy,

−(�ε(A0),(0A) + �ε(AA),(A0) + �ε(0A),(AA)) = ln

(
c

(A)
1

c
(A)
2

)

= �μ(A),
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FIG. 3. Particle flow of species A (dashed lines) and B (solid
lines) through the channel as a function of the concentration gradient
of A. Particle concentration in bath 1 is elevated and that in bath
2 is held constant (k(A)

+ c
(A)
2 = 0.1). Concentrations of B are equal

in both baths. These and the constants k+, k− for both species are
identical with that in Fig. 2. The interaction between the species,
i.e., entanglement of respective transports, is varied by the coupling
strength �E of Eq. (18). The gray line gives the flow J cs in the cyclic
state space CS (19) and is obtained from Eq. (21). Note that the flows
of A and B converge towards this flow with increasing �E.

is gained. Only a negligible fraction of flow passes through
the states (AB), (BA), and, hence, particle flow of B, which
according to Eq. (17) is identical with that from (0B) to
(B0), is only moderate [see Fig. 2(a) and the black solid
line in Fig. 3]. Figure 2 shows that with increasing coupling
strength �E, closed paths including the states (AB) and
(BA) become more favorable. As a result, the flow of the
driven species B increases, whereas that of the driving species
A decreases (Fig. 3). In the limiting case for extreme high
coupling (�E → ∞) visitations of states, and hence flow
between them, is reduced to those belonging to the cyclic
state space CS [Fig. 2(c)],

(0A) − (A0) − (AB) − (0B) − (B0) − (BA) − (0A)

−(0A) · · · . (19)

As this cyclic substate space has no branching, all flows
between connected states are equal in the steady state. In
particular, particle flows of species A and B are equal in this
limiting case, i.e.,

lim
�E→∞

J (A)(�E) = lim
�E→∞

J (B)(�E) = J cs, (20)

which is shown in Fig. 3. Here, with increasing �E, the flows
of both species converge towards J cs. In general, this steady-
state flow of a circular Markov process is obtained as (see
Appendix A)

J cs = 1 − e�U

τ+ + e�U τ− + R
(21)

with �U as the free-energy difference the system experiences
after one turn in the CS. It is obtained from the single free-
energy differences [Eq. (7)] between successive states σ i+1, σ i

in CS [see scheme (19)] as

�U =
5∑

i=1

εσ i+1,σ i
= − ln

[
c

(A)
1

c
(A)
2

]
− ln

[
c

(B)
1

c
(B)
2

]

= −�μ(A) − �μ(B), (22)

i.e., |�U | is the sum of the chemical potential differences
of both species. τ+ and τ− are the mean first passage times
one needs to pass one turn in the CS in the counterclock (+)
or clockwise (−) direction. The starting state may be chosen
arbitrarily [11]. R−1 is the conductivity of probability flow on
CS. For explicit determination of the stead-state flow in CS,
first passage times, and conductivity, see Appendix A.

In CS there is maximum entanglement of transport of
both species. The equivalence of flows of the two species
[Eq. (20)] implies that the thermodynamic driving force, i.e.,
the concentration gradient, of any species acts equally on
flow of both species. When the chemical potentials of both
species have the same sign, i.e., the concentration gradients
are parallel, they add synergistic to a greater driving force
[Eq. (22)]. In Appendix B we show that an increase of the
chemical potential of either species by raising its higher
concentration always increases flow on the CS. Hence we
have a perfect cooperation, as an increase of the concentration
gradient of either species increases equally flow of both. Note
that this is not as trivial as it may appear at a first glance.
Increasing the higher concentration of any species could
also imply that blocking reduces flow of the other species.
When concentration gradients are antiparallel directed, i.e.,
the corresponding chemical potentials have opposite signs,
reducing the magnitude of the whole driving force |�U |
reduces flow of either species until both cease for vanishing
�U .

The way towards this extreme coupling of transport of both
species and, hence, their capability to cooperate is shown
in Fig. 4 for parallel-directed concentration gradients. We
define cooperation when flow of either species mutually profits
from an existing parallel-directed concentration gradient of the
other, i.e.,

J (A)[�μ(A),�μ(B)] > J (A)[�μ(A),0]
(23)

J (B)[�μ(A),�μ(B)] > J (B)[0,�μ(B)].

Opposite competition at the cost of both implies that flow of
either species decreases in the presence of a parallel-directed
gradient of the other species when compared to a vanishing
gradient. Promotion of one species at the cost of the other,
e.g., B at the cost of A, is given when the parallel-directed
gradient of the latter induces a higher flow of B compared to
a vanishing gradient; however, flow of A is reduced by the
gradient of B,

J (B)[�μ(A),�μ(B)] > J (B)[0,�μ(B)]
(24)

J (A)[�μ(A),�μ(B)] < J (A)[�μ(A),0].

In contrast, we reverse the greater-than and less-than signs
when A is promoted at the cost of B. The phase diagrams in
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FIG. 4. Phase diagram showing cooperation, promotion, and competition of two-species particle transport as a function of their coupling
strength, quantified by �E [Eq. (18)]; �E = 0 (a), �E = 2 (b), �E = 3 (c), and �E = 4 (d). Concentrations in the left bath (2) were held
constant at k

(A)
+ c

(A)
2 = 0.1 and k

(B)
+ c

(B)
2 = e1 × 0.1, whereas concentrations in the right bath (1) were elevated. The other parameters are identical

with those in Fig. 2. Pink denotes cooperation with profit for both, turquoise competition at the cost of both, violet shows that species B is
promoted by A at the cost of the latter and vice versa in blue (see text).

Fig. 4 show that with increasing entanglement of the transport
pathways of the two species (�E increases) the range of
concentration gradients, for which both cooperate, increases
(pink), whereas those of lossy competition (turquoise) de-
creases. In the limiting case (�E → ∞) there would be sole
cooperation as state space is reduced to CS.

The dependence of species transport on the degree of
entanglement also holds for opposing concentration gradients.
In the extreme case, when there is a perfect coupling of
transport in the CS, flows of both vanish for opposing but
equal-magnitude concentration gradients [�μ(A) = −�μ(B)],
as there is no net driving force left. This become evident in
Fig. 5, where the gradient of species A is held constant and
that of B in opposing direction increases. For a vanishing
gradient of B, the gradient of A drives B parallel to its
direction (J (B) > 0). Flow of B is positively related to the
coupling strength. Increasing an opposing gradient of B

[�μ(B) = log(c(B)
1 /c

(B)
2 ) < 0] monotonically decreases flow of

B until cessation and changes its sign parallel to that of its
gradient. This procedure also decreases flow of species A. The
stronger the coupling, the higher must be the opposing gradient

of B to achieve cessation of its flow. For for strong coupling,
�E = 20, the flow curves of species A and B become almost

FIG. 5. Effect of opposing concentration gradient of species A

and B on respective flows as a function of the coupling strength �E.
Concentrations and jump-in and -out rates for species A are that from
Fig. 2, i.e., the concentration gradient is directed from bath 1 to bath 2,
with c

(A)
1 /c

(A)
2 = 100. Concentration of B in bath 1 is held constant at

k
(B)
+ c

(B)
1 = e1 × 0.1, and c

(B)
2 is increased. The stronger the coupling

the higher must be the oppositely directed gradient of B to make its
flow cease.
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identical (dotted blue and solid orange lines in Fig. 5), and
both flows cease for equal opposing concentration gradients
c

(B)
1 /c

(B)
2 = c

(A)
2 /c

(A)
1 = 10−2.

IV. ENTROPY PRODUCTION

To evaluate the thermodynamic coupling of two-species
transport, the entropy production related to state-space transi-
tions will be determined. In general entropy production of a
system which is coupled by heat or particle exchange to baths
consists of entropy production within its state space �, which
can be measured by changes of the Shannon entropy,

S� =
∑
σ∈�

− ln(Pσ )Pσ , (25)

with probability Pσ to find the system in the state σ , and the
entropy production within the baths Ṡbath, i.e.,

Ṡ = Ṡ� + Ṡbath. (26)

The latter refers to Schnackenberg’s entropy production [12],
which is the sum of particular entropy productions in the baths
resulting from transitions between the states of the system. For
example, for transitions between the two states σ � ς , it is
determined by the corresponding flow Jσ ,ς and the free-energy
difference �εσ ,ς [see Eqs. (7) and (8)] between the states,
obtained in direction of the flow, i.e.,

Ṡσ ,ς = −�εσ ,ςJσ ,ς . (27)

The latter equation is easily understood, e.g., when �ε is an
energetic difference, Eq. (27) describes the heat production
per time in the bath. When �ε is related to particle exchange,
it is a step within the mixing entropy process. Note that a
prerequisite for application of Eq. (27) is the assumption
of instantaneous equilibration of heat (thermostatted) and/or
particle concentrations within the baths. As we consider
steady-state conditions, the Shannon entropy within state
space in Eq. (25) remains constant. Hence, the whole entropy
production reduces to

Ṡ = 1

2

∑
σ ,ς∈�

Ṡσ ,ς . (28)

The factor 1/2 derives from the fact that �εσ ,ς , and Jσ ,ς

change concordant signs, when states σ and ς are inter-
changed, i.e., Ṡσ ,ς = Ṡς ,σ . As shown in the Appendix C, the
entropy production in Eq. (28) is equivalent to the sum of
the mixing entropy productions �μ(X)J (X), X = A,B in the
baths, i.e., we have

Ṡ = �μ(A)J (A) + �μ(B)J (B). (29)

Conversely, this equation states that mixing entropy production
by channel transport has its sources in entropy productions
resulting from transitions in state space.

In Fig. 6, opposing concentration gradients determine
particle transport from bath 1 to bath 2 for species A and, vice
versa, for species B. For a moderate coupling of the transport
pathways of the two species [�E = 5, Fig. 6(a)], respective
flows are parallel with the direction of their concentration

gradients, i.e., from bath 1 to bath 2 for species A, as
reflected by flow (0A) → (A0) and, vice versa, for species
B from bath 2 to bath 1 as shown by flow (0B) ← (B0).
The loose coupling enables that each species follows its
thermodynamic driving force and is not much affected by
that of the other species. The preferred closed paths in state
space which are involved in particle transport between the
baths are (0A) → (A0) → (AA) → (0A) · · · for species A

and · · · (0B) ← (B0) ← (BB) ← (0B) for species B, respec-
tively. Note that the higher flow of species B when compared to
that of A is induced by its attractive particle channel interaction
��(B) = − ln(k(B)

+ /k
(B)
− ) = −2. Closed paths including the

empty channel state (00) are less frequented. Entropy pro-
duction is negative for transitions (0B) → (BB), and (A0) →
(AA). This is due to the fact that these transitions require heat
from the baths as the states (AA) and (BB) are on a higher
energetic level when compared to their initial state, �E = 5
for A and �E + ��(B) = 5 − 2 = 3 for B. This fraction
of entropy production related to purely energetic transitions
cannot be compensated by that related to particle exchange.
However, the purely energetic component of negative entropy
production is exactly balanced by a positive entropy production
when particles are set free towards the baths in direction of their
gradient, i.e., (BB) → (B0) and (AA) → (0A). The fraction
of entropy production solely related to particle exchange is,
in contrast, always positive around the states occupied by two
like particles.

With increasing coupling [�E = 10, Fig. 6(b)], flow
towards states occupied by two unlike particles is favored
at the cost of flow towards states with two like particles. The
entropy production is still similar to the situation with �E = 5;
however, there emerges a negative, particle-exchange related
entropy production for the species B involved flows (A0) →
(AB) and (BA) → (0A). This is due to the fact that these
flows form a fraction of overall flow of B between the baths
which is directed from bath 1 to bath 2, i.e., antiparallel to the
thermodynamic driving force of B. However, overall flow of
B is, at this coupling strength, still parallel to its driving force,
i.e., (0B) ← (B0).

For a strong coupling strength [�E = 20, Fig. 6(c)], flow is
almost solely present on the cyclic state space CS (19), where
it is constant throughout. As flow towards states occupied
by two like particles has almost ceased, entropy production
consists solely of its particle exchange related component. The
negative entropy production related to flows between states
(A0) → (AB) and (BA) → (0A) is now in series with positive
entropy production induced by flows between (AB) → (0B)
and (B0) → (BA). The negative entropy production is related
to transport of B against its gradient, the positive entropy
production, which acts as the thermodynamic motor for this
process, driveing A in the direction of its concentration
gradient. The sum of both must be positive, i.e., the whole
mixing entropy production in the baths [Eq. (29)], is positive,
which satisfies the second law of thermodynamics.

Figure 7 shows how the mixing entropy production of
species B depends on its concentration gradient, the direction
of which is opposed to that of the driving species A and
the coupling parameter �E. Entropy production is zero for
a vanishing gradient of B, c(B)

2 = c
(B)
1 . Increasing this opposed

gradient of B makes the mixing entropy production become
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FIG. 6. Entropy production (left panel), entropy production related to particle exchange (mid panel), and flow with occupation probability
(right panel) in state space as a function of the coupling strength �E [see Eq. (18)]. �E = 5 (a), �E = 10 (b), and �E = 20 (c). The values of
entropy production are normalized to their maximum magnitude (→ Ṡσ ,ς /Max(|Ṡσ ,ς |) and color coded from −1 to +1 (left color bar). Coding
of flow and occupation probability (0 to +1, right color bar) is identical with that in Fig. 2. Concentration gradients of A and B are opposite,
c

(A)
1 /c

(A)
2 = 100, c

(B)
2 /c

(B)
1 = 50, with k

(A)
+ c

(A)
2 = 0.1, k

(A)
− = 1 and k

(B)
+ c

(B)
1 = e1 × 0.1, k

(B)
− = e−1 × 1, the latter implying a moderate attractive

particle-channel interaction �(B) = − ln(k(B)
+ /k

(B)
− ) = −2. Note that for loose coupling (a) flows of both species between the baths follow the

direction of their gradient, i.e., they are opposite, (0A) → (A0) vs. (0B) ← (B0). A strong coupling (c) almost restrains the transition dynamics
of the system to the CS (19) in which directions of particle flows are parallel (0A) → (A0) and (0B) → (B0).

negative as flow and gradient of B are antiparallel directed.
Eventually, the mixing entropy production of B reaches a
minimum before it vanishes when the concentration gradient
of B is strong enough to make the flow of B cease, i.e.,
when it balances the driving effect of A. An increasing
coupling strength increases this “ceasing” gradient of B and
for �E → ∞ the corresponding thermodynamic driving force
approaches that of A, i.e., |�μ(B)

cease
| → |�μ(A)|. The reason

is that an increasing coupling strength confines the relevant
state space to the CS (19). Within this cyclic state space the
free-energy gain, �μ(A), and loss, �μ(B), are in series [see
Eq. (22)]. Flows of B and A become identical [Eq. (20)],
i.e., both cease when the opposed gradients have the same
magnitude, �μ(B) = −�μ(A). The efficiency of A to drive
B against its gradient, i.e., its capability to create negative
entropy production for B by pumping it against its gradient
at the cost of its own positive entropy production Ṡ(B)/Ṡ(A),

increases with the coupling strength [Fig. 7(b)]. For strong
coupling, flows of A and B become equivalent [Eq. (20)] and
the efficiency approaches

η = lim
�E→∞

Ṡ(B)

Ṡ(A)
= �μ(B)

�μ(A)
lim

�E→∞
J (B)

J (A)︸ ︷︷ ︸
J (A), J (B)→J (cs)

= �μ(B)

�μ(A)
. (30)

This reflects, that, for a strong coupling strength, the magnitude
of the efficiency increases with the gradient of the driven
species or, more precisely, with the magnitude of its chemical
potential difference. In this regime, all the thermodynamic
driving force of species A may be used to drive B against its
oppositely directed gradient, until the latter approaches that
of A, which makes flow of all species, and hence also mixing
entropy productions, vanish.
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FIG. 7. (a) Negative mixing entropy production of species B,
Ṡ(B) = �μ(B)J (B). The negative sign is due to transport of B

in an antiparallel direction to its concentration gradient. (b) The
corresponding efficiency which is defined by the negative entropy
production of B per positive entropy production related to transport
of A. The concentration gradient of A is directed from bath 1
(right) to bath 2 (left), c

(A)
1 /c

(A)
2 = 100, with k

(A)
+ c

(A)
2 = 0.1. Particle

concentration of B in bath 1 is set to k
(B)
+ c

(B)
1 = e1 × 0.1 and that in

bath 2 is elevated about this level to induce an opposing gradient to
that of species A. Jump-out rates at the channel ends of both species
are as in Fig. 6. Various coupling strengths �E are considered. With
maximum coupling strength the efficiency curve (orange line) ap-
proaches Ṡ(B)/Ṡ(A) ≈ �μ(B)/�μ(A) = ln(c(B)

1 /c
(B)
2 )/ ln(c(A)

1 /c
(A)
2 ) =

log10(c(B)
1 /c

(B)
2 )/ log10(100) = 1/2 log10(c(B)

1 /c
(B)
2 ) as predicted by

Eq. (30).

V. SUMMARY AND DISCUSSION

In a minimalist model of channel transport of two species
between two baths, we investigated how interspecies coop-
eration and competition depend on the entanglement of the
respective transport properties. Transition dynamics between
channel states were described as a Markov process in a
nine-dimensional state space, which in contrast to mean-field
approaches conserves interspatial correlations of interparticle
interactions. The graphic visualization of the occupation
probability of states and flows between them reveals the
preferred paths in state space, the degree to which transports

of the two species are entangled, and the implication of the
latter on local entropy production within the state space. In
addition, it shows how global parameters as particle flow
between baths or mixing entropy production arise from their
local counterpart.

The entanglement of the transport of the species was varied
by increasing the affinity of the empty channel to absorb
any particle and a repulsive intraspecies interaction, which
hampers occupation of the channel by particles of the same
species. This procedure favors occupation of the channel by
single particles of any species, and by two particles of different
species, which couples the transport of the two species. With
increasing coupling, the transition dynamics is almost confined
to a cyclic sub-space (CS (19)) within the state space. Here,
the perfect coupling of the two-species transport causes their
particle flows to be equivalent. For parallel concentration
gradients of the species it was shown that towards this limiting
case the capability of the system for cooperation increases.
This implied that mutual flow of either species increased
with increasing gradient of the other species. The situation
is different when the coupling strength increases for opposing
concentration gradients. For loose coupling they drive their
species rather independently from each other through the
channel. Direction of flow and concentration gradient are
parallel, and, hence, the mixing entropy production of both is
positive. With increasing coupling strength, the magnitude of
flow of the driving species, i.e., that under the influence of the
stronger thermodynamic driving force, decreases; however,
direction of flow and concentration gradient remain parallel
and the corresponding entropy production stays positive. Flow
of the driven species shifts towards that of the driving one,
and eventually flow direction changes sign and becomes an-
tiparallel to its concentration gradient. Hence, its production of
mixing entropy becomes negative. An increase of the coupling
strength is also reflected by the increase of effectiveness, i.e.,
of the amount of negative entropy production of the driven
species per positive entropy production of the driving on.
In this context we could demonstrate how these productions
of mixing entropy of the two species originate from entropy
productions related to transitions in state space, i.e., the latter
are the sources of the former.

Particle transport through (nano) channels, which connect
two baths, has been extensively worked on in the past. Focus
was laid primarily on the impact of particle-channel interac-
tion. For particles which do not interact, flow is proportional to
the translocation probability, i.e., the probability that a particle
located at one channel end leaves it at the other [13]. For
fast exchange dynamics at the channel ends, this conditional
probability is proportional to 〈exp(�(x))/D(x)〉−1, where 〈•〉
denotes the spatial average along the channel, D(x) is the
diffusion coefficient, and � is the particle-channel interaction
potential, or more general free energy, when entropic forces
are also included [14–16]. This implies that, for noninter-
acting particles, flow is independent of spatial permutations
of the particle-channel interaction, e.g., independent from
the location of an attractive binding site. Additionally flow
monotonically increases for attractive interactions [�(x) < 0].

The situation changes when a particle inside the channel
impedes access of those from the baths. Flow is then the
product of flow, which would be present in the absence of
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interparticle interaction, and the probability to find the channel
nonoccupied [17,18]. The latter decreases with increasing
binding strength of the channel, i.e., it exhibits an opposed
dependence compared with that of the flow in the absence
of interparticle interaction. So there is a trade-off, i.e., an
optimum binding strength, for which flow reaches a maximum
[15,17–20]. This holds for sufficient low particle concentra-
tions or fast exchange dynamics at the channel ends. However,
this optimum binding strength may, for very high particle
concentrations, or slow exchange dynamics of particles at the
channel ends, even be repulsive [16,20].

The direction of a concentration gradient asymmetrically
affects the probability to find a location inside the channel
nonoccupied. So it is lower for a binding site which is located
near the bath with the higher concentration when compared
to its symmetric counterpart located near the bath with the
lower concentration. Hence, a binding site located at the trans
position of the concentration gradient implies a higher flow
than that in the cis position [15,19]. This flux asymmetry also
holds when entropic forces bind the particle [21].

The above model, which allows only one particle to occupy
the channel, was applied to study the effect of interparticle
interaction for two-species transport [16]. In this model the
interparticle interaction of a particle inside the channel is
restricted to blocking access of other particles from the baths
to the channel. So, selectivity in transport may only be
achieved when the two species differ by transport properties
or particle-channel interactions. For example, a binding site
of one species may favor its transport at the cost of the other,
which has no attractive particle-channel interaction. However,
this selectivity is based on pure competition, i.e., transport of
any species would be higher in the absence of the concentration
gradient of the other.

When interparticle interactions are also feasible within
the channel, a variety of new effects related to cooperation
and competition appear which were addressed by mean-
field approaches and simulations [22–24]. In contrast to
the aforementioned mean-field approaches, exactly solvable
Markovian models do explicitly conserve spatial correlations
between channel sites [4–6], and therefore provide even
deeper insights into the coupling of two species transport.
For oppositely directed concentration gradients it was shown
that this coupling could be increased by elongation of the
channel and appropriate particle-channel interactions, so that
one species could drive the other against its concentration
gradient [4,5]. We could show that species, which are under
the influence of parallel directed concentration gradients, may
cooperate, they may mutually promote the other species at
the cost of its own, or they may completely compete for
transport [6]. Which kind of regime is present depends, among
others, on the concentration gradients in the baths and the
strength of particle channel interactions. Competition in the
presence of parallel concentration gradients means that flow
of each species is lower compared with that in the absence
of the other’s gradient. This may be easily explained by
jamming, following the same arguments as for the channel
blocking discussed above. The other regimes demand more
sophisticated explanations. One species may promote another,
as its own concentration gradient implies an asymmetric
occupation of the channel locations and, hence, an asymmetric

sterical interaction profile for the other species within the
channel. These asymmetric constraints act as an entropic force
which biases flow of the other species in the direction of the
gradient. If this bias is stronger than blocking, then the gradient
increases flow of the other species. This effect was also shown
by simulations [23]. Finally, the regime of cooperation means,
that the effect of promotion is mutually given for both species.
We also found that a longer channel is more capable for
cooperation and promotion as it offers more spatial options
for particles of different species to interact [6].

In this paper now, we directly focused on the in-channel
interparticle interaction and its implication for two-species
particle flow. This was done in the shortest possible channel
which allows interparticle interaction inside, namely a channel
with two occupation sites. The simple structure of state space
and transitions within made it easy to identify interactions,
which confine stochastic transitions in state space to a
cyclic path, on which transport of both species is optimally
coupled, by making the thermodynamic driving forces act
in series. This made the capability for cooperation in the
case of parallel concentration gradients increase. In contrast,
in the case of antiparallel concentration gradients, optimum
coupling amplifies the effectiveness that one species drives
the other against its concentration gradient. Though the nine-
dimensional-state space appears simple, its relation with the
nonconservative thermodynamic driving forces acting within
still offers many issues which have to be addressed. Besides
the CS, on which the transition dynamics implies perfect
transport coupling of the two species, there are other cyclic
paths in which free energy is gained. These “leak” flows in state
space demand further evaluation. Another question is whether
there are, perhaps exotic, transition-interaction patterns in state
space, for which far from equilibrium an increase of the
gradient of one species implies a reduction in its flow, i.e.,
the thermodynamic response acts opposite to its direction of
force like a Brownian donkey.
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APPENDIX A: FLOW IN CYCLIC STATE SPACE

In order to derive Eq. (21), we do not start with a
cyclic state space but with an open linear one, which has
N positions, the ends of which (position 1 and N ) are
adjacent to reservoirs (baths), which we label 0 and N + 1,
respectively. Within the state space stochastic transitions are
only allowed between neighboring positions, and, at the
ends, also with the reservoirs. The dynamics is that of an
stationary Markov process. Though this model holds for any
Markovian transition dynamics between states, it is simpler
for our understanding to consider the positions as spatial
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ones and the interaction at the ends with the reservoirs as
particle exchange processes. The reservoirs serve as a constant
source with concentrations P0, PN+1, as well as absorbers
of particles. Hop-in and -out rates from the reservoirs are

λ1,0P0, λ0,1 and λN,N+1PN+1, λN+1,N . Transitions between
states i ← j, i �= j are given by rates λi←j = λi,j . So the
dynamics of the probability distribution P = (P1, · · · ,Pn)t in
this state space is determined by

d

dt
P = λP +

⎛
⎜⎜⎜⎜⎝

λ1,0 P0

0
...
0

λN,N+1PN+1

⎞
⎟⎟⎟⎟⎠ (A1)

with

λ =

⎛
⎜⎜⎜⎜⎝

−λ2,1 − λ0,1 λ1,2 · · · 0
λ2,1 −λ1,2 − λ3,2 · · · 0

0 λ3,2 · · · 0

0 0
... λN−1,N

0 0 · · · −λN−1,N − λN+1,N

⎞
⎟⎟⎟⎟⎠. (A2)

This transition matrix conserves the probability of finding a
particle within the channel,

∑
i λi,j = 0, except at the ends

where transitions to the reservoirs are present. The transition
rates define a free-energy difference between respective states
εi+1,i = − ln(λi+1,i/λi,i+1). In the open linear topology of state
space they can be derived from a potential, εi+1,i = ϕi+1 − ϕi ,
with ϕj = ∑j

ν=1 εν,ν−1 + ϕ0. The potential of reservoir “0,”
ϕ0, may be set arbitrary. This implies a potential difference
between the reservoirs

�U = ϕN+1 − ϕ0 =
N+1∑
ν=1

εν,ν−1 = − ln

(
N+1∏
ν=1

λν,ν−1

λν−1,ν

)
.

(A3)

Flow between neighboring states Ji+1←i = Ji+1,i is given by

Ji+1,i = λi+1,iPi − λi,i+1Pi+1. (A4)

It is convenient to rewrite the transition rates between neigh-
boring states in terms of potentials,

λi+1,i = λ̄i+1e
−(ϕi+1−ϕi )/2

λi,i+1 = λ̄i+1e
−(ϕi−ϕi+1)/2, with λ̄i+1 = √

λi+1,iλi,i+1

(A5)

as a measure of mobility between the states. This enables
us to write flow between states in terms of activities ai

and resistances Ri . With ϕ̄i+1 = 1/2(ϕi+1 + ϕi) as the mean
potential of two nearby states we get

eϕi Pi︸ ︷︷ ︸
=ai

− eϕi+1Pi+1︸ ︷︷ ︸
=ai+1

= Ji+1,i

eϕ̄i+1

λ̄i+1︸︷︷︸
=Ri+1

. (A6)

In the steady state, flow is constant throughout, Ji+1,i ≡ J .
Adding the activity differences in Eq. (A6) flow results in the
form of an Ohm’s law,

a0 − aN+1 = J

N+1∑
i=1

Ri. (A7)

However, a cyclic state space demands a more sophisticated
approach, since, as we will see, the baths will be integrated
into state space. It was recently shown that for unidirectional
transport, i.e., concentration in one bath vanishes (symbolized
by the subscript “0 → N + 1” for PN+1 = 0, or labeled by
subscript “0 ← N + 1” for P0 = 0), the steady-state flow
fulfills [25]

J0→N+1 = N1→N+1/τ1→N+1, (A8)

J0←N+1 = −N0←N/τ0←N, (A9)

with τ1→N+1 as the mean first passage time of a particle which
starts at positions i = 1, is reflected when trying to jump back
to bath 0 and which is completely absorbed in bath N + 1. The
opposite conditions holds for τ0←N . It is noteworthy that this
relation describes a situation in which both ends of state space
are in exchange with the reservoirs; however, the mean first
passage times derive from a setup with reflective boundary
conditions, which also explains our different choice of index
for the first passage times, i.e., 1 → N + 1 when compared to
that of flow 0 → N + 1 and vice versa in the other direction.
N is the number of particles within the state space, i.e.,
N = ∑N

i=1 P
(s)
i for either direction. These P

(s)
i in the steady

state are determined from Eq. (A1) by setting Ṗ = 0, i.e.,

P (s)
0→N+1 = λ−1

⎛
⎜⎜⎝

λ1,0 P0

0
...
0

⎞
⎟⎟⎠ or

P (s)
0←N+1 = λ−1

⎛
⎜⎜⎝

0
...
0

λN,N+1PN+1

⎞
⎟⎟⎠. (A10)

Hence, these particle numbers are proportional to the
respective concentrations in the reservoirs, N1→N+1 ∼ P0 and
N0←N ∼ PN+1. This suggests introducing specific particle
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numbers n, which is independent from the bath activities.
This is achieved by normalizing the particle number by the
respective activities [14–16], i.e., with

n1→N+1 = N1→N+1

eϕ0P0
, n0←N = N0←N

eϕN+1PN+1
, (A11)

we get

J0→N+1 = a0 n1→N+1/τ1→N+1, (A12)

J0←N+1 = −aN+1n0←N/τ0←N. (A13)

For arbitrary concentrations in the baths, steady-state flow is
the superposition of the two unidirectional flows above. In
particular, as flow vanishes for equal activities in the baths,
we obtain

n1→N+1

τ1→N+1
= n0←N

τ0←N

= n

τ
, (A14)

where n = 1/2(n1→N+1 + n0←N ) and τ = 1/2(τ1→N+1 +
τ0←N ) are the symmetrical specific particle number and first
passage time. So steady-state flow for arbitrary concentrations
in the baths takes the form

J = n

τ
(a0 − aN+1). (A15)

Note that with Eqs. (A6) and (A7) n/τ is the conductivity
(inverse of resistance R)

n/τ = R−1 =
(

N+1∑
i=1

Ri

)−1

=
(

N+1∑
i=1

eϕ̄i

λ̄i

)−1

. (A16)

The explicit determination of the mean first passage times
is a bit tedious and can be looked up in Refs. [9,26].
In short, one modifies the transition matrix in Eq. (A2),
λ → λ′, so that there are either reflective boundary conditions
towards bath 0 for determination of τ1→N+1 and, vice versa,
towards bath N + 1 when τ0←N is considered. This is
accomplished by just taking out the appropriate hop-out
rates. For determination of τ1→N+1 one positions a particle at
i = 1 and lets the system evolve, i.e., P(t) = exp(λ′t)e1, with
e1 = (1,0, . . . ,0)t . The mean first passage time is defined
as the mean time the particle needs to get absorbed in bath
N + 1. So τ1→N+1 = ∫ ∞

0 dt t (−dp(t)/dt) = ∫ ∞
0 dt p(t),

where p(t) = (1,1 · · · ,1)P(t) = ∑N
i=1 Pi(t) is the probability

to find the particle still in state space, i.e., −dp(t)/dt is the
fraction absorbed at t by bath N + 1. So one gets

τ1→N+1 = (1,1 · · · ,1)
1

λ′ e1 = et
1

1

(λ′)t

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠. (A17)

The same holds for τ0←N . The above matrix equation may be
solved directly and we get for the mean first passage times

τ1→N+1 =
N+1∑
i=1

N∑
ν=1

e−ϕν
eϕ̄i

λ̄i

θ (i − ν − 1), (A18)

τ0←N =
N∑

i=1

N∑
ν=1

e−ϕν
eϕ̄i

λ̄i

θ (ν − i), (A19)

τ = 1

2

(
N∑

ν=1

e−ϕν

)(
N+1∑
i=1

eϕ̄i

λ̄i

)
, (A20)

where θ (x) is the unit step function, with θ = 0, for x < 0 and
otherwise θ = 1. Note that the above equations are well known
in integral form for continuous diffusion-reaction processes
(e.g., Ref. [26]) and look similar. However, results cannot
be transferred readily to the discrete case as details, e.g., the
distinction between the potential ϕi of a state i and the mean
potential between two states ϕ̄i , appear only in the discrete
case, whereas both become equivalent in the continuum limit.

Now we have the tools to tackle the cyclic state space.
In the steady state we can modify the model of a linear
state space between two reservoirs to a cyclic state space
by adding one position, namely that of bath 0 and closing
the bath positions 0 and N + 1 together so that we end up
with a ringlike state space with N + 1 positions 0, 1 · · · N .
This implies that P0 = PN+1. One round in this cyclic space
implies that the free-energy change is �U [see Eq. (A3)].
Note that the ring topology impedes to define a unique
potential from free-energy differences, as continuation would
imply ϕN+1 = ϕ0 + �U �= ϕ0. As the off-set potential may be
chosen arbitrarily, we set it equal to zero, i.e., ϕ0 = 0. So, with
Eq. (A15), flow in this cyclic space becomes

J = n

τ
P0(1 − e�U ). (A21)

In contrast to the open situation between two baths, we now
have a closed system, and conservation of probability holds,∑N

i=0 Pi = 1. According to Eq. (A11), we get the constraint

1
!= P0 + N1→N+1 + N0←N

= P0(1 + n1→N+1 + n0←Ne�U ). (A22)

Insertion into Eq. (A21) and considering Eq. (A14) then gives
for the steady-state flow in a cyclic space

J = 1 − e�U

τ1→N+1 + τ0←N e�U + τ/n
. (A23)

Inserting the first passage times from Eqs. (A20) and the
resistance from Eq. (A16) finally allows us to determine flow
according to Eq. (21).

APPENDIX B: COOPERATION AND COMPETITION
IN CYCLIC STATE SPACE

To investigate the features of the cyclic state space for
cooperation and competition, e.g., when the concentration of
one species is enhanced, we pick one transition between two
states j ← j − 1 within the cycle and increase the rate in the
counterclockwise direction by a factor α > 1,

λ′
j,j−1 = αλj,j−1 . (B1)

This can, for example, be accomplished by an increase of
particle concentration, k+c → k+c′ with c′ > c, i.e., α = c′/c.
The backward rate λj−1,j shall remain unchanged. This implies
a change in potentials and mobilities. With

δϕ = − ln(α) < 0 (B2)

we get

ϕ′
i =

{
ϕi, i < j

ϕi + δϕ, i � j
,
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in particular the free-energy difference after one round in the
cyclic state space changes to

�U ′ = ϕ′
N+1 − ϕ′

0 = �U + δϕ.

Potentials between states change to

ϕ̄′
i =

⎧⎨
⎩

ϕ̄i , i < j

ϕ̄j + δϕ/2, i = j

ϕ̄i + δϕ, i > j

,

and mobilities to

λ̄′
i =

{
λ̄j

√
α = λ̄j e

δϕ/2, i = j

λ̄i else
. (B3)

We will investigate how this effects first passage times and by
this flow in Eq. (A23). After explicit evaluation of the unit step
function θ we derive from Eqs. (A20)

τ ′
1→N+1 =

N+1∑
i=2
i �=j

i−1∑
ν=1

eϕ̄′
i

λ̄′
i

e−ϕ′
ν + eϕ̄′

j

λ̄′
j︸︷︷︸

=eδϕ e
ϕ̄j

λ̄j

j−1∑
ν=1

e−ϕ′
ν

=
N+1∑
i=2

i−1∑
ν=1

eϕ̄i

λ̄i

e−ϕν eδϕ θ(j−ν−1)θ(i−j ). (B4)

As eδϕ < 1, the inequality

eδϕτ1→N+1 < τ ′
1→N+1 < τ1→N+1 (B5)

holds, i.e., the first passage time in direction 1 → N + 1
becomes shorter; however, it is still longer than a lower
boundary given by the factor eδϕ . Similarly, one can show
for the first passage time in the opposite direction

τ ′
0←N =

N∑
i=1

N∑
ν=i

eϕ̄i

λ̄i

e−ϕν e−δϕ θ(ν−j )θ(j−i−1), (B6)

i.e.,

e−δϕτ0←N > τ ′
0←N > τ0←N . (B7)

For the resistance [Eq. (A16)] one gets

(τ/n)′ =
N∑

i=1

eϕ̄i

λ̄i

eδϕθ(i−j ), (B8)

i.e.,

eδϕ(τ/n) < (τ/n)′ < (τ/n). (B9)

Two constellations are now of interest. First, we assume
that the rate we increase by elevation of the related particle
concentration points parallel to the flow direction on the cyclic
state space. So flow points in the counterclockwise direction,
and �U < 0, which implies

J ′ = 1 − e�U ′

τ ′
1→N+1 + τ ′

0←N e�U ′ + (τ/n)′

>
1 − e�U

τ1→N+1 + τ0←N e�U + (τ/n)
= J. (B10)

This implies that any increase in rate by elevation of the
concentration of one partner in direction of flow elevates flow

in cyclic state space. As flows of both species are identical in
CS, this implies perfect cooperation over the whole range of
concentrations.

In contrast, we have the situation when flow on the cyclic
state space directs in clockwise orientation, i.e., antiparallel to
the direction of the rate we increase by elevation of particle
concentration. This implies J < 0, and, hence, �U > 0 [see
Eq. (A23)]. We choose the magnitude of δϕ small enough so
that flow J ′ preserves its negative sign, i.e., �U ′ = �U +
δϕ > 0. For the denominator in Eq. (A23) the inequalities
(B5), (B7), and (B9) imply

1

τ ′
1→N+1 + τ ′

0←N e�U ′ + (τ/n)′

<
e−δϕ

τ1→N+1 + τ0←N e�U + (τ/n)
. (B11)

Multiplying with 1 − eU ′
(note as its sign is negative the

greater-than-sign changes changes its direction) leads to

J ′ = 1 − eU ′

τ ′
1→N+1 + τ ′

0←N e�U ′ + (τ/n)′

>
e−δϕ − e�U

τ1→N+1 + τ0←N e�U + (τ/n)

>
1 − e�U

τ1→N+1 + τ0←N e�U + (τ/n)
= J. (B12)

So the anti-parallel-directed increase of rate increases the
negative flow towards zero, i.e., it decreases its magnitude.
In summary, we demonstrated that an isolated increase of
rate, in our model by elevation of the appropriate particle
concentration, in the cyclic state space implies a higher
magnitude of flow when this rate points in direction of flow,
and, vice versa, magnitude of flow is decreased when rate and
flow are antiparallel.

APPENDIX C: ENTROPY PRODUCTION AND ITS
SOURCES IN STATE SPACE

In this section we will show that the sum over all entropy
productions in state space in the steady state

Ṡ = 1

2

∑
σ ,ς∈�

Ṡσ ,ς (C1)

is that of mixing entropy production in the baths; or, vice versa,
the sources of entropy production by mixing of particles by
channel transport may be allocated to that in state space.

For the further evaluation of the sum in Eq. (C1), we
separately consider transitions which are involved in particle
exchange between bath 1 and the adjacent right channel end,
i.e., for species X, (s,0) � (s,X), with s = A, B, 0. The cor-
responding free-energy difference [Eq. (7)] may be written as

�εσ ,ς = − sgn(σ ,ς ) ln

[
k+c

(X)
1

k−

]

= sgn(σ ,ς )

{
− ln

[
k+c

(X)
2

k−

]
− ln

[
c

(X)
1

c
(X)
2

]}

= �ε(e)
σ ,ς − �μ(X) sgn(σ ,ς ). (C2)
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The function “sgn” adjusts the sign of the free-energy
difference to the sequence of its states in its index. It is
sgn(σ,ς ) = 1 when particles enter the channel from bath
1, σ = (s,X) ← ς = (s,0), and, vice versa, sgn(σ,ς ) = −1
when they leave, ς = (s,X) → σ = (s,0). According to
Eq. (C2) the free-energy difference between states σ ,ς is that
that would be present under equilibrium conditions, �ε

(e)
σ ,ς ,

i.e., when concentrations in both baths equal c
(X)
2 , diminished

by the difference of chemical potentials between both baths.
All other transitions, and, hence, corresponding free-energy
differences, between states which are not involved in particle
exchange with bath 1 do not differ from their value under
equilibrium conditions. Under equilibrium conditions the
states may be assigned a potential φσ [Eq. (11)], the differences
of which determine the free-energy difference between the
states [Eq. (12)]. Free-energy differences between states
involved in particle transport with bath 1 have to be adjusted
by the difference of the chemical potential. Inserting this
into Eq. (27) enables us to rewrite the entropy production in
Eq. (C1) as

Ṡ = 1

2

∑
with bath 1

( − �ε(e)
σ ,ς + sgn(σ ,ς )�μ(X)

)
Jσ ,ς

+ 1

2

∑
not with bath 1

−�ε(e)
σ ,ς Jσ ,ς

= 1

2

∑
with bath 1

�μ(X) sgn(σ ,ς ) Jσ ,ς

+ 1

2

( ∑
with bath 1

(−φσ + φς ) Jσ ,ς

+
∑

not with bath 1

(−φσ + φς ) Jσ ,ς

)

= 1

2

∑
with bath 1

�μ(X) sgn(σ ,ς ) Jσ ,ς

+ 1

2

∑
σ ,ς∈�

(−φσ + φς ) Jσ ,ς . (C3)

The latter terms vanish as in the steady-state flow is conserved
around a state [Kirchoff’s circuit rule, see Eq. (15)], i.e.,∑

σ ,ς∈�

φσ Jσ ,ς =
∑
σ∈�

φσ

∑
ς∈�

Jσ ,ς

︸ ︷︷ ︸
=0

= 0. (C4)

Note that the same is true for
∑

σ ,ς∈� φς Jσ ,ς , as Jσ ,ς =
−Jς ,σ . The flows in the first term of Eq. (C3) consist of those
for species A and B,

1

2

∑
with bath 1

�μ(X) Jσ ,ς

= �μ(A) 1

2

∑
A with bath 1

sgn(σ ,ς )Jσ ,ς

+�μ(B) 1

2

∑
B with bath 1

sgn(σ ,ς )Jσ ,ς .

The sum over the particle exchange flows at the channel ends
is just twice the steady-state flow J (A), J (B) of the respective
species between the baths [see Eq. (17)]. Finally, we get for
the entropy production

Ṡ = �μ(A)J (A) + �μ(B)J (B). (C5)

This equation states that the sum over the particular entropy
productions in state space is that of the mixing entropy
production in the baths. Conversely, this equation states that
the sources of the overall mixing entropy production may be
allocated to those in state space.
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