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Geometrical interpretation of dynamical phase transitions in boundary-driven systems
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Dynamical phase transitions are defined as nonanalytic points of the large deviation function of current
fluctuations. We show that for boundary-driven systems, many dynamical phase transitions can be identified
using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic
fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be
recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme
is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.
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I. INTRODUCTION

The study of phase transitions spans across all branches
of physics [1–4]. Thermodynamic phase transitions in equilib-
rium systems have been studied extensively [5,6]. However, for
systems driven out of equilibrium, even simple ideas valid in
equilibrium seem to be violated [7]. As a prominent example,
we note the Peierls argument: There are no phase transitions
in equilibrium 1d systems with short-range interactions [6].
This argument breaks down for out-of-equilibrium systems
[8–15]. While out-of-equilibrium systems allow for a richer
set of effects, a theory comparable to statistical mechanics is
lacking.

A major advancement in the understanding of out-of-
equilibrium systems is the recent formulation of the macro-
scopic fluctuation theory (MFT) [16,17]. The MFT offers
a hydrodynamic description of steady-state fluctuations in
diffusive systems. It was used to characterize steady-state den-
sity correlations [18,19], identify fluctuation-induced forces
[20], find Clausius inequalities [21], follow the statistics of
single-file diffusion [22], and many more [23–29]. With the
help of the MFT, it is conceivable that a classification of
phase transitions in out-of-equilibrium diffusive systems can
be pursued.

In this paper, we focus on current fluctuations in boundary-
driven diffusive systems within the framework of the MFT. The
study of current fluctuations deals with finding the probability
Pt (Q) to observe an atypical charge transfer Q at the long time
limit t [30]. Here we restrict the discussion to 1d systems only.
We assume throughout the text that a large deviation principle
applies, namely

Pt (Q) ∼ exp[−t �(J = Q/t)], (1)

where �(J ) is the large deviation function (LDF) of J , the
mean current in the system. Obtaining an exact expression
for � is not a trivial task both analytically [26,31–37] and
numerically [38–40]. In boundary-driven diffusive systems,
the MFT allows us to write the LDF formally. Finding �(J )
reduces to finding the optimal fluctuation of the density profile
responsible for the atypical current. Finding this optimal
fluctuation is inherently hard. In Ref. [41], it was suggested
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that the optimal fluctuation is time-independent (except for
a negligible transient time). This conjecture, known as the
additivity principle (AP), was shown to be exact for several
boundary driven systems [41–44] and is believed to be always
valid for currents sufficiently close to the steady state current.
In fact, a violation of the AP was found only recently for
boundary driven systems [44,45]. Obtaining the large deviation
function under the AP assumption boils down to solving
boundary valued non-linear differential equations. This allows
for the possibility of multiple solutions as was demonstrated
in Refs. [46,47]. Multiple optimal solutions may lead to
nonanalytic points in the large deviation function [12,46,48].
Transitions between optimal solutions as a function of J (AP
violations included) go under the name of dynamical phase
transitions (DPT). It is usually hard to find analytically all
possible solutions. Moreover, it is appealing to be able to
predict the occurrence of DPTs from simple arguments. This
goal is pursued here using a mapping to a one-body Lagrangian
mechanics, where DPTs are identified as non-analytic points in
a minimization of an action. Moreover, an experimental setup
is proposed to observe an analog of DPTs in linear, rather then
exponential time.

This paper is organized as follows. In Sec. II we briefly
recapitulate the MFT and the AP conjecture, as well as the
analogy to Lagrangian mechanics. In Sec. III a few relevant
models are considered to demonstrate the required essentials
for a DPT. In Sec. IV we generalize the geometrical method
to boundary-driven processes with a weak field. In Sec. V we
summarize the results and discuss future directions. Moreover,
an experimental setup is proposed in which the analog of DPTs
can be directly observed.

II. THEORETICAL BACKGROUND

This section is devoted to summarizing the main points of
the MFT leading to the AP conjecture. We will then present
the mapping to Lagrangian mechanics, which will later prove
useful to identifying DPTs.

Consider a lattice gas in a 1d system of L sites with
diffusive dynamics. In the fluctuating hydrodynamic approach
[48–50], we replace the microscopic space and time co-
ordinates i ∈ 1,...,L and t with hydrodynamic coordinates
x = i/L ∈ [0,1] and t ′ = t/L2. The relevant macroscopic
variables are the particle and current densities ρ(x,t ′),j (x,t ′)
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[7], related through the continuity equation

∂τρ(x,t ′) = −∂xj (x,t ′). (2)

Connecting our system to two reservoirs at the boundaries
x = 0,1 with fixed densities ρl,ρr correspondingly, drives it
out of equilibrium. The steady-state current JS and steady-state
density profile ρS of such a diffusive system obey Fick’s law,

JS = −D(ρS)∂xρS. (3)

Using Eq. (3) in Eq. (2) identifies D as the diffusion parameter
of the (steady-state) diffusion equation. Assuming that the
current density j (x,t ′) can be described by small fluctuations
around the steady state provides a description of the dynamics.
This amounts to writing

j (x,t ′) = −D[ρ(x,t ′)]∂xρ(x,t ′) +
√

σ (ρ(x,t ′))
L

ξ (x,t ′),

(4)

with ξ a white noise in (x,t ′), and σ (ρ), the conductivity [7],
characterizes the fluctuations.

Using the Martin-Siggia-Rose procedure [51] for Eq. (4),
one finds that the probability to observe {ρ,j} in time and
space is given by

Pt ({ρ,j}) ∼ exp

(
−L

∫ 1

0
dx

∫ t/L2

0
dt ′ L

)
, (5)

where L = 1
2σ (ρ) [j + D(ρ)∂xρ]2 and Eq. (2) is implicitly

assumed. For large systems L � 1, observables obtained
from Pt are governed by a saddle point approximation.
This implies that obtaining the LDF amounts to solving a
minimization problem with two constraints; the continuity
equation and particle transfer equals Q. Namely, t �(J ) =
L minρ,j

∫
dxdt ′ L, with the constraints Eq. (2) and Q =

L2
∫

dxdt ′ j (x,t ′). Moreover, we consider only density pro-
files with fixed boundary conditions at x = 0,1 corresponding
to the reservoir densities. This formal minimization problem
is hardly solvable in the general case as it involves solving
a non-linear partial differential equation [44]. In Ref. [41],
the AP conjecture was presented. It assumes that the solution
to this optimization problem is time-independent, namely
j (x,t ′) = J and ρ(x,t ′) → ρ(x). As mentioned in Sec. I,
this conjecture is particularly successful for boundary-driven
processes. The AP solution satisfies both constraints and the
LDF is now given by

�(J ) = 1

L
min

ρ

∫ 1

0
dx LJ (ρ,∂xρ), (6)

with LJ (ρ,∂xρ) = (J + D∂xρ)2/2σ . From Eq. (6), the LDF
is recovered as a solution of an ordinary differential equation.
A significant improvement to solving a partial differential
equation. Throughout the text, we assume the AP solution
is valid (see Ref. [45] for a counter-example).

To present the Lagrangian mechanics analogy, let us
redefine s = xJ , τ = J , and W = L�(J )/J . Then, Eq. (6)
becomes

W (τ ) = min
ρ

∫ τ

0
dsL1(ρ,∂sρ), (7)

with L1 = (1 + D∂sρ)2/2σ . W can be interpreted as the
minimal action of a particle to travel between the position ρl

at time s = 0 to the position ρr in time s = τ . Finding W (τ )
requires solving the Euler-Lagrange equation for the trajectory
ρ(s) constrained at the initial and final time. These Dirichlet
boundary conditions allow for multiple solutions. Assume that
for i = 1,2 there are two solutions of the Euler-Lagrange
equation denoted by ρi(s) with Wi ≡ ∫

ds L1(ρi,∂sρi). If there
exists τC such that W1 < W2 for τ < τC and W1 > W2 for
τ > τC , W = min {W1,W2} is a nonanalytic function at τC .
We identify such nonanalytic points as DPTs [52].

A general solution of the Euler-Lagrange equation is hard
to obtain. Moreover, our goal is to identify DPTs using
nonperturbative geometrical considerations, without solving
differential equations. To do so, we consider the Hamiltonian
H corresponding to L1. With the canonical variables ρ,�

(see Appendix A), we find H (ρ,�) = Ek + V (ρ). Interpreting
Ek = 1

2m
�2 as the “kinetic energy” with the nonnegative

mass m = D2

σ
, and the “potential” V = −1/2σ . The particle’s

trajectory is determined by the Hamilton equations. Let us
relax the Dirichlet boundary conditions and instead use Cauchy
boundary conditions to uniquely determine the trajectory ρ(s).
Namely, set ρ(s = 0) = ρl,�(s = 0) and find the correspond-
ing τ values (if any exist) for which ρ(s = τ ) = ρr . Varying
�(s = 0) allows to obtain all possible solutions. Then, we may
evaluate W as (see Appendix A)

W (τ ) =
∫ τ

0
ds[EK − V + �(−2V/m)1/2]. (8)

The Hamilton equations are by no means easier than the
Euler-Lagrange equations. However, all the solutions can be
identified from the geometry of the potential using the Cauchy
boundary conditions.

III. DYNAMICAL PHASE TRANSITIONS

In what follows, we analyze the possible solutions of Eq. (7)
and decide whether DPTs can occur in a toy model, defined
at the macroscopic level only. This model highlights the
advantages of the Hamiltonian approach. Physically relevant
models will be discussed in Sec. IV, Sec. V, and Appendix E.
The analysis goes as follows. Identify the possible solutions
for some boundary conditions. If more than one solution exists,
evaluate W (τ ) for the solutions at τ → 0,∞. If different
solutions become optimal at the different limits τ → 0,∞,
there is a DPT.

It will become clear that cyclic trajectories, i.e., ρ̂ =
ρl = ρr , provide ample intuition where to search for DPTs.
Therefore, we focus on cyclic trajectories in the main text.
Two acyclic trajectories are analyzed in a similar manner
in Appendix D. We analyze only the cases where τ > 0. A
similar, time-reversed analysis can be made. However, due to
the Gallavotti-Cohen relation [53], the optimal density profiles
are identical to the time-reversed solutions (for any boundary
conditions). The negative current part of LDF can be inferred
from the positive current part [16,41]. Moreover, we note that
no new behavior can be obtained by switching ρl ↔ ρr , as
this is merely conditioning the time-reversed process. In what
follows, the sign of � corresponds to the direction of the ρ
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FIG. 1. The potential for AMFH model with B = −20,ε = 0.02
(solid blue line). The extremal points are marked in (red) circles,
where ρA(ρC) is the lower (higher) peak and ρB is the local minimum.

axis (see Fig. 1). Moreover, we identify different solutions by
setting �0 = �(s = 0) at the initial time, which, together with
the initial position ρl determines the energy H . In this section,
only analytical mechanics arguments will be invoked.

The asymmetric Mexican flat hat (AMFH) model [45] is
a toy model, used here to demonstrate how to identify DPTs
under the AP assumption. We define macroscopically using
D = 1 and

σ =
(

ρ − 1

2

)2

+ B

(
ρ − 1

2

)4

− B + 4

16
+ ερ2(1 − ρ).

(9)

For B = −20 and ε = 0.02, the potential of the AMFH model
presents three extremal points at ρA,ρB,ρC (see Fig. 1). We
analyze three of the seven cyclic boundary conditions cases.
The four remaining cases are left to Appendix B. A few acyclic
processes are analyzed in Appendix D in a similar manner.

Case 1, ρ̂ = ρA: Here, there are at least two distinct
trajectories. In the first, the particle stays put. Namely,
ρ(s) = ρA and �(s) = 0. This solution is viable for any
τ . From Eq. (8) we find that the action associated with
this trajectory is Wput(τ ) = −τV (ρA). In the second possible
trajectory, �0 > 0. This implies τ (H ) ∈ [τ0,∞) for the energy
H ∈ (V (ρA),V (ρC)). Here τ0 > 0 is the minimal time it takes
the particle to cross the second trajectory, going from ρA

to climb the potential hump of ρC (never crossing it) and
than travel back. We can further evaluate from Eq. (8) the
action corresponding to the second trajectory for H → V (ρc),
�0 > 0, which corresponds to τ → ∞. We find that this action
is W2(τ ) = −τV (ρC) + O(1) as the particle spends most of
the time approaching ρC . While for short times Wput is the sole
and hence the dominant trajectory, we found that for some
large but finite τ , the second trajectory dominates. Therefore,
W is nonanalytic and a DPT takes place. We note that such
a DPT could not be obtained using a perturbative approach
[44,47].

Case 2, ρ̂ < ρA: Here there are again at least two possible
trajectories, both with �0 > 0. We denote the first trajectory
as the short path. It corresponds to τshort(H ) ∈ [0,∞) for
H ∈ [V (ρ̂),V (ρA)), where the particle never crosses the lower

potential peak at ρA. In the long path, the particle crosses the
potential peak at ρA, but not the one at ρC . This corresponds to
τlong(H ) ∈ [τ0,∞) for H ∈ (V (ρA),V (ρC)). τ0 is the minimal
finite time it takes the particle to complete the long trajectory
(not the same value as in case 1). At long times, we can
evaluate the action of the short path using Eq. (8). We find
Wshort = −τV (ρA) + O(1). Similarly, we can evaluate the
action of the long path for H → V (ρC). We find Wlong =
−τV (ρC) + O(1). So, while Wshort dominates at short times
τ < τ0, Wlong dominates at long times and a DPT must occur.

Case 3, ρ̂ = ρB : Here, there are infinitely many distinct
trajectories. Let us characterize them. The first possibility
is staying put as the particle sits on a potential extremum.
The solution is valid for any time τ with an associated action
Wput(τ ) = −τV (ρB). We note that this is the only trajectory
allowing for τ → 0. A second possible solution is for the
particle to pick up some initial positive (negative) momentum
�0. Even for infinitely small momentum, the minimal time
τ0 to cross the path (going slightly up the potential and
back down to ρB) is finite. The motion is essentially that of
half a cycle of an harmonic oscillator. Solving the harmonic
oscillator equations of motion around the point ρB , we find

that τ0 = π
√

m(ρB )
∂ρρV (ρB ) . If a transition between the “staying put”

trajectory to this one occurs, it can be a continuous transition.
A transition indeed occurs in this case exactly at τ0. it can
be validated by numerically solving the Hamilton equations
(Appendix G), or analytically using a perturbative approach
[47]. We note that one can evaluate the order of magnitude
of τ0 by using a harmonic oscillator approximation for any of
the cases studies for the AMFH model. We can also consider
multiple crossings of ρB as long as the energy does not exceed
V (ρA). Considering �0 > 0 with H → V (ρC) amounts to
Wright(τ ) = −τV (ρC) + O(1) for τ → 0. This trajectory is
certainly preferable to the “staying put” trajectory and thus
we may have a richer phase diagram. While the geometrical
approach does not help to obtain the full phase diagram, it
certainly verifies that a DPT indeed occurs in this scenario.

A numerical verification for the DPTs found here and
in Appendix B was performed in a similar manner to that
explained in the Appendix of Ref. [45]. We also note that as
in other cases, multiple transitions may occur. Case 2 dispels
any illusion that DPTs are related to boundary conditions on
or close to extremal points of σ .

To conclude, we found that extremal points in the potential
(conductivity) are facilitators of DPTs. It should be clear that
similar arguments can be invoked to identify DPTs for acyclic
trajectories. In the corresponding MFT picture, the particle
trajectories are density profiles. Figure 2 depicts the density
profiles for small and large positive values of the current J

(short and long time τ ) for the first two cases discussed in this
section.

IV. GENERALIZATION TO MODELS
WITH WEAK FIELDS

Let us now consider the macroscopic fluctuation theory
for models with a weak asymmetry in the form of a field of
strength E. The Einstein relation implies that Fick’s law Eq. (3)
is modified to include the asymmetry by the addition of a Eσ
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FIG. 2. Typical density profiles in the AMFH model. (a) Case
1, ρ̂ = ρA, the (red) dashed line corresponds to the staying put
trajectory and the (blue) solid line corresponds to the second trajectory
at large currents (large τ ). It begins to saturate ρC represented by
the (green) dashed-dotted line as expected. (b) Case 2, ρ̂ < ρA, the
(blue) dotted line corresponds to the short trajectory for low values
of the current(τ < τ0) and the (red) solid line corresponds to the
long trajectory at large currents (τ > τ0). It begins to saturate ρC

represented by the (green) dashed-dotted as expected.

term. Repeating the same procedure of the fluctuating hydro-
dynamics and assuming the AP, we find that the Lagrangian in
Eq. (6) is modified to LJ = (J + D∂sρ + Eσ )2/2σ . Then,
going to the Lagrangian mechanics, we find that Eq. (7)
is given with L1 = (1 + D∂sρ + Ẽσ )2/2σ with the rescaled
field Ẽ = E/τ . Thus, in principle, the potential changes as a
function of our end-time τ . This in turn allows to identify more
DPTs, albeit in a more subtle way. Moreover, notice that for
τ → ∞, the action loses its dependency of the field E. The
Hamiltonian here is given by the same form with the same
mass term. The generalized momentum � = ∂L1

∂∂sρ
− D

σ
− DẼ

and the potential is V (ρ) = − 1
2σ

(1 + Ẽσ )
2
. The action W in

Eq. (8) remains of the same form. Our course of action will
be only slightly different than the zero field case. First, we
will identify initial and final conditions where for τ → ∞ and
Ẽ → 0 there is a single solution. Then, for finite τ and large Ẽ,
we identify another solution in addition to the large τ solution.
This new solution will be argued to dominate, namely it has a
smaller action. As before, this guarantees a DPT. It should be
noted that while there is freedom in the selection of E, once
chosen, it is kept fixed throughout the process, at least in our
specific setup.

The weakly asymmetric simple exclusion process

The simple symmetric exclusion process (SSEP) is a
paradigm process for nonequilibrium systems as it is solvable
by Bethe ansatz [7,54]. In the SSEP, there is at most one
particle per site, and particles hop to empty neighbors with
rate 1. This implies D = 1 and σ = 2ρ(1 − ρ). The large
deviation function is known to be analytic, so no DPTs
occur. In the weakly asymmetric simple exclusion process
(WASEP), particles hop to empty sites to the right (left) with
rate 1 ± E/L. The scaling of the field with the system size
keeps the process diffusive. To identify DPT, we draw the

FIG. 3. The corresponding potentials for various values of Ẽ of
the WASEP. It can be seen that the basic structure of the potential
is completely changed for different values of Ẽ. For |Ẽ| > 2, there

are two maxima at ρ± = 1±
√

1−2/|Ẽ|
2 and one minimum at ρ = 1/2,

whereas for |Ẽ| < 2 there is a single maximum at ρ = 1/2. This
behavior give rise to the DPTs discussed in the main text.

potential of the WASEP for several values of Ẽ (see Fig. 3).
We specify two cases of interest.

Case 1, ρ̂ = 1/2: In the SSEP, there is an obvious particle
hole symmetry and therefore this is an immediate point of
interest. For Ẽ → 0 which corresponds to the limit τ → ∞,
there is a single trajectory. Namely, staying put ρ(s) = 1/2
with �(s) = 0 (see Fig. 3). For Ẽ � 1 there are more
solutions. Staying put remains a solution. Another solution is
for the particle to start climbing the potential and then tumble
back. We have already seen in Sec. III case 3, that if τ is
large enough this solution is dominant. Since we still have
the freedom to choose E, we can always have Ẽ large while
keeping a large enough τ . Thus, we expect a DPT at large
values of E. This case was also discussed in Ref. [47].

Case 2, 0 < ρl < 1/2 and ρr = 1 − ρl > 1/2: For Ẽ →
0 which corresponds to the limit τ → ∞, there is again a
single trajectory. The particle must have �0 > 0 large enough
to overcome the potential barrier. However, for |Ẽ| > 2, the
potential is completely changed as two new maxima appear (at

ρ± = 1±
√

1−2/|Ẽ|
2 ) and the old maximum becomes a minimum.

Now, suppose that Ẽ is such that ρl,ρr are located between
the two maxima. Then, we may focus on two trajectories. The
direct one with �0 > 0 and the indirect where the particle has
�0 < 0 and it starts climbing towards the left maximum of the
potential. For the direct path, Wdirect � −τV (ρl), as Ek,� > 0
in this trajectory. For the indirect path at the long time limit,
we can evaluate Windirect = −τV ((ρ±)) + O(1). Since we have
picked ρl such that V ((ρ±)) > V ((ρl)) a DPT must occur as
Windirect < Wdirect. So, like in case 1 above, we can always
choose E that allows τ to be large enough for the desired value
of Ẽ. This guarantees a DPT. In fact, we need not require
any symmetry between ρl and ρr to observe the transition
as we choose Ẽ such that V ((ρ±)) > V ((ρl,r )). Therefore, a
transition should be expected for any choice of ρl < 1

2 < ρr

for a sufficiently large E.
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The large deviation function of the SSEP is known to be
analytic [41,48,55]. We have seen that applying a weak field
may generate new extremal points in the effective potential,
thus allowing for DPTs. However, adding a weak field to a
model will not necessarily generate DPTs for any model. One
such counter example is for non-interacting Random walkers,
where a single solution was obtained for any weak field [27].
While the potential may posses a local maximum point, it is
not enough to identify a DPT using the geometrical approach.

V. DISCUSSION

We have presented here a mapping between current fluctu-
ations in boundary-driven systems under the AP assumption
to the evolution of a Hamiltonian particle with set initial and
final positions. We have then shown that a pictorial analysis of
the potential is sufficient to demonstrate DPTs. Note that the
Hamiltonian approach allows to focus on the geometry of the
potential, rather than exact details. While the AMFH model
is a toy model, the conclusions presented above apply for
models with similar conductivity, e.g., Bodineau’s long-range
hopping model [44,45] and the Katz-Lebowitz-Spohn model
[47,56–58]. See Appendix E for details on these two processes.
This approach allows to obtain new DPTs, as well as derive
on simple terms known DPTs [45,47].

The geometrical approach provides a sufficient condition
for DPTs. We found that extremal points in the potential are
facilitators of DPTs. One can wrongly assert that, since the
diffusion does not play a role in the potential, it is immaterial
to the study of DPTs. However, aside from affecting the value
of the critical current (or corresponding time τ ), the diffusion
may allow for a richer phase diagram (see cases D and E in
Appendix B and Ref. [47] for examples). It cannot be ruled out
that the nontrivial mass term facilitates a DPT that cannot be
identified from the potential. Such DPTs are outside the scope
of this paper and are not neatly described by the formalism
presented here.

We further note that once a DPT is identified using the
Lagrangian approach, the order of magnitude of the transition
(∼τ0) can be recovered from dimensional analysis of the mass
and potential (Sec. III, Case 3).

The method was extended to include weak driving fields.
We have shown that the potential explicitly depends on the
ratio of the applied field and the current. This allows for more
extremal points to be generated for different values of the field
and thus it enables more DPTs.

In Appendix F, we have generalized the geometrical
approach to the case of d different species of particles. This
corresponds to Lagrangian mechanics of a single particle in
d spatial dimensions. Similarly to the case of a boundary-
driven process with a weak field, more control parameters are
included (more than one constrained current). This implies
that in principle, DPTs should be found in abundance for
physical models with interacting particle species as the control
parameters can be used to generate more extremal points in
the potential.

Finally, an experimental setup realizing the analog of the
LDF can be considered. Direct experimental measurement
of the LDF is hard as we are searching for exponentially
rare events. Finding a mechanical system described by the

effective Hamiltonian H allows to experimentally probe W (τ ),
the equivalent of the LDF. As the mapping suggests atypical
currents J → τ , we find that an analog Hamiltonian explores
large deviations in linear time. This exponential reduction
is due to the AP, allowing to discard many trajectories (see
Ref. [59] for similar motivation).

One possible realization is by lacing a bead of mass m,
susceptible to gravity g, through a hard string. Negligible
dissipation of energy is assumed throughout the process.
The string’s contour is given by �r = [x,f (x),h(x)]. Thus,
the corresponding Hamiltonian is H = 1

2m
(�2

x + �2
z + �2

z) −
mgz. Hamilton equations dictate �y = �x∂xf (x) and �z =
�x∂xh(x). This amounts to rewriting an effective 1d Hamilto-
nian Heff = 1

2meff
�2

x − mgh(x), with m/meff = 1 + (∂xf )2 +
(∂xh)2. Control over f,h allows to replicate the desired
space-dependent effective mass and potential in a finite range
for a variety of D,σ functions (see Appendix C).

Note that there is no clear advantage to finding W exper-
imentally rather than a numerical evaluation. However, this
example shows that DPTs could be observed experimentally
in linear time using analog systems. This idea motivates
searching for the equivalent of the AP in other large deviation
problems.
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APPENDIX A: HAMILTONIAN FORMALISM

In this section we derive, for completeness, the Hamiltonian
H corresponding to the Lagrangian L1 of the main text. We
define, as usual, H as the Legendre transform of L1. Namely,
H = p∂sq − L1, with p = ∂L1

∂(∂sρ) . We find

H = 1

2m
�2 + V, (A1)

where � = p − D/σ , m = D2/σ , and V = −1/2σ . Notice
ρ,� are canonical. Defining Ek = 1

2m
�2 as the kinetic term

allows us to identify (as usual) the total energy as the sum of
the kinetic and potential energies. Note that � = m∂sρ, which
implies that zero kinetic energy makes for vanishing “velocity”
∂sρ. We can thus rewrite the Lagrangian (in an unusual way)

L1 = Ek − V + �
√

−2V/m. (A2)

APPENDIX B: ANALYSIS OF EQUAL BOUNDARY
CONDITIONS FOR THE AMFH MODEL

This section deals with the case of equal boundary condition
for the AMFH model, i.e., ρ̂ = ρl = ρr . In the main text,
three out of possible seven cases were discussed. Here, we
complete the discussion by analyzing the remaining four cases.
ρA,ρB,ρC are depicted in Fig. 1 of the main text.

Case 4, ρA < ρ̂ < ρB : Similarly to Case 3, we find in
Case 4 infinitely many solutions as the particle may revisit ρ̂

several times. Let us focus on two solutions: the short-left and
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short-right. In the short-left solution, �0 � 0. τleft(H ) ∈ [0,∞)
for H ∈ [V (ρ̂),V (ρA)). In the short-right solution, �0 > 0
and τright(H ) ∈ (τ0,∞) for H ∈ (V (ρ̂),V (ρC)). τ0 > 0 is the
minimal finite time for the particle to traverse the short-right
trajectory. For τ → ∞, the particle traveling in the short-left
(right) trajectory spends most of its time approaching the peak
at ρA(ρC) with vanishing kinetic energy. In the similar manner
to the main text, evaluating Eq. (8) implies Wleft > Wright as
τ → ∞.

One can also consider trajectories that cross ρ̂ more than
once as the particle can perform an oscillatory motion. They
compose an infinite set of solutions. To find the complete
phase diagram, one has to pursue a detailed analysis. However,
only the short-left trajectory is viable for τ → 0. Since the
short-right solution dominates over the short-left solution at
long times, a DPT is guaranteed.

Note that here, the phase diagram may be richer due to
the infinite set of solutions at intermediate times. A detailed
analysis to recover the full phase diagram is not attempted
here.

Case 5, ρB < ρ̂ < ρC : This case is very similar to Case C.
Here, however, there is no guarantee for a DPT, as for short
and long times the short-right path is favorable (�0 > 0). The
intermediate times must be analyzed with care and cannot be
inferred from this simple picture.

Case 6, ρ̂ = ρC : Here there is only one possible solution,
staying put. The particle never returns to ρC for any nonzero
�0. So, no DPT is expected.

Case 7, ρ̂ > ρC : Here again there is only a single possible
solution with �0 < 0. Therefore, no DPT can be identified
from the potential alone.

APPENDIX C: EXPERIMENTAL MODELING

We have shown in the main text that hard string laced
through a bead can give a prescription for a desired 1d effective
dynamics. The purpose is to find for arbitrary D,σ , the contour
of the string giving rise to the effective Hamiltonian. First,
notice that the important parameters in the experiment are the
mass of the bead m the gravity constant g and a characteristic
length scale x0. Therefore, we attribute dimensions to D(x)
and σ (x) for the model to make physical sense,

σ (x) = 1

mgx0
σ (ρ),

D(x) = 1√
gx0

D(ρ),

with ρ = x/x0, D(ρ), and σ (ρ) dimensionless parameter
and functions. We can thus write h(x) = x0h(ρ) and f (x) =
x0f (ρ) Since V = mgh(x) = 1/2σ (x), we find h(ρ) =
1/2σ (ρ). We use the effective mass equation to find ∂ρf (ρ)
by

[∂ρf (ρ)]2 = σ (ρ)

D2(ρ)
− 1 − 1

4

[∂ρσ (ρ)]2

[σ (ρ)]4
. (C1)

Unfortunately, the right-hand side of Eq. (C1) is not always
positive. For example, for the AMFH model, we find that the
right hand side of Eq. (C1) is in fact always negative. However,
recall that the DPTs are dominated by the potential, and the

role of the diffusion D(ρ) is secondary. So, changing D to,
e.g., D = [(1 − ρ)ρ]4 allows us to find a real function f (ρ)
in for any ρ ∈ [0,1]. We note that the potential can never
be truly mimicked as V (ρ → 0) → −∞ is experimentally
unreachable. This toy model provides merely a proof of
principle. One can compose a variety of potentials using, e.g.,
electric fields to try and mimic the desired Hamiltonian for
arbitrary D,σ . This will not be attempted here.

APPENDIX D: ACYLCIC TRAJECTORIES FOR THE
AMFH MODEL

To complete the discussion in Sec. III we discuss possible
DPTs for two cases of acyclic paths in the AMFH model.
Namely, the reservoirs are taken at different densities.

Case 1, ρl < ρA and ρA < ρr < ρB : Here, there is always
a direct trajectory where �0 > 0 with H ∈ (V (ρA),∞). The
particle passes over the ρA potential peak and directly
continues to ρr . Here, larger energies H correspond to smaller
time values τ . Any τ value is viable. A second possible
solution is again for �0 > 0, with H ∈ (V (ρA),V (ρC)). Here
the particle crosses ρl once as it starts to climb towards ρC , only
to tumble back down towards ρl . Here there is some minimal
finite time τ0, below which the trajectory cannot be realized.
This ensures that the direct trajectory dominates at short times.
Evaluating Eq. (8) ensures that the direct trajectory is no longer
dominant at large enough times. Therefore, we have identified
a DPT.

Case 2, ρl = ρA and ρr = ρC : Here it is easy to understand
that there is only a single trajectory possible to reach from
ρA to ρC . This means we cannot identify a DPT from the
geometrical approach. Of course, this does not exclude a DPT
altogether.

APPENDIX E: PHYSICAL MODELS THAT SUPPORT DPTs

Let us present here in more detail two physically relevant
models that reproduce the discussed DPTs of the main text.

1. The long-range hopping with exclusion model

This model, proposed by Bodineau [44,45], is a one-
dimensional lattice-gas model with at most one particle per
lattice site. A particle can hop from site i to an empty nearest-
neighbor site i ± 1 with rate 1 and it is also allowed to hop from
site i to an empty site i ± (β + 1) with rate α provided that
the β sites separating them are all occupied. D and σ can be
obtained analytically as this this is a gradient model [60]. We
obtain D(ρ) = 1 + α(β + 1)2ρβ and σ (ρ) = 2ρ(1 − ρ)D(ρ)
with ρ ∈ [0,1]. Choosing α = 1

24 and β = 9 allows us to
reproduce the double peaked potential as shown in Fig. 4.
This of course allows us to reproduce the DPTs discussed in
the main text.

2. The Katz-Leibowitz-Spohn model

The Katz-Leibowitz-Spohn [56,57] model is a lattice gas
model with exclusion, that incorporates nearest-neighbor
hopping with interactions. The dynamics of right-handed
hopping is given below, where full circles represent occupied
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FIG. 4. The corresponding potentials for the Long-range hopping
model with α = 1

24 ,β = 9 (solid red line) and the KLS model with
δ = 0.45,ε = 0.99 (dashed blue line). The inset shows a zoom-in on
the extremal points structure of the Long-range hopping model.

sites and empty circles represent empty sites:

◦ • ◦ ◦ 1+δ−−→ ◦ ◦ • ◦ • • ◦ ◦ 1+ε−−→ • ◦ • ◦
• • ◦ • 1−δ−−→ • ◦ • • • ◦ • ◦ 1−ε−−→ ◦ • • ◦

The spatially inverted transitions occur with identical rates.
The parameters ε,δ provide some control over D,σ , where
exact expressions are given in the Appendix of Ref. [47]. By
choosing, e.g., ε = 0.99,δ = 0.45, we can obtain the desired
double peaked potential to reconstruct the DPTs discussed in
the main text (see Fig. 4)

APPENDIX F: MULTI-SPECIES MODELS

In this section we show how to extend the Hamiltonian
approach to one-dimensional boundary-driven systems with
d different species of particles. Here again, we consider
all the different species are conserved in the bulk, namely,
∂tρα = −∂xjα for α = 1...d. We also consider a generalized

stochastic Fick’s law of the form jα = qα +
√

σαβ

L
ξβ , where

the conductivity σ determines the strength of the fluctuations
and qα determines the mean current. To make matters simple,
we consider qα of the form

qα = −Dαβ∂xρβ, (F1)

where Dαβ is the diffusion matrix. We can thus obtain a
Lagrangian of the form

L = 1
2σ−1

αβ (jα + qα)(jβ + qβ ), (F2)

where σ−1 is the inverse of the conductivity matrix.
Now, using the AP, we take jα(x,t) → Jα and ρα(x,t) →

ρα(x). As usual, we rescale x → s = xJ1 ∈ [0,τ ], such that
we want to find

W (τ ) =
∫ τ

0
ds L1d , (F3)

where L1d = 1
2σαβ(rβ + qβ)(rβ + qβ), with rα = Jα/J1. The

corresponding Hamiltonian to L1d is

H1d = EK + V, (F4)

with

EK = 1
2m−1

αβ �α�β, (F5)

V = − 1
2 rαrβσ−1

αβ ,

where we have defined

mμν = Dαμσ−1
αβ Dβν. (F6)

As usual, �α are canonical variables to ρα and W (τ ) is also
given by

L1d = Ek − V + σ−1
αβ Dαγ m−1

ηγ rβ�η. (F7)

One can verify that Eq. (F7) becomes Eq. (8) for a single
species of particles. Identifying a DPT can be done in a
similar fashion to what was done in Secs. III and IV. However,
finding and analyzing a microscopic model that presents such
a transition is beyond the scope of this paper.

APPENDIX G: NUMERICAL VERIFICATIONS

In this section we present numerical verifications for cases
1 and 3 of the AMFH model in Sec. III. We numerically solve
the Hamilton equations with the Cauchy boundary conditions.
Namely, we set the initial conditions ρ(s = 0) = ρl and �(s =
0) = �0. We vary �0 to set the energy H within the allowed
range of the desired trajectory. We identify τ to satisfy ρ(τ ) =
ρr . Note that for a trajectory of choice we already determine
how many times ρ(s) visits ρr as τ need not be the first time
ρ(s) = ρr .

The plots of W (τ ) for the different trajectories are shown
in Fig. 5.

FIG. 5. The numerical values for the action W (τ ) for two possible
solutions are considered. (a) corresponds to Case 1 and (b) to Case 3
in Sec. III. The (red) curve represents the action W (τ ) in the “staying
put” solution and the (blue) circles correspond to the action W (τ ) of
the positive initial momentum �0 solution. In both cases, the positive
initial momentum solution becomes dominant as soon as it is feasible
[i.e., τ0 = 6.7(5.6) for case 1 (3), correspondingly].
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