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Diverging, but negligible power at Carnot efficiency: Theory and experiment
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We discuss the possibility of reaching the Carnot efficiency by heat engines (HEs) out of quasistatic conditions
at nonzero power output. We focus on several models widely used to describe the performance of actual HEs.
These models comprise quantum thermoelectric devices, linear irreversible HEs, minimally nonlinear irreversible
HEs, HEs working in the regime of low-dissipation, overdamped stochastic HEs and an underdamped stochastic
HE. Although some of these HEs can reach the Carnot efficiency at nonzero and even diverging power, the
magnitude of this power is always negligible compared to the maximum power attainable in these systems.
We provide conditions for attaining the Carnot efficiency in the individual models and explain practical aspects
connected with reaching the Carnot efficiency at large power output. Furthermore, we show how our findings
can be tested in practice using a standard Brownian HE realizable with available micromanipulation techniques.

DOI: 10.1103/PhysRevE.96.062107

I. INTRODUCTION

Ever since first heat engines (HEs) appeared, engineers and
physicists optimized their output power and efficiency [1]. The
most influential theoretical result in this field was achieved by
Carnot already in the beginning of 19th century [2]. Consider
a HE which can communicate with heat baths at temperatures
ranging from Tc to Th. Then, regardless of the details of the
machine, the ratio η = W/Qh of work done by the engine to
heat accepted from surroundings is bounded from above by the
Carnot efficiency ηC = 1 − Tc/Th. Recently, a lot of studies
discussed whether and how this efficiency can (or cannot) be
actually attained in practice [3–13].

Two general classes of systems where the Carnot efficiency
can be reached according to the second law are depicted
in Fig. 1. These comprise HEs coupled simultaneously to
two reservoirs at temperatures Th and Tc (steady-state HEs,
left) and HEs which operate periodically and are always
coupled to a single bath at a time (periodic HEs, right). The
Carnot efficiency can be attained also in mutations of these
two classes, for example, by HEs coupled simultaneously
to two baths and operated periodically [14,15]. All these
machines share one important feature: they can communicate
with reservoirs at the boundary temperatures Th and Tc

only.
Let us now focus on the periodic HEs of Fig. 1(b).

Assuming that the both baths are ideal thermodynamic
reservoirs (of infinite size and infinitely fast relaxation), the
second law of thermodynamics states that the total amount
of entropy produced per cycle, �Stot, fulfills the inequality
�Stot = Qc/Tc − Qh/Th � 0, which leads to the relation
−Qc/Qh = −�StotTc/Qh − Tc/Th � −Tc/Th. Using further
the definition W = Qh − Qc > 0 for the output work of the
engine, P = W/tp for the output power and σ = �Stot/tp for
the average amount of entropy produced per unit time during
the cycle, we obtain the following expression for the efficiency
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η = W/Qh:

η = ηC

1 + Tcσ/P
� ηC. (1)

The same result (only with σ = qc/Tc − qh/Th) holds also for
the steady-state HEs, Fig. 1(a).

The inequality (1) shows that the Carnot efficiency can be
reached if and only if Tcσ/P → 0. A standard example where
this occurs is the quasistatic limit of infinitely slow driving
(tp → ∞). Then the system is in thermodynamic equilibrium
during the whole cycle and σ = 0. However, in this limit,
the output power of the engine vanishes. It was suggested
only recently [12,13,16–18] that there exist other ways to
achieve ηC .

First, Campisi and Fazio showed that ηC at nonzero output
power can be attained in a HE working close to a critical point
[12,16,17]. Second, the Carnot efficiency can be reached in
the limit of infinitely fast dynamics [11,18]. It is important
to note that both these suggestions lead to diverging heat
flows through the system. In the critical HE, this is caused
by the diverging heat capacity of the working fluid, for the
infinitely fast dynamics, by diverging rates for processes of
heat exchange with reservoirs. Such diverging energy currents
represent an intuitive hallmark of devices reaching ηC out
of equilibrium. Indeed, for a nonequilibrium process, one
naturally assumes that Tcσ > 0. Then Eq. (1) implies that
ηC can be reached only in the limit P → ∞.

It should be noted that these suggestions for reaching the
Carnot efficiency are based on idealized setups. In practice,
these machines may work close to ηC , but they can never
reach it, as discussed in Refs. [9,10,19,20]. The critical HE
proposed in Ref. [16] exhibits diverging fluctuations of output
work and power [20]. In a more general study, Shiraishi and
Tajima [9] show that ηC cannot be reached once finite reservoir
relaxation times are taken into account (see also Refs. [21,22]).

In the present paper, we answer three basic questions con-
cerning attainability of the Carnot efficiency out of quasistatic
conditions: (i) What is the magnitude of the output power of a
HE operating with ηC? (ii) For what parameters can the Carnot
efficiency at nonzero power be attained in widely used models?
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FIG. 1. Two major classes of HEs which can achieve the Carnot
efficiency. These HEs communicate with reservoirs at temperatures
Th and Tc only. Steady-state HEs [panel (a)] are coupled simul-
taneously to both reservoirs and operate under time-independent
conditions. They transform the difference between the steady heat
influx qh and the steady heat outflow qc into the output power P .
Periodically driven HEs coupled always to a single bath at a time
[panel (b)] operate in a time-periodic nonequilibrium steady state.
These engines accept the total amount of heat Qh (−Qc) from the hot
bath (cold bath) per cycle of the duration tp and deliver the average
output power P = W/tp. Black branches of the cycle are adiabats,
and other branches are isotherms.

(iii) Can an actual HE operating close to ηC at large output
power be constructed using currently available experimental
techniques?

In Sec. II, we answer the first question for models where
the upper bound on efficiency at given power is known.
These comprise quantum thermoelectric HEs [23,24], linear
irreversible HEs [25,26], HEs working in the regime of
low-dissipation and overdamped stochastic HEs [27], mini-
mally nonlinear irreversible HEs [28], and an underdamped
stochastic HE [29]. The result is quite surprising. In all these
models, ηC can be reached only at output powers which are
vanishingly small as compared to the maximum power P �

attainable by the device. Reaching the Carnot efficiency thus
may not be the most frequent goal in engineering practice
where the magnitude of the output power often represents an
important component of the figure of merit.

This allows us to generalize the well-known textbook
wisdom that ηC can be reached only at vanishingly small
power P to the following conjecture: the Carnot efficiency
can be attained only at a vanishingly small ratio P/P �. First,
this fraction vanishes in the quasistatic limit (P → 0). Second,
it vanishes for a fixed nonzero output power P and diverging
maximum power P � → ∞.

In Sec. III we answer the second question for the models
mentioned above. The Carnot efficiency at nonzero power
can be reached for reasonable parameter values just in linear
response HEs, low-dissipation HEs, overdamped stochastic
HEs, and minimally irreversible HEs. For these models, we
propose a specific scaling of parameters inspired by Ref. [18]
which can bring the efficiency arbitrarily close to ηC at P > 0.
It turns out that this is possible both for a positive average
entropy production σ where the power at ηC diverges and for a
vanishing σ where the power can be both finite and diverging
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FIG. 2. Upper bound on the efficiency at given power for quantum
thermoelectric HEs (dotted black line), for linear irreversible HEs (5)
(full blue line), for low-dissipation HEs and minimally nonlinear
irreversible HEs (11) (dashed orange line), and for HEs based on
an underdamped Brownian particle in a breathing parabola potential
(20) (dot-dashed purple line); ηC = 3/5.

(see Secs. III B and III D, a similar result was obtained in
Ref. [11]).

The answer to our third question is given is Sec. IV, where
we describe how our results can be tested using a stochastic
Brownian HE [30–38]. The HE consists of a Brownian particle
diffusing in a harmonic trap with time-dependent stiffness and
was already realized experimentally [30–32,38]. We present
a realistic scaling of the stiffness under which the power and
efficiency of the HE increase at the same time. Moreover, in
contrast to the critical HE [16,20], this scaling leads to bounded
relative power fluctuations and hence the suggested stochas-
tic HE can operate efficiently with a well-defined output
power.

II. BOUNDS ON MAXIMUM EFFICIENCY
AT GIVEN POWER

Upper bounds on efficiency at given power obtained in
the studies [23–25,27–29] can be effectively written using the
variable [39,40]

δP = P − P �

P �
, δP ∈ [−1,0], (2)

which measures relative change in power P with respect to the
maximum power P � achievable in a given setup.

Let us denote the maximum efficiency attainable at given
power as η+(δP ). The individual upper bounds for all the
models mentioned in the Introduction are plotted in Fig. 2.
All the curves monotonously increase with decreasing δP

from the efficiency at maximum power (δP = 0) to the
Carnot efficiency (δP = −1). In all the models, ηC can thus
be reached under the condition P/P � → 0 only. Hence we
have η = ηC + f (P/P �), limx→+0 f (x) = 0. For the models
considered here, the function f (x) is given by the power
law f (x) = cxθ with a negative constant c (η � ηC) and a
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positive exponent θ . Close to ηC , it follows from Eq. (1) that
η = ηC − ηCσTc/P , and we thus have

η − ηC ≈ −ηC

σTc

P
= f

(
P

P �

)
= c

(
P

P �

)θ

� 0. (3)

In case the maximum power P � is finite, ηC can be reached
only at vanishingly small power P and thus at quasistatic
conditions. The possibility to attain the Carnot efficiency
at nonzero or even diverging power opens only when the
maximum power diverges faster than P .

This suggests that reaching ηC at P > 0 may not be the
holy grail of engineering practice where a tradeoff between
power and efficiency is often optimized [41–48]. Consider, for
example, the target function ξ = ηαP β , α � 0, β � 0, which
should be optimized. If we denote as ξC and ξ� the values of
this function at maximum efficiency and at maximum power,
respectively, we find that the condition PC/P � = 0 yields
ξC/ξ� = 0 whenever β �= 0. Our findings thus encourage the
struggle for reaching ηC only if the ultimate performance goal
is the maximum efficiency (for example at a fixed value of
output power). In such a case, the advantage of HEs working
close to ηC under nonequilibrium conditions is their typically
large power output (which is still negligible as compared
to P �). A practical disadvantage resides in preparation of a
working medium and/or operational cycle for such engines,
which must be tuned in a special way.

Having described the general formulation of our findings,
let us now turn to particular examples of HEs. Below, we
review the bounds obtained for the individual model HEs and
discuss the conditions under which these HEs can achieve the
Carnot efficiency. In Sec. III A we discuss short thermoelectric
HEs and Sec. III B contains an extensive discussion of linear
response HEs. In Sec. III C we discuss in detail low-dissipation
HEs in general, and Sec. III D is devoted to a HE based on
an underdamped particle diffusing in an externally controlled
parabolic potential. Finally, in Sec. IV, we propose a specific
setup where ηC at P > 0 can be reached in experiments
with Brownian particles diffusing in an externally controlled
potential. We give a detailed model study including all
experimentally relevant parameters.

From a practical point of view, the scalings presented in
Secs. III B, III C, and IV must be understood as recipes on
how to set model parameters in order to attain efficiencies
close to ηC at large output power, as it is presented in Figs. 4
and 5. For η = ηC , the parameters in the individual models
either diverge (Onsager coefficients for linear response HEs)
or vanish (the cycle duration for low-dissipation HEs and for
the Brownian HE). Such extreme values are experimentally
inaccessible and challenge the validity of basic assumptions
underlying the individual models.

III. EXAMPLES

A. Quantum thermoelectric heat engines

Thermoelectric HEs are connected to two thermodynamic
reservoirs at different chemical potentials and temperatures
(see Ref. [49] for the latest review). They are operating in a
nonequilibrium steady state [Fig. 1(a)] using the temperature
gradient for pumping electrons against the gradient of chemical

potential. For quantum thermoelectric HEs operating under
vanishing magnetic fields, the upper bound on efficiency can be
written analytically only for δP → −1, where it reads [23,24]

η+(δP ) = ηC[1 − 0.478
√

(1 − ηC)(1 + δP )]. (4)

For the remaining values of δP , the curve can be obtained
numerically [23,24]. The resulting curve depicted in Fig. 2
always exhibits the general features described above.

This bound was derived by Whitney [23,24] using non-
linear Landauer-Büttiker scattering theory, and it is gener-
ally valid for all systems which can be modeled by this
theory. In particular, the bound may not be valid once
the time-reversal symmetry of the underlying dynamics is
broken, for example, by introducing magnetic fields into the
system.

The maximum power corresponding to the bound (4) is
given by P � = A0π

2Nk2
B/h(Th − Tc)2, where A0π

2k2
B/h is

a constant and N is the number of transverse modes in the
narrowest part of the quantum system. Assuming that N is
finite, the bound (4) suggests that ηC at P > 0 may be reached
in the unrealistic case of diverging temperature difference,
Th − Tc → ∞, only.

When the efficiency of the thermoelectric reaches ηC , the
entropy production scales as σ ∝ P 3/2 [23,24]. The ratio σ/P

thus scales as σ/P ∝ √
P , leading to the exponent θ = 1/2

in Eq. (3). This can be checked by the direct calculation from
Eq. (4).

B. Linear irreversible heat engines

Let us now focus on HEs working in the linear response
regime. The linear response formalism is valid for an arbitrary
system if (thermodynamic) forces acting on it are small
enough that the system operates close to thermal equilibrium.
The formalism can be applied both to HEs operating in
a nonequilibrium steady state caused by their simultaneous
coupling to two (or more) reservoirs at different temperatures
[Fig. 1(a)] and to cyclic HEs, which are connected only to
a single bath at a time [Fig. 1(b)]. Because the two classes
of models were shown to be equivalent [6,50], we limit our
discussion to steady-state models only.

Assuming that the Onsager matrix describing the linear
model is symmetric, the upper bound on efficiency at given
power is given by [25]

η+(δP ) = ηC

2
(1 + √−δP ). (5)

For nonsymmetric Onsager matrices, the Carnot efficiency can
be reached in principle even at maximum power [3] in the limit
L12/L21 → ∞ if one considers just the restriction imposed by
the second law. However, for example, for thermoelectric HEs
a detailed analysis of Onsager coefficients strongly suggests
that the power vanishes at least linearly when η reaches
ηC [51]. This result narrows the way to a thermoelectric
working in the linear response regime at η = ηC and P > 0.
Nevertheless, such a working regime may be still attainable
even for a symmetric Onsager matrix based on considerations
of Ref. [18].
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We demonstrate this possibility on the simple model
comprising just two thermodynamic forces X1, X2 and fluxes
J1, J2 related by a symmetric Onsager matrix:

J1 = L11X1 + L12X2, (6)

J2 = L12X1 + L22X2. (7)

The first thermodynamic force X1 = F/T determines the
output power P = −J1X1T (F is the load attached to
the engine and T is the system temperature). The second
thermodynamic force X2 = (Th − Tc)/T 2 impels the heat flux
J2 from the hot reservoir to the system. The engine efficiency
is thus defined as η = P/J2.

The maximum power P � = η2
CL22q

2T/4 is in this sys-
tem attained for the load X�

1 = −L12X2/(2L11) at the effi-
ciency η� = 0.5ηCq2/(2 − q2) [25,52]. The constant, q2 =
L2

12/(L11L22), characterizes coupling between the fluxes J1

and J2, which become proportional for q2 = 1. The definition
of the entropy production in the system, σ = J1X1 + J2X2,
together with the second law, σ > 0, implies the following
limitations for the Onsager coefficients: L11 � 0, L22 � 0,
and L11L22 − L2

12 � 0. These restrictions give the bounds
−1 � q � 1 for the coupling constant q.

With these definitions and results, the maximum efficiency
at given power can be written as [25]

η = η�(1 + δP )
2 − q2

2 − q2(1 + √−δP )
. (8)

Optimization of this result with respect to q2 gives the formula
(5) and the optimal value of the parameter q = 1. To sum
up, ηC can be in this model attained only when q = 1 and
δP = −1.

The ratio P/P � can be written as P/P � = (2 −
X1/X�

1)X1/X�
1. Thus the condition δP = −1 implies ei-

ther X1 = 0 or X1/X�
1 = −(2L11X1)/(L12X2) = 2, and from

q2 = 1 it follows that L12/L11 = L22/L12. When both these
conditions are strictly satisfied, the output power P as well as
the entropy production σ vanish, meaning that ηC is reached
under quasistatic conditions.

However, the way is not completely closed yet, as suggested
in Refs. [8] and [18]. This is because we can set q2 = 1
and ensure that δP approaches −1 asymptotically such that
neither P nor σ vanish and, at the same time, η approaches
ηC . Setting L12/L11 = L22/L12 (q2 = 1), output power and
entropy production can be written as

P = −L12X1X2

(
1 + L11X1

L12X2

)
T , (9)

σ = L12X1X2

(
L11X1

L12X2
+ 2 + L12X2

L11X1

)
. (10)

For q2 = 1, only two free parameters remain, e.g., L11 and
L12. We now let them diverge and assume that thermodynamic
forces X1 and X2 are bounded, which is reasonable in the linear
response regime. Instead of working directly with the two
Onsager coefficients, it is convenient to split the flux J1 such
that L12X2 = (J∞ + J1) and L11X1 = −J∞. Assuming that
J∞ 	 J1 > 0, the condition −L11/L12 = X2/X1 (or δP =
−1) is strictly obeyed in the limit J∞ → ∞ only. Inserting

these expressions into Eqs. (9) and (10), we determine
asymptotic behavior of σ , P , and P � as J∞ → ∞. We
obtain σ ≈ −X1J

2
1 /J∞, P ≈ X2J1, and σ/P ≈ J1/J∞ for

their ratio, which must vanish as η → ηC . The ratio P/P �

reads P/P � ≈ 4J1/(T 2J∞), and hence it vanishes in the same
way as σT/P . The exponent θ in Eq. (3) thus equals 1.

The Carnot efficiency at nonzero power can thus be reached
for J∞ → ∞. Let us assume that J1 ∝ J κ

∞, κ < 1. Then the
power diverges as J∞ → ∞ whenever κ > 0 and is finite
otherwise. In the same limit, the entropy production σ vanishes
whenever κ < 1/2, is constant for κ = 1/2, and diverges
otherwise. By a proper choice of Onsager coefficients, one can
hence increase the output power, reach efficiencies arbitrarily
close to ηC , and at the same time, suppress the entropy
production.

To conclude, the Carnot efficiency can be reached by
properly tuning parameters of the working medium encoded
in Onsager coefficients. To get close to ηC , these coefficients
must attain relatively large values. In practice, large Onsager
coefficients can be obtained for binary mixtures near their
critical point (see Ref. [53] and the references therein). Our
results thus provide further evidence that ηC at P > 0 can be
attained by HEs working close to a critical point, as suggested
in Ref. [16].

C. Low-dissipation and minimally nonlinear
irreversible heat engines

For low-dissipation HEs [27] and for minimally nonlinear
irreversible HEs [28], the upper bound on efficiency at given
power reads

η+(δP ) = ηC

1 + √−δP

2 − (1 − √−δP )ηC

. (11)

The minimally nonlinear irreversible HEs represent straight-
forward generalization of linear irreversible HEs discussed
in the preceding section. Within this generalization, it is
assumed that the formulas (6) and (7) for the currents also
contain quadratic terms of the type κiJ

2
i . The setup used to

derive the bound (11) for minimally nonlinear irreversible
HEs [28] is mathematically equivalent to the low-dissipation
model [54]. The latter is discussed in next paragraphs,
including a straightforward physical interpretation of its basic
assumptions.

The low-dissipation model used to derive the bound
(11) is depicted schematically in Fig. 1(b), and it can be
mapped onto the Brownian HE depicted in Fig. 3, see
Refs. [27,39,40,55–57]. In Fig. 3, the filled blue Gaussian
represents the probability density function (PDF) for the
position of a Brownian particle driven by a time-dependent
potential (black line). During the cycle, the system is first
attached for time th to the hot bath and the potential widens
(the isothermal expansion). Then the bath temperature changes
from Th to Tc, and the potential further opens. We assume that
this happens so fast that the PDF remains unchanged (the
adiabatic step). After that, the system is attached for time
tc to the cold bath and the potential shrinks (the isothermal
compression). Finally, the nonequilibrium Carnot cycle is
closed as the temperature and the potential jump to their initial
values (the adiabatic step).
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FIG. 3. Sketch of the operational cycle of HEs based on a particle
diffusing in a time-dependent potential considered in Secs. III C, III D,
and IV. The filled blue curve stands for the probability density for the
position of the particle. The black parabola represents the potential at
the beginning of the individual branches.

The system performs work during the first two strokes when
the potential opens and consumes work in the rest of the cycle.
The described cycle was already realized experimentally using
a colloidal particle manipulated by optical tweezers by Blickle
and Bechinger [31]. We refer to Refs. [58–61] for a discussion
of different adiabatic and isothermal processes on microscale.

The main assumption of the low-dissipation model
[55,62,63] is that the heat exchanged with the individual
reservoirs during the isotherms can be written as

Qh = Th�S − Ah/th, (12)

Qc = Tc�S + Ac/tc, (13)

leading to the entropy produced per cycle,

�Stot = Ah

thTh

+ Ac

tcTc

. (14)

Here, Ah and Ac are positive parameters independent of
the times th and tc, and �S is the change of the system
entropy during the isothermal expansion. Low-dissipation HEs
thus work at vanishing entropy production under quasistatic
conditions (th → ∞ and tc → ∞).

Although the assumptions (12)–(13) may look oversim-
plified, there exist several real systems which fit into the
scheme. Examples are nanomotors based on two-level quan-
tum systems [64] and various overdamped Brownian HEs
[32,39,40,56,65]. In general, jumps in the temperature at the
ends of the isotherms bring the system far from equilibrium,
leading to additional terms in the total entropy production
(14) which would not vanish in the long-time limit. To avoid
this, one should drive the system in such a way that it is in
equilibrium both before and after the jump. While this can be
relatively easily achieved for large systems, it might require
a precise control of the system dynamics on the microscale
[32,39,40,56,57,64–66].

Let us now investigate if low-dissipation HEs can operate
with the Carnot efficiency at nonzero power. In Sec. IV,
we will exemplify the obtained results using an exactly

solvable Brownian HE [39,40,56,57] which can be realized
experimentally [30–32,38].

Because the adiabatic branches are (infinitely) faster than
the isotherms, the total duration of the cycle is given by tp ≈
th + tc. Introducing the parameter α through the formulas th =
αtp and tc = (1 − α)tp, the power of a low-dissipation HE is
given by [56]

P = (Th − Tc)�S

tp
− (1 − α)Ah + αAc

t2
pα(1 − α)

. (15)

Optimization of the power with respect to tp and α gives

α� = Ah − √
AhAc

Ah − Ac

, (16)

t�p = 2

ThηC�S
(
√

Ah +
√

Ac)2, (17)

P � = 1

4

(
ThηC�S√
Ah + √

Ac

)2

, (18)

η� = ηC(1 + √
Ac/Ah)

2(1 + √
Ac/Ah) − ηC

. (19)

The upper bound for efficiency at maximum power, η+(0) =
ηC/(2 − ηC), and also the bound (11) are obtained in the limit
Ac/Ah → 0. Nevertheless, qualitatively similar bounds as (11)
apply for arbitrary Ac and Ah (see Fig. 2(b) in Ref. [27]).

The Carnot efficiency at nonzero power can be attained only
if the maximum power diverges, which occurs for (

√
Ah +√

Ac)2 → 0. To approach this condition asymptotically, we
assume that the coefficients scale as Ac ∝ A

−φ
∞ and Ah ∝ A−δ

∞ ,
A∞ → ∞. Then both Ac/Ah → 0 and (

√
Ah + √

Ac)2 →
0 whenever 0 < δ < φ. The condition (

√
Ah + √

Ac)2 → 0
alone is fulfilled for 0 < φ � δ.

Vanishing coefficients Ac and Ah lead to a vanishing
entropy production (14) unless the cycle duration tp also goes
to zero. This occurs in the regime of maximum power, where tp
(17) scales as t�p ∝ Ah. Larger efficiencies than η� are obtained
for tp > t�p [27]. Let us thus assume that tp = t�pA−κ

h , κ > 0,
and α = α�.

Using this scaling we obtain the relation P ≈
(ThηC�S)2Aκ−1

h /2 for power and the formula σ/P =
Aκ

h/(2Th) for the ratio, which must vanish at η = ηC . The
power at the Carnot efficiency is constant for κ = 1 and
diverges for 0 < κ < 1. The entropy produced per cycle scales
as �Stot ≈ 2Aκ

h, and the average entropy produced per unit
time is given by σ = Th(ηC�S)2A2κ−1

h /2. We hence see that
the average entropy produced per cycle vanishes whenever
η = ηC at P > 0. The entropy produced per unit time vanishes
for κ < 1/2, is nonzero for κ = 1/2, and diverges otherwise.
We obtain the same surprising result as in the linear response:
By a proper choice of parameters one can increase the power,
achieve efficiencies arbitrary close to ηC , and, at the same time,
suppress the entropy production. Finally, the ratio P/P � reads
P/P � ≈ 2Aκ

h, and thus it scales in the same way as �Stot and
σ/P [exponent θ in Eq. (3) equals 1].

The discussed setting represents another example of reach-
ing ηC at P > 0 by fast driving, as suggested in Ref. [18]
for a different model. In Sec. IV, we show that a HE based
on an overdamped Brownian particle driven by an optimally
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controlled parabolic potential is a low-dissipation HE. Interest-
ingly enough, this is not the case for an underdamped particle.

D. Underdamped Brownian heat engine

For a stochastic HE based on an underdamped Brownian
particle driven by optimally controlled parabolic potential, the
bound on efficiency at fixed power is [29]

η+(δP ) = ηCA(1 + δP ) − ηC

2
δP

+ 1

2

√−δP

√
η2

C − η4
CA(1 + δP ), (20)

where ηCA = 1 − √
Tc/Th stands for the famous Curzon-

Ahlborn efficiency [67–70]. The model used for the derivation
is based on the cycle depicted in Fig. 3.

The maximum power is given by P � =
γhγc(

√
Th − √

Tc)
2
/(

√
γh + √

γc)2, and thus it diverges
for diverging temperature differences or for diverging friction
constants γh and γc, in complete contradiction to what is
found in the overdamped limit [see Eqs. (18) and (27)]. The
former regime of operation is unphysical, and the latter one
breaks the basic assumption of the model. The formula (20)
has been derived assuming a small friction coefficient as
compared to the frequency ω of the parabolic potential ωx2.
Under this assumption, ηC can be reached only for very strong
potentials.

From Eqs. (3) and (20) it follows that σ/P =
η2

CA/(ThηC)P/P � and thus the exponent θ in Eq. (3) is for
the present model equal to 1.

IV. PROPOSED EXPERIMENT: BROWNIAN
HEAT ENGINE

Brownian HEs are frequently used to demonstrate and ver-
ify the latest results in stochastic thermodynamics [30,31,31–
37,39,40,56]. In this section, we show how to tune the control
parameters of a realistic overdamped HE such that it works
close to ηC at large output power.

We consider the one-dimensional Brownian HE with the
working cycle depicted in Fig. 3. The probability density
for the particle position satisfies the Fokker-Planck equation
[56,71]:

∂

∂t
p(x,t) = − ∂

∂x
j (x,t) , (21)

j (x,t) = − 1

γ (t)

{
kBT (t)

∂

∂x
+

[
∂U (x,t)

∂x

]}
p(x,t) , (22)

supplemented by the periodicity condition p(x,t + tp) =
p(x,t). Above, kB is the Boltzmann constant, γ (t) denotes
the friction constant, T (t) stands for the actual temperature of
the reservoir coupled to the particle, and U (x,t) denotes the
externally controlled potential. The friction constant depends
on temperature. Thus we have T (t) = Th, γ (t) = γh along the
hot isotherm and T (t) = Tc, γ (t) = γc along the cold one.

The thermodynamics of the Brownian HE is described by
Eqs. (12) and (13) with the parameters [56] (see also Eqs. (8)

and (10) in Ref. [72])

Ah,c = γh,cth,c

∫ t
h,c
f

t
h,c
i

dt

∫ ∞

−∞
dx

j 2(x,t)

p(x,t)
. (23)

Here thi (thf ) denote the initial (final) time of the hot isotherm
of the cycle and t ci (t cf ) denote the same for the cold one.
In general, the parameters Ah,c depend on durations of the
two isotherms in a nontrivial way. However, once the time
dependence of the potential is optimized to yield maximum
output work, the parameters Ah,c become independent of th,c.
Then the Brownian HE is a low-dissipation HE.

Further, we assume the specific potential

U (x,t) = k(t)

2
x2, (24)

for which the optimization procedure can be performed analyt-
ically [56,57] and which is easily created by optical tweezers
[30–32,38]. The resulting optimal driving k(t) contains a
discontinuity connected with the instantaneous change of
temperature during the adiabatic branches [57]. Let us denote
as kh(t) (kc(t)) the optimal protocol during the hot (cold)
isotherm. These functions read

kh(t) = T+
2w0

1

(1 + b1t)2
− b1

1 + b1t
, (25)

kc(t) = T−
2wf

1

[1 + b2(t − th)]2
− b2

1 + b2(t − t+)
. (26)

Here, the parameter w0 (wf ) stands for the variance of the
particle position at the beginning (end) of the hot isotherm
(see Fig. 3). The constants b1 and b2 are given by b1 =
(
√

wf /w0 − 1)/th and b2 = (
√

w0/wf − 1)/tc [73].
Using this driving, the parameters Ah and Ac are given by

Ah,c = γh,c(
√

wf − √
w0)2. (27)

The scaling Ac ∝ A
−φ
∞ and Ah ∝ A−δ

∞ proposed in Sec. III C
to reach the Carnot efficiency in the limit A∞ → ∞ thus
implies that ηC can be reached either for vanishing friction
constants γh,c or for the vanishing bracket (

√
wf − √

w0). The
assumption of small friction constants contradicts conditions
of the overdamped limit. The ratio wf /w0 determines the
increase in system entropy during the hot isotherm, �S =
kB log (wf /w0)/2, and thus the reversible work done by the
system. In order to achieve small parameters Ah,c, we thus
assume that the particle is during the whole cycle strongly
localized, i.e., w0,f → 0, while we keep constant wf /w0.

In micromanipulation experiments with Brownian parti-
cles, the Carnot efficiency can be achieved as follows. We set
δ = φ and γh = γc and thus Ah = Ac. The assumption of equal
friction coefficients is realistic for changing the temperature
in accord with the study [32]. We also take equal durations of
the two isothermal branches, th = tc (thus α = 1/2). Finally,
we assume that the largest variance during the cycle scales as
wf = w

−ξ
∞ , ξ > 0, and thus the coefficients Ah,c are given by

Ah = Ac ∝ w
−ξ
∞ , i.e., δ = φ = ξ .

In the numerical illustration shown in Figs. 4–6, we consider
a very light colloidal particle of the diameter R = 10−6 m
diffusing in water with the friction coefficient given by Stokes’
law: γh = γc = γ = 6πRμ. Here μ = 1.002 × 10−3 Pa s is
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FIG. 4. Efficiency η (upper panel), power P and maximum power
P � (middle panel), and two variables (3) measuring the distance from
the Carnot efficiency of the engine described in Sec. IV as functions of
the scaling parameter w∞. The increasing efficiency is accompanied
with the increasing power in direct contradiction with the quasistatic
limit. The detailed description and the parameters used are given in
Sec. IV.

the dynamic viscosity of water at the room temperature,
293.15 K. We assume that the real bath temperature during both
branches is Tc = 293.15 K and that during the hot isotherm
this temperature is effectively increased by an additional
external noise to Th = 5273.15 K, in accord with the recent
experimental work [32]. The corresponding Carnot efficiency
is ηC ≈ 0.945. We use the exponent κ = 0.05 for the cycle
time tp and ξ = −3 for the maximum variance wf , i.e., we
take tp = t�pA−0.05

h and wf = w−3
∞ . Finally, we fix the ratio

of the maximum and minimum variance to be wf /w0 = 2.
According to Sec. III C, this choice leads to the following
scaling of the thermodynamic variables in question: P ∝
w2.85

∞ , P � ∝ w3
∞, tp ∝ w−2.85

∞ , t�p ∝ w−3
∞ , ηC − η ∝ P/P � ∝

σ/P ∝ �Stot ∝ w−0.15
∞ , and σ ∝ w2.7

∞ .
In Fig. 4 we show the behavior of thermodynamic variables

of the system with increasing parameter w∞. The engine
efficiency η converges to ηC ≈ 0.945 (upper panel). In contrast
to the quasistatic limit, this increase in η is accompanied with
an increase in power (middle panel). The lower panel shows
the convergence of the ratio of power to maximum power,
P/P ∗, and of the product Tcσ/P to zero as η → ηC . The two
lines are parallel, as predicted by Eq. (3) for η close to ηC .

In Fig. 5 we show experimentally controlled variables as
functions of the parameter w∞. Both the cycle duration tp
and the optimal cycle duration t�p goes from experimentally
unaccessible values (years) for small w∞ to reasonable values
(seconds) for large w∞. Similarly, the minimum and maximum
particle variance (middle panel) are very large for small w∞
and attain realistic values for large w∞. The corresponding
maximum spring constant kmax = kh(0) is plotted in the lower
panel. The whole range of the spring constant shown in the

100

1010

10-13

10-2

101 102 103 104
10-16

10-6

FIG. 5. Total cycle duration tp and duration of the cycle at
maximum power t �

p (upper panel), minimum and maximum variances
of the particle position during the cycle w0 and wf (middle panel), and
the maximum value of the trap stiffness (lower panel) for the engine
described in Sec. IV as functions of the scaling parameter w∞. The
region accessible in experiments is roughly w∞ ∈ (103,104), where
the cycle time decreases from 1 h to 5 s. A detailed description and
the parameters used are given in Sec. IV.

figure, especially the part for large w∞, can be readily achieved
in experiments either by using optical tweezers [30–32] or a
feedback or anti-Brownian electrokinetic trap [33–37].

In Fig. 6 we show the relative fluctuation of power,√
〈P 2〉 − 〈P 〉2/P . The calculation has been performed nu-

merically using the procedure described in Ref. [57], Sec.
3.2. The power fluctuation increases with increasing scaling
parameter w∞ and saturates at a relatively small value in the

101 107 1013
1.5

2

2.5

3

FIG. 6. The relative fluctuation of power for the Brownian HE
described in Sec. IV as a function of the scaling parameter w∞. A
detailed description and the parameters used are given in Sec. IV.
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limit w∞ → ∞. In contrast to the critical HE introduced in
Ref. [16] (see Ref. [20]), the proposed Brownian HE delivers
a relatively stable output power.

V. CONCLUSION AND OUTLOOK

The struggle to reach the Carnot efficiency at nonzero
output power is an exciting part of the current research in
nonequilibrium thermodynamics. In the present work, we have
added another piece into the mosaic: For various models
widely used to describe the performance of actual HEs, the
output power at which ηC can be possibly reached is doomed
to be negligibly small as compared to the maximum power
achievable in these models. This is best visible from Eq. (3),
which shows that both the ratio of entropy production to
the output power, σ/P , and the ratio of output power to the
maximum power, P/P �, must vanish when the Carnot limit is
attained.

Besides that, we have investigated conditions for reaching
divergent maximum power and thus ηC at P > 0 in the
individual models. These settings seem to be unrealistic
for thermoelectric HEs (infinite temperature gradient) and
for an underdamped Brownian HE (the required conditions
break assumptions of the model). More realistic conditions
were found for linear response HEs, minimally nonlinear
irreversible HEs, and low-dissipation HEs.

In the linear response regime, ηC may be attained for
diverging Onsager coefficients, as also suggested in Ref. [18].
The open question is whether such conditions can be achieved
in a real system. A suitable candidate is the critical HE
proposed by Campisi and Fazio [16].

In the low-dissipation regime, ηC can be achieved for fast
cycles with vanishing dissipation coefficients Ah and Ac. In
practice, these conditions can be (nearly) satisfied by Brownian
HEs, which might be constructed using current microma-
nipulation experimental techniques. Concrete parameters and
the driving protocol for a Brownian HE operating near ηC

at large P are discussed in Sec. IV. We believe that this
detailed analysis will stimulate experimental verification of our
findings. In connection with the experiment, it would be very
interesting to investigate the behavior of probability densities

for work, heat, and fluctuating efficiency [5] for η close to ηC

at large power.
At first glance, the condition σ/P → 0 implies that reach-

ing ηC at P > 0 should require diverging power P , because
one naturally assumes that σ > 0. For linear response HEs and
low-dissipation HEs, we have found certain scalings which
allow reaching ηC at P > 0 and vanishing entropy production
at the same time. The corresponding power can both diverge
and attain a finite nonzero value. To the best of our knowledge,
such a scenario has not been discussed in previous works. In
practice, this allows constructing a HE operating close to the
Carnot efficiency at a large output power and with a small
entropy production.

The sensitivity of the individual models to the precise form
of the scaling which must be chosen in order to achieve ηC at
P > 0 represents the biggest qualitative difference between the
present approach and the quasistatic limit. In order to realize a
quasistatic cycle, it is enough to make it very slow, regardless of
the details of the system. On the contrary, the scalings leading
to the Carnot efficiency at nonzero power must be engineered
in a model-dependent manner and, moreover, their practical
usage requires precise control of the system dynamics.

Our present knowledge suggests that the limit η → ηC

always incurs negative effects. In the quasistatic limit, the
power at ηC vanishes. For critical HEs [16,17,20], approaching
ηC at P > 0 is accompanied by diverging power fluctuations
(even in the macroscopic limit). For HEs studied in this work
we observe a large loss in power as compared to the maximum
power regime. Interestingly, such negative effects are not
present in machines working under isothermal conditions in a
steady state driven by chemical or external forces [74]. Some
of these machines can reach the second law upper bound on
efficiency under maximum power conditions.
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