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Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks
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Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent
transformation of multiple variables in each elementary reaction event and nonlinear relations between states and
their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological
characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states
and surprising, low-information forms for their associated probability distributions. Here we derive equations
of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the
standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that
the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation.
Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces
the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states,
moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may
be approximated separately by distributions similar to those for deficiency-zero networks and connected through
matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of
high-order moments provides the starting condition for recursive solution downward to low-order moments,
reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by
having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution
to low-order moments in CRNs at general deficiency, in a 1/n expansion in large particle numbers. Our results
give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and
clarify the dynamical meaning of deficiency not only for first-moment conditions but for all orders in fluctuations.
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I. INTRODUCTION

Random walks of multiple independent particles on or-
dinary graphs are simple processes in several fundamental
senses [1–3]. Each step involves a change of a single degree
of freedom, and for the base case of proportional sampling
without replacement, the rate law for fluxes is linear in concen-
trations. Moreover, identification of topological properties of
ordinary graphs that determine characteristics of random-walk
dynamics can generally be carried out in polynomial time
[1,4].

Just the opposite is true of the stochastic processes
associated with chemical reaction networks (CRNs). Each
elementary reaction event (for a general network) can involve
the concurrent conversion of multiple inputs into multiple
outputs [5,6], making the elementary network on which
the reactions occur not an ordinary graph, but a directed
multihypergraph [7,8]. For the base case of proportional
sampling without replacement over reactants, the rate law
becomes nonlinear, leading generically to possibilities for
complex dynamics and multiple (stable or metastable) steady
states [9–11]. Moreover, identification of key topological
properties such as shortest reaction sequences connecting
inputs to outputs or complete sets of self-amplifying cycles,
which affect the character of CRN dynamics, are known to be
NP-hard problems for hypergraphs [12,13].

As a consequence, although stochastic processes with the
essential features of CRNs are ubiquitous in biochemistry
[14], systems biology [15], ecology [16], and epidemiology
[17] and are thus of large practical and theoretical interest,
few results exist for these systems [18–22] compared with
the large amount of literature that exists for random walks
on ordinary graphs [1]. In addition to systems that clearly
have CRN structure because the underlying processes obey
constraints of stoichiometry (the source of concurrency), the
CRN framework is flexible enough to furnish a representation
for systems of broad interest to nonequilibrium thermody-
namics such as the zero-range process [23], where topological
characteristics that are known to lead to simple steady states
for CRNs can be used to sieve for exactly solvable cases.
Indeed, some of the key results that are known for stochastic
CRNs [24] were motivated in part by earlier work of Kelly on
a related class of queuing networks [25].

A. Partitioning off the simple subarchitecture
in the core of complex CRNs

A representation scheme for CRNs was made standard by
the work of Feinberg [9,18], which separates the structure of
independent reaction events from the stoichiometric relations
that determine their action in the chemical state space. We
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will emphasize that, well beyond the use made by its original
authors, this decomposition defines the fundamental partition
in CRN architecture between a subsystem with the same
simplicity as the random walk on an ordinary graph and the
remainder of the CRN constraints responsible for concurrency,
nonlinearity, and their resulting complexity. Identifying the
subsystem isomorphic to a simple process is the key to
decomposing the scaling behaviors in the moment hierarchies
of CRNs and to distinguishing the roles of different classes of
flows in the dynamics and steady states.

The emphasis in the work of Feinberg, and in closely
related work by Horn and Jackson [26], was the existence and
uniqueness of solutions to the mass-action rate equations with
strictly positive concentrations: a limited, deterministic, and
static problem. We will show below that the Feinberg decom-
position is even more useful in the analysis of the stochastic
processes associated with CRNs, where in addition to exact
results in deterministic limits, it can serve as a foundation for
systematic approximation methods in the general case. A host
of results follow, including representations of the generator of
the stochastic process acting on the moment hierarchy, duality
relations of the kind explored in stochastic thermodynamics
[27], and scaling relations that suggest solution methods using
matched asymptotic expansions.

B. Expanded role for deficiency

A dimensional property termed deficiency was introduced
by Feinberg [9], which was central both to the results on
existence and uniqueness of steady states and to a limited but
important corollary about the form of some of the distributions
associated with such states. Deficiency can be computed as a
topological index from the graphical structure associated with
a CRN [9–11], but its importance comes from its meaning as a
count of the dimensionality of chemical flows that can proceed
in a steady state without being subject to mean regression
due to changes in chemical concentrations. When there are
no such regression-free flows, when deficiency equals zero,
the network is guaranteed to have unique strictly positive
steady states at general parameters. A remarkable result due
to Anderson et al. [24] is that under the same conditions, the
steady-state distributions have a simple factorial form under
proportional sampling rules and a class of related forms under
more general rules (e.g., Michaelis kinetics), as long as they
sample chemical species independently of one another.

The concept expressed by deficiency remains key to orga-
nizing the stochastic processes for general CRNs, even when
their deficiency is nonzero, and the clues for why this should
be so are already latent in the Anderson-Craciun-Kurtz (ACK)
theorem [24]. For the simple case of proportional sampling
without replacement (which gives rise to mass-action kinetics
and which we will assume in the remainder of the article), the
ACK solutions are either products of Poisson distributions
or hypersurfaces within such product-Poisson distributions
constrained by particle conservation laws (with no loss of
generality for the claims below). In a Poisson distribution, all
higher moments are universal functions of the mean value, so in
a product of Poisson distributions, the entire moment hierarchy
is controlled by the set of first moments. In a deficiency-zero
network at steady state, the ACK theorem effectively states

that first-moment values carry all the “information” in the
distribution. When deficiency is nonzero, the mean-regressing
flows are no longer the exclusive dynamical entities, but as
we will show they remain the dominant entities governing
low-order moments, in an asymptotic expansion where the
small parameter is the order of any moment of the distribution
relative to its mean particle number. The approach by which we
will construct this result also shows how to extract other scaling
regimes associated with the remaining flows in networks with
nonzero deficiency and the way these control complementary
asymptotic expansions for high-order moments relative to
mean particle numbers.

C. Coupling CRN theory to Doi operator algebras
for stochastic processes

Our approach to the stochastic processes associated with
CRNs grows out of a set of linear-algebra methods due to Doi
[28,29], for the treatment of generating functions for general
discrete-state stochastic processes. The Doi operator algebra
provides a starting point for numerous solution methods,1 but
its simplifying effect is particularly elucidating for CRNs. In
the classical mass-action theorems of Feinberg, the rate equa-
tions for CRNs take an awkward and not-very-perspicuous
form, in which stoichiometry is expressed asymmetrically in
nonlinear rate laws and concurrency constraints on inputs and
outputs. In the Doi representation of the full stochastic process,
all formal asymmetry between inputs and outputs disappears. It
can be seen that the asymmetry of the Feinberg problem reflects
the way the particular projection operator to the first-moment
equations of motion interacts with the formally symmetric
generator of all fluctuations. Within the framework of the Doi
algebra, we formulate the projection operator that gives the
equations of motion for arbitrary moments and show how
the Feinberg equations generalize to a representation of the
generator of the stochastic process acting on the moment
hierarchy, which directly expresses the scaling influence of
different network flows. The underlying symmetry of the Doi
representation of the stochastic process generator remains and
can serve as a point of departure for the derivation of duality
relations for stochastic CRNs, which we mention here but
develop elsewhere [32]. Some of our results emphasizing the
simplification of stochastic CRN analysis in the Doi formalism
have been derived earlier in [33], particularly the proof of the
ACK theorem in our Sec. IV B.

D. Organization of the presentation

The presentation is organized as follows.
In Sec. II we introduce the general concepts and notation

associated first with chemical reaction networks, then with
general discrete-state stochastic processes, and finally for the
particular forms of stochastic processes associated with CRNs.
The culmination of this section is Eq. (27), the Liouville-form

1One of the best known of these is the coherent-state expansion of
generating functionals due to Peliti [30,31]. It is particularly useful
for semiclassical approximations and other stationary-point methods,
which we mention but do not pursue in depth here.
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expression for the generator of the stochastic process of a CRN
motivated by the Feinberg decomposition, which is the basis
for all other results in the paper.

Section III introduces the factorial moments that are the
natural observables for CRNs with simple mass-action rate
laws and shows that a dynamical equation for all orders
of fluctuations is closed and has a finite-order generator in
this set of moments. The culmination of this section is the
representation of the generator in Eq. (34).

Section IV then shows how topological characteristics of
the CRN are linked to dynamical properties of flows and re-
views the Feinberg deficiency-zero theorem and the associated
Anderson-Craciun-Kurtz theorem. We introduce what we term
the stoichiometric decomposition of the Liouville operator in
Eq. (40), which separates two dynamically different classes of
mean-regressing and non-mean-regressing flows.

Section V uses the representation of the generator on the
lattice of factorial moments to show how different combina-
tions of rate constants from a CRN govern scaling properties
of moments in different ranges of the moment order. This
section shows how matched asymptotic expansions can be
used to solve for steady-state moment hierarchies recursively
and shows the (related) sense in which the deficiency-zero-like
subset of flows in the stoichiometric decomposition dominates
low-order moments. Section VI then provides a sequence of
worked examples of ascending complexity to introduce each
of the concepts above and show its effects in a solution.

We have chosen to develop all main results in their general
forms in Secs. II–V, in the interest of economy and continuity
of the argument, postponing examples to Sec. VI, where they
may be directly compared. The simplest case and the starting
point involves one species and deficiency zero (Sec. VI A),
illustrating the way the ACK theorem is recovered in the Doi
algebra with a one-line proof. We then introduce nonzero
deficiency while keeping the same mass-action equations
of motion (Sec. VI B), to show how the subspace of flows
resembling a zero-deficiency network can be extracted (but
also why, in the general case, this cannot be expressed as
a zero-deficiency subprocess of the full process) and how
it controls the scaling of low-order moments. Next we hold
the deficiency fixed but change the network topology to one
in which autocatalytic feedback produces multiple steady
states in the mass-action approximation (Sec. VI C). This
case introduces the first nontrivial role for the asymptotic
expansion and shows, counterintuitively, how a criterion of
boundedness for asymptotically high-order moments anchors
the recursion downward to specify the low-order moments
of the ergodic distribution over the two steady states. All
effects up to this point are illustrated with single-species
networks. At the end we introduce a two-species network in
which cross catalysis replaces the single-species autocatalysis
(Sec. VI D), yielding an equivalent bistable classical system
if the species are not distinguished. This case demonstrates
a nontrivial use of the stochastic process generator acting on
the moment hierarchy and shows how the factorability of the
ACK theorem for multispecies distributions is lost at nonzero
deficiency.

Readers who prefer to alternate general notation and
instances are encouraged to browse the examples in Sec. VI
in parallel with reading the formal development in the earlier

α

β

FIG. 1. Graphical representation for a minimal CRN model and
the first example in the sequence that will be developed in Sec. VI:
one chemical species, two complexes, a single linkage class, and
deficiency zero. These terms are defined in the remainder of the
section.

sections. A more direct track to the main results on recursions
in the moment hierarchy is also provided in [34].

II. CHEMICAL REACTION NETWORKS AND THEIR
ASSOCIATED STOCHASTIC PROCESSES

The next three sections review the standard concepts
for CRNs and two aspects of stochastic-process algebras
(representations of the generator and then the Doi operator
formalism) and introduce the notation in which we will
represent them in this paper. In Sec. II D these are then brought
together to obtain the Liouville-operator representation of the
generator for a stochastic process CRN that will be the basis
for all further constructions.

A. Elements of a CRN

Our decomposition of CRNs follows that of Feinberg [9],
but we use a more complete graphic representation, illustrated
for our simplest example process in Fig. 1. We will present
CRNs using both this graphic form and a corresponding
reaction-scheme form such as

A
α−⇀↽−
β

2A. (1)

The following list explains the fundamental division of
Feinberg and of Horn and Jackson that separates the so-
called complex network2 from the stoichiometric relations that
interpret its action in the state space of chemical species.

The chemical species. In examples we will denote explicit
species names by single capital roman letters such as A. Where
a set of species is indicated, we index them with subscripts p ∈
1, . . . ,P , the number of distinct chemical species. In network
diagrams a species is denoted with a filled dot:

Complex: a multiset of species, which is the input or output
of a reaction. It may be written as a sum rather than a set.
Examples might be A or 2A (or equivalently A + A). In
network diagrams, a complex is denoted by an open circle
with one or more (labeled) dashed line stubs indicating the
reaction(s) in which it participates and (labeled) solid line stubs
indicating the participating species: (In one-species or
one-reaction networks, or after the network diagram has been
assembled, we may suppress the labels to improve readability.)
In set notation, we index complexes with subscripts i or j .

2Here the stress is on the first syllable, ’com,plex network, to be
distinguished from references to systems that are com’plex.

062102-3



ERIC SMITH AND SUPRIYA KRISHNAMURTHY PHYSICAL REVIEW E 96, 062102 (2017)

(Directed) reaction: An ordered pair of complexes with
an associated rate constant. For complexes indexed i and
j , respectively, the reaction from i to j would correspond
to the ordered pair (i,j ) and the associated rate constant is
denoted by kji . (For simple models, rate constants may be
given simplifying labels such as α.)

An expression with one or more reaction is known as a
reaction scheme, such as

A
α
⇀ 2A. (2)

In network diagrams, a reaction is represented with a dashed
arrow between the input and output complexes (optionally
labeled with the rate constant):

Chemical Reaction Network (CRN): a collection of reac-
tions. By default we adopt the finest-grained description in
which all reactions are unidirectional; bidirectional reactions
are indicated with pairs of directed arrows. In reaction
schemata we may also condense notation for bidirectional
reactions, as above in scheme (1).

Graphically, a CRN is a well-formed doubly bipartite
network (two kinds of nodes and two kinds of links), in which
all reactions terminate in two complexes, and all line stubs
from a complex are filled by the appropriate reactions or links
to chemical species,3 as in Fig. 1.

Adjacency-rate matrix. In Feinberg’s representation of
CRNs [9,18], only the complexes and the reactions are denoted
explicitly and they form an ordinary directed graph. In a
stochastic formulation, reactions can occur as independent
events on the links, analogous to the steps in a simple random
walk. Complexes are treated as if they have activities and
the set of rate constants map these activities to reaction
rates. In this way, both stoichiometric constraints and the
determination of activities of complexes are cordoned off as
separate information from the rate and connectivity structure
of the complex network. The latter is given by an ordinary
adjacency-rate matrix, identical in form to the graph Laplacian
for a simple random walk. Following the notation made
standard by Feinberg, we denote this matrix by A.

Arranging complexes in a column vector indexed by i, let
wi be the indicator function that is nonzero on complex i

only [so the j th component (wi)j ≡ δij ] and wT
i its transpose,

which can act as a projection operator. Then the adjacency-rate
matrix can be written as a sum of dyadics, arranged in a variety
of ways. Two of these we call the reaction representation and
the complex representation, written, respectively,

A =
∑
(i,j )

(wj − wi)kjiw
T
i ,

=
∑

i

wi

∑
j

(
kjiw

T
j − kijw

T
i

)
. (3)

3Strictly speaking, a CRN corresponds to a directed multihyper-
graph, in which the reactions correspond to directed hyperedges and
the input and output complexes are their vertex sets. The graphic
depiction used here and elsewhere is a bipartite representation of the
underlying hypergraph. The computational complexity of numerous
search and optimization problems on hypergraphs, which are simple
on ordinary graphs, is one consequence of the concurrency of inputs
and outputs on a hyperedge.

In expressions such as the canonical mass-action rate law,
which will appear as Eq. (41) below, after its context has been
properly introduced, the row vectors wT select the activities
determining reaction rates and the column vectors w identify
the net flux into and out of complexes. The reaction repre-
sentation is often more intuitive for constructing generators of
the stochastic process, while the complex representation, in
accumulating all flows into or out of a complex, more directly
reflects the cause of mean regression that underlies the concept
of deficiency.

Stoichiometric matrix. In order to connect complexes to
species, let N, representing a state of the reactor, denote the
column vector N ≡ [Np] in which element Np is the count of

species p, and introduce a matrix Y with rows yp ≡ [yi
p]

T
,

where yi
p are the stoichiometric coefficients indicating the

number of instances of species p in complex i. In graphs such
as Fig. 1, this is the number of solid lines from the species node
p to the complex node i. The product YA connects fluxes at
complexes (the row index on A) to fluxes at species (the row
index on YA).

Interpretation of complex activities. Complexes are not the
same as chemical species and their (virtual) activities in the
Feinberg complex graph must be fixed in terms of the (actual)
activities of the species. We will call any such dependence an
interpretation of the complexes.4

To give an interpretation of complex activities in terms
of species activities that is convenient to use with the
adjacency-rate matrix, let �Y ≡ [�i

Y ] be a column vector with
components given by

�i
Y (N ) ≡

∏
p

Np!(
Np − yi

p

)
!
. (4)

Here �Y defines the activity products corresponding to
proportional sampling without replacement on the discrete
indices Np. We will return below to the relation between
discrete sampling and mass-action rate laws, after we have
introduced notation and concepts for the stochastic process
that governs mass action and all higher moments.

B. Representations of a stochastic process

A certain standard machinery underlies all discrete-state
stochastic processes, including those associated with CRNs.
Before deriving the particular forms for the network de-
composition of Sec. II A, we introduce general notation and
constructions in this section.

The point we wish to emphasize is that, while the stochastic
process for a CRN has a uniquely defined generator, that

4It is an interesting question, which we leave for other work, whether
the random walk on the complex network can be represented formally
in terms of a linear algebra of pseudoparticles, which are formal
proxies for the products of operators representing real particles of the
chemical species.
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generator may have many representations, depending on
whether we solve the stochastic process for its probability
density, the moment-generating function of that density, or the
hierarchy of moments evaluated directly. When the activities
of complexes are defined by proportional sampling without
replacement as in Eq. (4) (the simplest case, corresponding to
ideal gases or solutions), the moments that appear naturally in
all rate equations are what we term factorial moments, and it
is for these that the equations of motion take the most compact
form.

The essential components in the stochastic-process descrip-
tion are then the following.

Probability density function and transfer matrix. States of
the CRN are indexed by values of the vector N and reactions
are treated as instantaneous changes of state.5 Our starting
point in describing the stochastic process is a probability
density function ρN indexed on the values of N .

The density ρ evolves on a time coordinate τ under a master
equation

∂ρ

∂τ
= Tρ,

which is shorthand for

∂ρN

∂τ
=
∑
N ′

TNN ′ρN ′ . (5)

The matrix T ≡ [TNN ′ ] is called the transfer matrix and is one
representation of the generator of the stochastic process.

Moment-generating function and Liouville operator. The
moment-generating function is formed from ρN with the
introduction of a vector z ≡ [zp] of complex coefficients, as
the Laplace transform

φ(z) ≡
∑
N

(∏
p

z
Np

p

)
ρN. (6)

The generating function evolves under a Liouville equation of
the form

∂φ

∂τ
= −Lφ,

which is shorthand for

∂

∂τ
φ(z) = −L

(
z,

∂

∂z

)
φ(z). (7)

Here L is called the Liouville operator. Its form is defined
from the transfer matrix in Eq. (5) and it provides an alternative
representation of the generator of the stochastic process, acting
on Laplace transforms.

Expectations and moments and their time dependence. The
expectation of an arbitrary function O(N ) (for observable) of
the components of N , in the background ρ, will be denoted
with angle brackets, as

〈O(N )〉 ≡
∑
N

O(N )ρN. (8)

5This level of coarse graining in the description of reaction events
is the standard assumption also in stochastic thermodynamics [27].

Since ρ may be a continuous-valued quantity whereas N is
discrete, we introduce a particular shorthand with math-italic
font for the first moment

n ≡ 〈N〉 =
∑
N

NρN, (9)

which may vary continuously if ρ does. The mass-action rate
equations are expressed entirely in terms of n. Depending
on the form of the underlying distribution ρ and whether
higher-order correlations can be expressed as functions of
n, the mass-action equations may be exact or they may
involve a (generally unregulated) approximation known as the
mean-field approximation.

The first moment n may also be obtained from the
generating function as

n = ∂

∂z
ln φ(z)

∣∣∣∣
z≡1

(10)

and expectations of more complex observables can be built up
by acting on φ appropriately with higher-order derivatives in z.
The time dependence of n, which is the object of classical first-
moment equations or chemical rate equations, can be obtained
by acting on either ρ or φ with its corresponding generator, by
Eq. (5) or (7).

Factorial moments for CRNs. In many applications, the
natural moments for which to study dynamics are either
ordinary powers Nk , obtained by acting on φ with higher
derivatives in z, or cumulants [35], obtained by acting on ln φ

with higher derivatives in z. For CRNs with reaction rate laws
corresponding to proportional sampling without replacement,
however, the simplest dynamical relations are obtained for the
factorial moments, for which we therefore introduce specific
notation. For a single component Np and power kp,

N
kp

p ≡
{

Np!
(Np−kp)! , kp � Np

0, kp > Np.
(11)

[We adopt the convention in the second line of Eq. (11) for
kp > Np because it allows a simplification in sum notations
below.] We will use the form of Eq. (11) as a general
formula for truncated factorials,6 allowing other integer-valued
arguments such as stoichiometric coefficients to take the place
of Np as the argument.

Moment hierarchy and another representation for the
generator. For a vector k ≡ [kp] of powers, we introduce the
factorial moment hierarchy indexed by k, as the expectation

�k ≡
〈∏

p

N
kp

p

〉
. (12)

We show in Sec. III that � evolves in time as

∂�

∂τ
= �,

6These truncated factorials are known in the mathematics literature
as falling factorials or falling powers [33].
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which is shorthand for

∂�k

∂τ
=
∑
k′

kk′�k′ . (13)

The matrix  ≡ [kk′] has finitely many nonzero entries
determined by the stoichiometric coefficients and its form
may be derived from the Liouville operator L. The matrix
 provides yet a third representation of the generator of
the stochastic process, which is particularly well suited to
the study of CRNs because it exposes different scaling
regimes controlled by combinations of the rate parameters
corresponding to different flows. We develop the implications
of scaling in Sec. V.

C. Doi operator algebra for a discrete-state stochastic process

For most of its purposes as a generating function, it is
not necessary that φ(z) be an analytic function of a vector z

of complex-valued arguments. Often only the formal power
series in z, together with its algebra with the derivative ∂/∂z,
is required.

The abstraction of the linear algebra of generating functions
in terms of formal raising and lowering operators follows a
procedure due to Doi [28,29]. We have elaborated the details
of the mapping and its interpretation extensively elsewhere
[36–38], so here we only summarize the notation, which by
now is standard.7

The Doi algebra denotes the argument variables and their
derivatives as abstract raising and lowering operators,

zp → a†
p,

∂

∂zp

→ ap, (14)

because partial differentiation then imposes on these operators
the conventional commutation algebra

[ap,a†
q] = δpq, (15)

where δpq is the Kronecker δ. Generating functions, which
are polynomials multiplying the number 1, are written as the
action of the raising operators on a formal right-hand null
state, while the projection operator that takes the trace of a
generating function with an integral is written as a left-hand
null state

1 → |0),
∫

dP z δP (z) → (0|, (16)

where δP (z) is the Dirac δ in P dimensions and the inner
product of the null states is normalized: (0|0) = 1.

7Indeed, most treatments open directly with the Doi algebra [39,40].
We have used the two-step introduction by way of conventional
analytic generating functions because it clarifies the meaning of
some terms in the Doi algebra that can be obscure when presented
without introduction. Reference [33] is the only other introduction we
have seen that makes the same choice and the presentation is closely
parallel.

The basis for generating functions is the set of number states
that are elementary monomials. For any vector N ,

P∏
p=1

z
Np

p × 1 →
P∏

p=1

a†
p

Np |0) ≡ |N ); (17)

number states are eigenstates of the set of number operators
a
†
pap:

a†
pap|N ) = Np|N ). (18)

In particular, for use with CRNs, we note the role of lowering
operators in extracting the truncated factorials of number
arguments: For any non-negative integer k,

ak
p|N ) = Nk

p|N − kp), a†
p

k
ak

p|N ) = Nk
p|N ), (19)

where |N − kp) is the number state with k subtracted from Np

and all Nq for q �= p unchanged.
With these steps the generating function becomes a vector

in a linear space:

φ(z) =
∑
N

P∏
p=1

z
Np

p ρN →
∑
N

ρN |N ) ≡ |φ). (20)

All number states are normalized with respect to the Glauber
inner product, defined by

(0| exp

(∑
p

ap

)
|N ) = 1, ∀N, (21)

and the Glauber inner product with a generating function is
simply the trace of the underlying probability density

(0| exp

(∑
p

ap

)
|φ) =

∑
N

ρN = 1. (22)

The above conventions define the standard representation in
which we will work with generating functions in the remainder
of this article.

D. Stochastic process for a CRN

We now apply the above operator formalism to the
particular forms of transfer matrices and generating functions
produced by CRNs and show how the reaction and complex
representations decompose the resulting representations of
the generators. Corresponding to the column vector �Y of
activities from Eq. (4), we introduce a second column vector
ψY ≡ [ψi

Y ] that takes as its argument the Doi lowering opera-
tors ap that extract the truncated factorials of Np according to
Eq. (19). Making use of the notation (11) for these truncated
factorials, we may write the coefficients in these two vectors
as

�i
Y (N ) ≡

∏
p

N
yi

p

p , ψi
Y (a) ≡

∏
p

a
yi

p

p . (23)

There is a corresponding row vector for the adjoints: ψ
†
Y ≡

[ψ†i
Y ]

T
is a row vector of components defined on the complex
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indices i, where the notation means

ψ†i
Y (a†) ≡

∏
p

a†yi
p

p . (24)

[As we did with the notation (11) for factorial moments, we
take the definitions (23) and (24) for ψ and ψ† as general
forms, in which other arguments besides a and a†, such as
the first-moment value n, can appear. This is convenient when
expressing the approximation made in the mass-action rate law
and exhibiting its relation to the exact equation of motion as
an operator expression.]

We now use the above notation to group the sample numbers
and index shifts that describe the concurrent conversion of
reactants into products in the elementary reaction events of
a CRN. We begin with the transfer matrix and then show
the simplifications afforded by working with the Liouville
operator.

For proportional sampling without replacement, the number
dependence of the probability for the reaction (i,j ) from state
N is simply given by the component �i

Y (N ) from Eq. (23).
The way the master equation acts on indices is slightly more
complicated: For the delivery of probability into state N ,
the master equation must sample both ρ and �i

Y at a value
shifted from N by the stoichiometric coefficients that are
consumed at complex i minus those that are produced at
complex j . The simplest way to express such shifts is to let the
vector of shift operators e∂/∂N (with the exponential evaluated
componentwise on N ) serve as an argument to ψi

Y , thus

ψi
Y (e∂/∂N ) ≡

∏
p

eyi
p∂/∂Np = eyi T

∂/∂N ; (25)

with this convention for both the rate constant and the shift
operator, the matrix T from Eq. (5) can be written

T = ψ
†
Y (e−∂/∂n)A[ψY (e∂/∂n) · �Y (N )]

=
∑
(i,j )

[
ψ

j

Y (e−∂/∂n) − ψi
Y (e−∂/∂n)

]
kjiψ

i
Y (e∂/∂n)�i

Y (N ).

(26)

Here the dot product between ψY (e∂/∂n) and �Y (N ) in the
first line indicates that these two vectors are to be multiplied
componentwise with respect to the complex index i so that
their product is then extracted by the indicator functions wT

i in
A from Eq. (3). The cross term in ψ

j

Y and ψi
Y �i

Y , made explicit
in the second line of Eq. (26), performs the required index shift
on N in both ρ and �Y to account for the particles lost from
the system’s state through complex i and those gained by the
system’s state through complex j . The other cross term, with
ψi

Y (e−∂/∂n), simply cancels the shift operators in ψi
Y (e∂/∂n)

and represents the loss of probability from state N with rate
�i

Y (N ).
Working with the Liouville operator from Eq. (7) is much

more straightforward, because the lowering operators ap both
extract sample numbers and shift indices according to Eq. (19),
so these do not need to be separately tracked as they are in the
transfer matrix. Using the exact definitions (23) and (24) with
the arguments a and a† implicit, L takes the form

−L = ψ
†
YAψY . (27)

Equation (27) is one of the central equations of this paper
and underlies many of the simplifications we present here.
In this expression, all the formal asymmetry of the standard
first-moment rate equations from the CRN literature has
disappeared and particle consumption and creation are now
treated symmetrically. This is the first of many simplifications
gained by working with the Laplace transform and the Doi
operator algebra.

III. DYNAMICS OF MOMENT HIERARCHIES

From the foregoing constructions we can directly compute
the equations of motion for arbitrary moments of the density
ρN . These equations are finitely generated if we work in a basis
of factorial moments, the demonstration of which is the main
result of this section.

A. Dynamics of factorial moments for a single species

For a non-negative integer k, the operator that extracts the
truncated factorial N

k
p from number states, which are the basis

for a general state vector |φ), is ak
p. Therefore, the expectation

of N
k
p in the state |φ) is given by

〈
Nk

p

〉 = (0| exp

(∑
q

aq

)
ak

p|φ), (28)

and from Eq. (7) and the form (27) for L, its time dependence
is given by

∂

∂τ

〈
Nk

p

〉 = (0| exp

(∑
q

aq

)
ak

p(−L)|φ)

= (0| exp

(∑
q

aq

)
ak

pψ
†
Y (a†)AψY (a)|φ). (29)

In order to obtain a recursion relation for the time
dependence of 〈Nk

p〉 in terms of the values of other factorial
moments, we must commute the product of lowering operators
ak

p through all powers of raising operators, which are gathered

in the coefficients of the row vector ψ
†
Y . The result of the

commutation is a finite series with descending powers of ap

and a
†
p. For positive integers k and y, the evaluation of operator

products of powers of raising and lowering operators is given
by8

ak
pa†y

p =
min(k,y)∑

j=0

k!y!

j !(k − j )!(y − j )!
a†

p

y−j
ak−j

p

=
k∑

j=0

(
k

j

)
yja†

p

y−j
ak−j

p . (30)

The first line emphasizes the symmetric roles of k and y in the
combinatorial coefficient. In the second line we have used the

8The proof is by induction. If k � y, start with an elementary
evaluation of ak

pa†
p and then induct on y. If k � y, start with an

elementary evaluation of apa†y
p and induct on k.
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definition (11) applied to yj (rather than Nj ) to simplify the
index of summation in the case that k > y.

Now we may expand the evaluation appearing in Eq. (29),
using the sum (30),

(0| exp

(∑
q

aq

)
ak

pψ†i
Y (a†)

= (0|
k∑

j=0

(
k

j

)(
yi

p

)j
exp

(∑
q

aq

)
ak−j

p

=
k∑

j=0

(
k

j

)(
yi

p

)j
(0| exp

(∑
q

aq

)
ak−j

p , (31)

as an operator identity acting on general states. Here we have
used the property of the Doi operator algebra that commutation
through the exponential exp(

∑
q aq) shifts all a

†
p → a

†
p + 1,

after which all factors of a
†
p annihilate the right ground state

(0|. Thus we have eliminated all factors of a†, along the
way extracting from ψ

†
Y the factorial moments (yi

p)
j

of the
stoichiometric coefficients.

The powers of the lowering operator a
k−j
p in Eq. (31) are

the same form as terms already in ψY , so we can absorb them
into ψY by shifting the stoichiometric coefficients in row p,
which we denote as

(0| exp

(∑
q

aq

)
ak−j

p ψY (a)|φ)

= (0| exp

(∑
q

aq

)
ψY+(k−j )p (a)|φ)

= 〈�Y+(k−j )p (N )
〉
. (32)

Here Y + (k − j )p is the matrix in which the ·ip component is
yi

p + k − j∀i and yi
q is unchanged for q �= p.

From these evaluations we can reexpress Eq. (29) as

∂

∂τ
〈Nk

p〉 =
k∑

j=0

(
k

j

)
Y

j

pA
〈
�Y+(k−j )p (N )

〉

=
k∑

j=1

(
k

j

)
Y

j

pA
〈
�Y+(k−j )p (N )

〉

≡
k∑

j=1

(
k

j

)
Y

j

p e(k−j )∂/∂YpA〈�Y (N )〉. (33)

Here Y
j

p is a row vector in which the ith component is the

factorial moment (yi
p)

j
. Note that Y

0
p is the row vector of

1’s, Y
1
p = Yp the pth row of Y , etc. The first line of Eq. (33)

contains the full sum over j from Eq. (31) and the second
line uses the fact that 1TA ≡ 0 to eliminate the j = 0 term.
In the third line, we have expressed the shift of coefficients
in the pth row of Y again using an exponential shift operator
denoted by e∂/∂Yp , which acts on all components yi

p. This will
be convenient notation for working with moments involving
multiple species.

B. Generator of the stochastic process acting
on the moment hierarchy

For multiple species, we generalize the notation to an
integer-valued vector of powers k ≡ [kp] and arrange sum-
mation indices similarly in vectors j ≡ [jp]. Recalling the
definition (12) of the factorial moment hierarchy �, we write
its time derivative as

∂

∂τ
�k ≡ ∂

∂τ

〈∏
p

N
kp

p

〉

=
∏̇
p

⎡
⎣ kp∑

jp=0

(
kp

jp

)
Y

jp

p e(k−j )p∂/∂Yp

⎤
⎦A〈�Y (N )〉

=
k1∑

j1=0

(
k1

j1

)
· · ·

kP∑
jP =0

(
kP

jP

)[∏̇
p

Y
jp

p

]
A〈�Y+(k−j )(N )〉

≡
∑
k′

kk′�k′ , (34)

where the second line is an expansion of the first. The notation∏̇
p denotes a product over species p within each index i of the

row vectors Y
jp

p . (Note that in the sums over jp, we must now

retain the jp = 0 entries, because even if one index Y
jp

p = [1]T,
there may be others in the sum where jp′ �= 0 and the product

(
∏̇

pY
jp

p )A is only ensured to vanish when all jp = 0.) Now
the shift operator e(k−j )p∂/∂Yp in the first line of Eq. (34) offsets
all coefficients yi

p in the row p by (k − j )p, so we write the
matrix Y in the second line with its rows shifted uniformly by
the entries in the column vector (k − j ).

The third line of Eq. (34) gives the definition of the matrix
 introduced in Eq. (13). Each entry in the matrix �Y+(k−j )(N )
is itself a truncated factorial, so the expression is closed on �.
Although the orders kp may be arbitrarily large, the matrix 

has only finitely many nonzero entries, limited by the largest

values of jp for which the rows Y
jp

p have nonvanishing entries
[recalling the definition (11) for truncated factorials].

Equation (34) is the main result with which we will work in
this paper. It contains the rate equations for the species numbers
n studied by Feinberg and by Horn and Jackson and extends
these to give a compact representation for the dynamics of all
higher-order moments as well. In Sec. VI we illustrate graphic
methods for representing .

IV. NETWORK TOPOLOGY, DEFICIENCY,
AND CLASSIFICATION AND ROLE
OF DIFFERENT NETWORK FLOWS

The results up to this point are true for a general CRN. Thus
they say nothing directly about the topological properties that
may afford simplifications such as uniqueness and positivity
of steady states or factorability of distributions. In this section
we shift to a consideration of topology and its implications,
including the concept of deficiency and the Feinberg [18] and
Anderson-Craciun-Kurtz (ACK) theorems [24].

A. Deficiency and a basis to decompose network flows

The connectivity of the adjacency matrix A, together with
the stoichiometric matrix Y , determines the linear subspace of
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N values that can be accessed through any flow on the network,
called the stoichiometric subspace. Below, let ker(*) and im(*)
denote the kernel and image, respectively, of the linear map
which is their argument.

The number and character of steady states depend on
whether the N dependence of the mass-action rate equations
within this subspace admits a Lyapunov function [11,26]. That
in turn depends on whether all flows that transport net matter
into or out of any complex must also transport some net
matter into or out of some chemical species, thus increasing
its chemical potential in a direction that opposes the flow. If
so, then all the flows are mean regressing and strictly positive
steady states are unique. If not, there are net fluxes at the
complexes that do not lead to net fluxes of species and for these
there is no force leading to mean regression. In the latter case,
multiple steady states or nonstrictly positive steady states9

cannot be ruled out [19,20].
The character of the dynamical steady states therefore

depends on the relative dimension of kerA (the flows that
absorb or emit no material at the complexes) and ker YA
(the flows that absorb or emit no material at the chemical
species), within the stoichiometric subspace. A sketch of
the demonstration that this is a topological characteristic,
following Feinberg [9,18] and Horn and Jackson [26], follows.

For any CRN, the stoichiometric subspace corresponds to

S ≡ im(YA). (35)

The dimensions of S and of the subspace of flows through
complexes that do not produce motions within S are defined
as

s ≡ dim(S), δ ≡ dim[ker(Y ) ∩ im(A)]. (36)

Here δ is the deficiency of the CRN.
The following relations hold (as identities) among dimen-

sions in YA and A:

dim[im(A)] = dim[im(YA)] + dim[ker Y ∩ im(A)]

= s + δ. (37)

If C is the total number of complexes, then it follows that

C = dim[im(A)] + dim[ker(A)]

= s + δ + dim[ker(A)]. (38)

The expression for dim[ker(A)] is simple and follows from
the fact that A functions as an ordinary graph Laplacian on
each connected component of the complexes. The argument
involves the following observations.

Weak reversibility and linkage classes. Connected compo-
nents in the simple graph that includes only complexes and
reactions are termed linkage classes in the CRN literature.
Weak reversibility is the condition that any node in a linkage
class can be reached from any other by some sequence
of reactions. The subset of complexes in a linkage class,
which can be reached starting from any complex and which
subsequently are never exited, is called a strong terminal

9These would be boundary solutions where some concentrations
equal zero.

linkage class. Weak reversibility of the whole CRN ensures
that each linkage class is a strong terminal linkage class and
(as in Ref. [10]) we will limit the discussion to this case for
simplicity.10

The counting rule for deficiency. Weakly reversible pro-
cesses are ergodic on each linkage class, so by the Perron-
Frobenius theorem or an equivalent argument [11], there is
one basis vector for ker(A) for each linkage class. Let l denote
the number of linkage classes. Then l = dim[ker(A)] and the
Feinberg counting result that

δ = C − s − l (39)

follows from Eq. (38).
Complex-balanced steady states. Flows in ker(A) are

termed complex balanced, because they require no net trans-
port of flux to or from any complex to the species that make
it up. All steady states must (tautologically) be in ker(YA). If
δ = 0 the two spaces have the same dimension and thus are
the same. In other words, the steady-state condition that there
be no sources or sinks at species nodes entails the condition
that there be no sources or sinks at complexes. In this case a
convexity argument [9,11] implies that there is a unique steady
state in the positive orthant for any value of the rate constants.

Nonzero deficiency. If δ > 0 there are species-balancing
flows that are not complex balancing and dim[ker(A)] is larger
than the number of constraints from ∂n/∂τ = 0 (which is only
s). Steady states then generally exist out of the subspace of
ker(A).

Using mean regression as a basis to decompose flows
beyond the δ = 0 condition

We noted above that a basis for ker(A) has one vector
on each linkage class. At the level of individual linkage
classes, these are profiles in � proportional to the maximal
eigenvectors of the Perron-Frobenius theorem for simple
diffusion under A. To characterize the remainder of the
space of activities on the complexes, we require a basis that
decomposes the preimage of the stoichiometric subspace from
the remaining flows.

Let {eα}sα=1 be a basis for ker(YA)⊥ ⊆ RC . Changes in
� along these directions lead to changes in flows ∂n/∂τ

within S, which we term s-flows. Let {ẽβ}δ
β=1 be a basis for

ker(YA)/ ker(A). Changes in � along these directions lead to
changes by species-balanced but not complex-balanced flows,
which do not alter ∂n/∂τ and which we term δ-flows. If follows
that jointly {{eα}sα=1,{ẽβ}δ

β=1} form a basis for ker(A)⊥ ⊆ RC .
This basis leads to a decomposition of A and therefore of

L, different from either the reaction or the complex represen-
tations in Eq. (3), which we might term the stoichiometric
representation:

−L = ψ
†
YA

⎧⎨
⎩

s∑
α=1

eαeT
α +

δ∑
β=1

ẽβ ẽT
β

⎫⎬
⎭ψY . (40)

10The more general case differs only by superficial accounting to
exclude complexes that are exited permanently.
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The s-flows and δ-flows distinguished in the stoichiometric
representation turn out to make dimensionally different contri-
butions to the moment equations (34). The original Feinberg
result, expressed in this language as saying that the s-flows
completely determine the first-moment equations of motion
(and that these are the only such flows for CRNs of deficiency
zero), extends to a claim that the s-flows dominate the behavior
of moments at all orders lower than the mean particle numbers,
for general CRNs where they are not the only flows. We explore
the consequences of these scaling dimensions in Sec. V.

B. Feinberg deficiency-zero theorem and the
Anderson-Craciun-Kurtz theorem

Feinberg’s deficiency-zero theorem was originally framed
[9] as a result in the convex analysis of the mass-action rate law,
which is generally assumed to be a mean-field approximation.
The Anderson-Craciun-Kurtz theorem [24] uses the Feinberg
existence proof for solutions to the mass-action rate law, but
in proving that the underlying distributions have the form
of a product of Poisson distributions (under the sampling
model assumed throughout this paper), it actually strengthens
Feinberg’s original theorem: Because factorial moments of
Poisson distributions have exactly the relation to the first
moment assumed in mean-field formulations, the Feinberg
solution to the mass-action rate equations need not be framed
as a result in (unregulated) mean-field approximation, but can
rather be seen as an exact result.

The Doi operator algebra, together with the stoichiometric
decomposition in Eq. (40), provides an elegant way to both
prove the ACK theorem and see that it makes the Feinberg
theorem exact when δ = 0 and also see why and how these
results no longer hold when δ > 0. We begin with the set of
cases

∑
p kp = 1 of Eq. (33), in which the sum on j contains

the single term j = k; these are the equations of motion for
the set of first moments. For species p,11

∂

∂τ
〈Np〉 = YpA(0| exp

(∑
q

aq

)
ψY (a)|φ)

= YpA〈�Y (N )〉

= YpA
s∑

α=1

eαeT
α〈�Y (N )〉. (41)

So far we work at general deficiency, but because YAẽβ ≡
0 ∀β by construction, only the basis elements corresponding
to s-flows are nonzero.

Equation (41) is exact for this stochastic process and
it is almost the same as the standard expression for the
mass-action rate law, except that it involves an expectation
of the observables �Y (N ), which may include higher-order
correlations in N . Arbitrarily ignoring these correlations
and replacing 〈�Y (N )〉 with ψY (〈N〉) defines the mean-field
approximation.

11Note how, from the symmetric form of L in Eq. (27), the
asymmetry of the usual rate equations has resulted from the projection
onto the dynamics of a particular moment.

The one case where the mean-field form is exact is when the
state |φ) equals some coherent state |ξ ). The coherent states are
the generating functions of Poisson distributions, constructed
in the Doi algebra as

|ξ ) ≡ e(a†−1)ξ |0)

↔ e(z−1)Tξ · 1 = e−1Tξ
∑
N1

· · ·
∑
NP

∏
p

z
Np

p ξ
Np

p

Np!
. (42)

Here ξ ≡ [ξp] is a vector of the mean particle numbers ξp = np

for the P chemical species.
Coherent states are eigenstates of the Doi lowering operator

and thus

ψY (a)|ξ ) = ψY (ξ )|ξ ), (43)

giving the mean-field form as an exact result

〈�Y (N )〉 = (0| exp

(∑
q

aq

)
ψY (a)|ξ ) = ψY (ξ ) = ψY (〈N〉).

(44)

Using the basis {eα} to handle the counting of dimensions in
the stoichiometric subspace (not all linear combinations of np

are necessarily dynamic in a particular CRN), the condition
that ∂n/∂τ = 0 in Eq. (41) becomes

eT
αψY (ξ ) = 0 ∀α ∈ 1, . . . ,s. (45)

These are the set of equations proved by Feinberg to have a
unique, strictly positive solution when δ = 0, for all nonde-
generate values of the rate constants. Thus, if the distribution
|φ) is a coherent state, the Feinberg result is an exact solution.

The coherent state identified by Eq. (45) is the ACK solution
if it is a solution at all. However, whereas any mean-field
equation can be solved for some coherent-state parameter, the
corresponding state is only a solution to the whole moment
hierarchy if it also leads to stasis of all higher moments. To see
why this is ensured at δ = 0 and not otherwise, we insert the
stoichiometric decomposition (40) into the general moment
hierarchy (34) to obtain

∂

∂τ

〈∏
p

N
kp

p

〉
=

k1∑
j1=0

(
k1

j1

)
· · ·

kP∑
jP =0

(
kP

jP

)[∏̇
p

Y
jp

p

]

×A

⎧⎨
⎩

s∑
α=1

eαeT
α +

δ∑
β=1

ẽβ ẽT
β

⎫⎬
⎭〈�Y+(k−j )(N )〉.

(46)

On a coherent state, the vector of factorial moments
〈�Y+(k−j )(N )〉 differs from the value 〈�Y (N )〉 for the first-

moment condition only by an overall factor
∏

p ξ
(k−j )p
p . If δ =

0, only s-flows are present in the decomposition and the set of

projections {eT
α〈�Y+(k−j )(N )〉} =∏p ξ

(k−j )p
p × {eT

α〈�Y (N )〉}
vanishes exactly when Eq. (45) holds, for all values of k and j .
Although the truncated factorials of stoichiometric coefficients

[
∏̇

pY
jp

p ] generally differ from Y , this changes only the weight
of the inner products with the eα and thus the strength with
which each s-flow contributes to the rate equation away from
the steady state. Hence the coherent-state solution identified
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by the first-moment condition (45) is a steady-state solution
for the whole moment hierarchy, proving the ACK theorem.12

If δ > 0, then δ-flows also exist in the sum (46). However,

whereas YAẽβ ≡ 0 ∀β, [
∏̇

pY
jp

p ] will not generally project
out Aẽβ in the higher-order terms

∑
p jp > 1, except pos-

sibly in special cases of fine-tuning of the rate parameters.
Therefore, in general, k-dependent linear combinations of
ẽT
β〈�Y+(k−j )(N )〉 and eT

α〈�Y+(k−j )(N )〉 will be required to
vanish at a steady state, obviating any simple Poisson solution.

V. SCALING REGIMES, MATCHED ASYMPTOTIC
EXPANSIONS, AND THE CONTROLLING
ROLE OF MEAN-REGRESSING FLOWS

The series expansion in factorials of the stoichiometry from
Eq. (34), together with the interpretation of each term as a
projection operator for some product-Poisson distribution that
we used to prove the ACK theorem in Sec. IV B, provides a
way to associate different regions in the lattice of factorial
moments with control by different subsets of the network
flows. Both a set of practical solution methods for steady states,
based on matched asymptotic expansions, and the concept of
approximating a complex distribution locally by a product of
Poisson distributions, follow when we recognize that different
terms in the series expansion are associated with different
scaling behaviors because they capture distinct combinations
of the rate constants from the network.

The next three sections cover the following topics in order.
Descaling. We first introduce the descaling of the moment

hierarchy with coherent-state parameters. Since for Poisson
distributions these are the only scale parameters, descaling
turns the moment hierarchy for a coherent state into a vector
of 1’s.13

Matched asymptotic expansions. Generalizing the Feinberg
steady-state condition to all orders, as we did above to prove
the ACK theorem, allows us to use the condition � = 0 as
a recursion relation on k to solve the moment hierarchy, much
like the solution of any Laplace equation, with  serving as
the Laplacian on the lattice of moments. When we do this with
the descaled moment hierarchy, it becomes easy to show that
recursion upward in any component of k produces a convergent
power-series expansion in the range k/ξ � 1 (where ξ stands
for whichever particle number corresponds to the component
of k being incremented), whereas recursion downward in k

is convergent for k/ξ � 1. This suggests a general method
of solution for moment hierarchies using matched asymptotic
expansions, where the matching conditions are imposed in the
region k ∼ ξ .

The 1/n expansion about Poisson backgrounds. The
same small-parameter recursion that controls the asymptotic
expansion for k/ξ � 1 also shows a sense in which the
mean-regressing flows (the s-flows) define a leading Poisson
approximation to low-order moments for a general CRN. This

12This is the construction also found in [33].
13This is true as long as the descaling is done with the coherent

state’s own ξ values. More generally, the moment hierarchy becomes
a geometric progression.

is true even when the projection onto the basis {eα} does
not define a zero-deficiency subnetwork of the original CRN.
We can construct a linear combination of the coherent-state
solutions to the first-moment steady-state conditions for which
the remainder term that must be added to obtain an exact
solution makes a contribution that is O(k/ξ ) smaller than the
contribution of the Poisson backgrounds for the low-order
moments (those with k/ξ � 1).

A. Descaling the moment equations with coherent-state
parameters

Just as Yp projects out the ACK product of Poisson
distributions for δ = 0 networks, each of the projectors

[
∏̇

pY
jp

p ] in the moment-recursion equation (34) projects
out some product of Poisson distributions if values for the
corresponding coherent-state parameters can be found. (If
they are not unique, it can project out more than one such
solution.) We may choose to reference exact solutions for �k

to locally chosen Poisson distributions in different regions
of k corresponding to different terms j ≡ [jp] and let the
recursion equations solve for the (smaller) deviations from
these reference Poisson distributions.

For any vector ξ ≡ [ξp] of mean values, we may descale
the activities �i

Y from Eq. (23) as

�̂i
Y (N ) ≡

∏
p

N
yi

p

p

ξ
yi

p

p

. (47)

If we normalize the �Y vectors in this way, a corresponding
counternormalization of the adjacency matrix can be defined
as

Âji ≡ Aji

∏
p

ξ
yi

p

p . (48)

In cases where we wish to use the stoichiometric representation
(40), a similar descaling of the corresponding projection
vectors is

(êα)i ≡ 1∏
p ξ

yi
p

p

(eα)i ,
(
êT
α

)
i
≡ (eT

α

)
i

∏
p

ξ
yi

p

p ,

( ˆ̃eβ)
i
≡ 1∏

p ξ
yi

p

p

(ẽβ)
i
,
(

ˆ̃e
T
β

)
i
≡ (ẽT

β

)
i

∏
p

ξ
yi

p

p (49)

for all α and β. All these are chosen so that

A〈�Y (N )〉 ≡ Â〈�̂Y (N )〉

≡ Â

⎧⎨
⎩

s∑
α=1

êαêT
α +

δ∑
β=1

ˆ̃eβ
ˆ̃e
T
β

⎫⎬
⎭〈�̂Y (N )〉. (50)

Applying the scale transformations (47) and (48) to the
equations of motion (34) for the moment hierarchy � gives
the equation for a descaled hierarchy �̂, in which the leading

062102-11



ERIC SMITH AND SUPRIYA KRISHNAMURTHY PHYSICAL REVIEW E 96, 062102 (2017)

geometric dependence on ξ has been factored out:

∂

∂τ
�̂k ≡ ∂

∂τ

〈∏
p

N
kp

p

ξ
kp

p

〉

=
k1∑

j1=0

(
k1

j1

)
· · ·

kP∑
jP =0

(
kP

jP

)[∏̇
p

Y
jp

p

ξ
jp

p

]
Â〈�̂Y+(k−j )(N )〉

≡
∑
k′

̂kk′�̂k′ . (51)

Following Feinberg but extending his consideration to all
moments, we try to construct steady states for which Eq. (51)
can be used as a recursion relation among the moments
of �̂k .

B. Matched asymptotic expansions
for the steady-state condition

The terms that govern the behavior of recursions in
the components of k, if Eq. (51) is used to (exactly
or approximately) solve for �̂k , are combinations of the
form (

k

j

)
Y j

ξ j
= k!

(k − j )!ξ j

Y j

j !
(52)

(with k, j , Y , and ξ carrying indices for each p, which
we suppress to reduce clutter). The ratios Y j/j ! are fixed
parameters of ̂ and in any case only finite in number. The
ratios that govern scaling behavior across the moment hierar-
chy are the terms k!/(k − j )!ξ j . Because the stoichiometric
coefficients and therefore the limits in the sums over j are
finite, it is possible to consider a range of typical particle
number n ∼ ξ � max(j ), in which k!/(k − j )!ξ j ∼ (k/ξ )j

in the ranges that govern the transition between scaling
regions. These scale factors govern the stability of asymptotic
expansions as follows.

For any fixed value of k, increasing j in the sum (51)
lowers the order of all moments in 〈�̂Y+(k−j )(N )〉, at the
same time multiplying the corresponding term by a coefficient

∼(k/ξ )j . Let j be the smallest value at which
∏̇

p(Y
jp

p /ξ
jp

p )Â
does not vanish. (In general, this occurs when

∑
q jq = 1, so

exactly one of the terms Y
jp

p = Yp and Y
jq

q = 1 for all other
q �= p.)

To extend the recursion upward by one order, we must
increment k while holding j fixed at j . The new moments
appearing at order k are referred to those at the immediately
preceding order in the recursion by higher-order terms j > j

in the sum at the current k. The relative magnitude of the
preceding terms to the new terms scales as ∼(k/ξ )j−j . For
k � ξ , successively higher-order terms are expressed as sums
of lower-order terms with positive powers of k/ξ , consistent
with both a nonzero radius of convergence and damping out
of uncertainties in the initial conditions of the recursion. (The
latter property is important for an asymptotic expansion to
provide a robust solution algorithm.)

For k � ξ the opposite is true: The lower-order terms must
be solved as functions of the higher-order terms, which are
multiplied by positive powers of ξ/k. Thus, in this range

the downward recursion is consistent with a nonzero radius
of convergence and damps out uncertainties in the starting
conditions assumed at large k.

This argument is the basis for a solution in terms of
matched asymptotic expansions, where stable recursions are
carried out starting respectively from k = 0 (up-going) and
from asymptotically large k (down-going), and matching
conditions are imposed in the overlap region k ∼ ξ , which
are marginally stable for both series. An interesting feature
of this solution is that, for CRNs where the mean-field
approximation predicts multiple steady states, there may still
be unique large-k asymptotic behaviors required to ensure
boundedness of moments at all orders. In such cases, it is the
downward recursion from large k that anchors the solution to
the moment hierarchy. This is a counterintuitive result given
the conventional mean-field approach to moment closure,
which attempts to anchor all higher-order moments in solutions
to the first moments, but as a consequence cannot obtain the
ergodic sum over multiple steady states, which is a property
of the exact all-orders solution.

We do not offer a formal proof that these asymptotic
expansions can be consistently performed for all CRNs and
all dimensionalities of the moment hierarchy, which is an
exercise beyond the scope of the current paper. However,
in one dimension, the recursion is elementary to define,
and for higher-dimensional systems we offer examples of
decompositions of the solution for which numerical simulation
suggests that a similar expansion can be used.

C. Leading Poisson approximations to
nonzero-deficiency CRNs

The above analysis of the scaling of terms in an asymp-
totic expansion for solutions to ̂�̂ = 0 has an immediate
corollary: In general steady-state solutions, a basis of product-
Poisson distributions associated with s-flows dominates the
low-order moments. The kernel of the argument is that,
although the projection operators associated with both s- and
δ-flows share in the same scaling, at the lowest order where the
upward-going recursion begins, the δ-flow contributions are
projected out (recall that their absence from the first-moment
conditions is their defining feature) therefore only s-flow
contributions serve as seeds for the polynomial expansion in
k/ξ . We now demonstrate that relation.

The steady-state condition for Eq. (51), with the stoichio-
metric decomposition inserted from Eq. (40), becomes

0 =
k1∑

j1=0

(
k1

j1

)
· · ·

kP∑
jP =0

(
kP

jP

)[∏̇
p

Y
jp

p

ξ
jp

p

]

× Â

⎧⎨
⎩

s∑
α=1

êαêT
α +

δ∑
β=1

ˆ̃eβ
ˆ̃e
T
β

⎫⎬
⎭〈�̂Y+(k−j )(N )〉. (53)

The lowest-k conditions that the moment hierarchy must
satisfy are the first-moment conditions, which are the set of

terms
∑

q kq = 1 and j = k, for which exactly one Y
jp

p = Yp
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and Y
jq

q = 1 for all other q �= p, as noted in the preceding
section.

Write the state vector |φ) for a general solution to Eq. (53)
as a sum

|φ) =
∑

γ

cγ |ξ (γ )) + |φ′), (54)

in which {ξ (γ )} is the set of all mean-field solutions to the
first-moment steady-state conditions and cγ are coefficients to
be determined. By construction eT

α

∑
γ cγ ψY (ξ (γ )) = 0 ∀α.14

Refer to the corresponding expectations as

(0| exp

(∑
q

aq

)
ψY (a)cγ |ξ (γ )) ≡ 〈�Y (N )〉(γ ),

(0| exp

(∑
q

aq

)
ψY (a)|φ′) ≡ 〈�Y (N )〉′ (55)

and likewise for higher-order moments and descaled
moments �̂.

Under the decomposition (54), the steady-state condition
(53) becomes

k1∑
j1=0

(
k1

j1

)
· · ·

kP∑
jP =0

(
kP

jP

)[∏̇
p

Y
jp

p

ξ
jp

p

]
Â

⎧⎨
⎩

s∑
α=1

êαêT
α +

δ∑
β=1

ˆ̃eβ
ˆ̃e
T
β

⎫⎬
⎭〈�̂Y+(k−j )(N )〉′

= −
∑

γ

k1∑
j1=0

(
k1

j1

)
· · ·

kP∑
jP =0

(
kP

jP

)[∏̇
p

Y
jp

p

ξ
jp

p

]
Â

δ∑
β=1

ˆ̃eβ
ˆ̃e
T
β〈�̂Y+(k−j )(N )〉(γ )

. (56)

If there is a unique steady-state solution and if the descaled
moment hierarchy �̂ is descaled with this ξ , then by con-

struction it will be the case that 〈�̂Y+(k−j )(N )〉(γ ) = cγ [1] (the
vector of all 1’s), for all k and j on the right-hand side of
Eq. (56), which contains a single term in the sum on γ .15 In the
more general case, we can choose the descaling parameters so

that 〈�̂Y+(k−j )(N )〉(γ ) = cγ [1] for a particular γ of our choice.
(Generally this means descaling whichever term makes the
largest contribution on the right-hand side, to remove the k

and j dependence in that term.) The argument that the term
|φ′) is subleading is then made in two steps.

(i) For some set of coefficients {cγ } we can ensure that
eT
α〈�Y (N )〉′ = 0. This is because the set of steady-state

solutions for ξ (γ ) form a basis for the set of all solutions to the
first-moment steady-state conditions. In general (even if there
is only one solution for ξ ), the required coefficients {cγ } may
need to be determined by matching conditions to a large-k
asymptotic expansion.16 [Note that the values of ẽT

β〈�Y (N )〉′
are unconstrained at order

∑
p kp = 1 and must be determined

as part of the recursion on k.]
(ii) For

∑
p kp > 1, the leading-order dependence on

〈�̂Y+(k−j )(N )〉(γ )
on the right-hand side of Eq. (56)

comes when
∑

p jp = 2 and by Eq. (52) this term is

14Note that |φ′), as the generating function for a difference of
distributions, will not generally be derived from any distribution with
all positive values.

15Note that, even in the case of a unique steady state, we cannot
presume that cγ = 1 unless 〈�Y 〉 includes a term proportional to �0 ≡
〈1〉, because the first-moment condition does not otherwise fix the
normalization of the geometric sequence within the total distribution.

16The monostable solution in Sec. VI B illustrates the need for a
nontrivial normalization in the case of a unique solution and the
bistable solution in Sec. VI C illustrates the case of a solution for a
linear combination of Poisson backgrounds.

O((k/ξ )2〈�̂Y+(k−j )(N )〉(γ )
). The leading term on the left-hand

side arises where
∑

p jp = 1, involves only the s-flows, and is
O((k/ξ )〈�Y+(k−j )(N )〉′). Hence we conclude that, at the level
of counting naive scaling dimensions, there is a perturbative
expansion in small k/ξ about a sum of coherent states, in which

〈�Y+(k−j )(N )〉′ ∼ O((k/ξ )〈�̂Y+(k−j )(N )〉(γ )
). The reason it is

meaningful to make such a scaling comparison, when the
j values used to estimate the powers of scale factors are
different on the left-hand and right-hand sides of Eq. (56),
is that we have been free to choose the descaling parameter
for �̂ so that for whichever γ gives the largest contribution,

〈�̂Y+(k−j )(N )〉(γ ) = cγ [1], removing the k and j dependences
from the source on the right-hand side of the equation.

This completes the argument.

VI. WORKED EXAMPLES

We now demonstrate the above results for moment hier-
archies in a cascade of examples. Each successive example
increases the generality of the problem and introduces a new
feature of general solutions of CRNs. Explicit constructions
involving transfer matrices or Liouville operators are given
in the main text where they first occur and the corresponding
forms that differ only by elaboration for later examples are
deferred to Appendix A.

A. A CRN with one species, two states,
and no conserved quantities

This model is a minimal nontrivial form for a CRN,
showing how uniqueness of positive steady states follows from
deficiency zero and exhibiting the proof of the ACK theorem
in terms of coherent-state projection operators from Sec. IV B.
The CRN is given by the graph introduced in Fig. 1 with the
associated reaction scheme (1). Its mean-field rate equation is

∂n

∂τ
= αn − βn2. (57)
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α β

FIG. 2. Additional state added relative to the model of Fig. 1.
This model is not weakly reversible.

The master equation, illustrating the decomposition (26) for
the transfer matrix, is

∂ρn

∂τ
= [(e−∂/∂n − 1)αn + (e∂/∂n − 1)βn(n − 1)]ρn. (58)

For the transfer matrix (58), the Liouville operator is

L = (1 − a†)(αa†a − βa†a2)

= (1 − a†)(a†a)(α − βa). (59)

The first line is a direct translation of the reaction repre-
sentation from Eq. (3) for the conversion of particles in
each unidirectional reaction. The second line extracts the
overall factor of the projection operator α − βa that vanishes
on a coherent state with parameter ξ = α/β in all moment
equations, which is the proof of the ACK theorem given in
Sec. IV B.

B. A CRN with one species, three states,
and no conserved quantities

In this section we introduce a one-parameter family of
models that have the same rate equation over the entire
family. Figure 2 depicts a limiting member that lacks weak
reversibility. Although the limiting case is formally outside the
scope of the assumptions in the rest of the paper, it is useful
to highlight the role of δ-flows in driving solutions away from
the Poisson form associated with the ACK theorem. Weak
reversibility may be established without changing the rate
equation by adding two reactions to the graph of Fig. 2, to
obtain the family (over the rate parameter ε) of graphs shown
in Fig. 3, which we analyze below.

For this model, we demonstrate the stoichiometric decom-
position of the Liouville operator from Eq. (40) and descaling
of the moment recursion equation. For the parameters we
will use in simulations, a single downward-going asymptotic
expansion (obtained in [34]) is sufficient to solve the entire
moment hierarchy to arbitrary precision, starting from an
analytically derived large-k limiting form. However, we

ε

α β

ε

FIG. 3. Variant one-species model in which the complex graph
is weakly reversible. The steady-state concentrations are the same as
those in Fig. 2, which appear as a regular limit at ε → 0. Because
δ = 1, the distribution at the steady state is no longer Poissonian.

will also demonstrate the upward and downward matched
asymptotic expansion to illustrate the stability properties of
the recursion in small-k and large-k ranges. Exact solutions
to moment hierarchies of this kind are only possible for
birth-death [35] -type CRNs with one species, of which this
class of models is an example, or for δ = 0 CRNs, whereas
the asymptotic expansions have a much wider applicability, as
we demonstrate in later sections.

The rate equation for the CRNs in both Figs. 2 and 3 is

∂n

∂τ
= αn − βn3, (60)

which differs from Eq. (57) only in changing the activities that
govern particle creation and destruction. The simplest CRN
graph with rate equation (60) is shown in Fig. 2, with the
associated reaction scheme

A
α
⇀ 2A, 2A

β
↽ 3A. (61)

The model introduces competing autocatalysis at two orders:
Particle creation occurs in proportion to the density of existing
particles, while particle destruction occurs in proportion to the
cube of the density. Because the CRN in Fig. 2 has only three
complexes, however, the rate equation has only two nontrivial
roots and therefore cannot support multiple positive steady
states. (It does, however, have the marginally stable steady
state n ≡ 0.)

The CRN of Fig. 3 with the reaction scheme

A
α−⇀↽−
ε

2A, 2A
ε−⇀↽−
β

3A (62)

may be checked by Eq. (39) to have deficiency δ = 1.
The master equation is provided in Eq. (A2) and the

associated Liouville operator is

L = (1 − a†)[αa†a − ε(1 − a†)a†a2 − βa†2
a3]

= (1 − a†)(a†a)[(α − εa) + (a†a − 1)(ε − βa)]. (63)

The limit ε → 0 is degenerate with the graph of Fig. 2. The
important feature of this Liouville operator is that the two
projection terms α − εa and ε − βa are now multiplied by
distinct nontrivial operators (respectively 1 and a†a − 1) and
cannot both be made to vanish independently at a single
Poisson solution at general values of ε. This is the way in
which deficiency one (attained by adding a complex within a
linkage class) moves the CRN outside the scope of the ACK
theorem.

1. Stoichiometric decomposition

We can use the property suggested by the concept of
deficiency, the categorization of flows as mean-regressing
versus non-mean-regressing flows, to further clarify how the
nonindependence of the projection terms in the Liouville
operator (63) results in deviations from the Poisson steady-
state form. The three decompositions of the Liouville operator
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(63), from Eqs. (3) and (40), are given by

L =
[a† a†2

a†3]
⎧⎨
⎩
⎡
⎣ 1

−1
0

⎤
⎦[α −ε 0]

+
⎡
⎣ 0

1
−1

⎤
⎦[0 ε −β]

⎫⎬
⎭
⎡
⎣a1

a2

a3

⎤
⎦

=
[a† a†2

a†3]
⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦[α −ε 0]

+
⎡
⎣0

1
0

⎤
⎦[−α 2ε −β]

+
⎡
⎣0

0
1

⎤
⎦[0 −ε β]

⎫⎬
⎭
⎡
⎣a1

a2

a3

⎤
⎦

=
[a† a†2

a†3] 1

α2 + β2

⎧⎨
⎩
⎡
⎣ α2

−α2 + β2

−β2

⎤
⎦[α 0 −β]

+
⎡
⎣ 1

−2
1

⎤
⎦[αβ2 −ε(α2 + β2) βα2]

⎫⎬
⎭
⎡
⎣a1

a2

a3

⎤
⎦ (64)

The first line is the reaction representation (since the reactions are bidirectional, we have combined both departure terms in the
row vectors). The second line is the complex representation. In this representation it is clear why, if ε → 0, the reaction cannot
be complex balanced: All terms in a given row vector have the same sign, so any positive density produces nonzero flows at some
complexes. The last line is the stoichiometric representation. The first dyadic corresponds to the s-flow AeeT and the second
dyadic corresponds to the δ-flow AẽẽT.

Note that the diagonalization of the s-flow couples activity in the complex a to changes of probability across complexes
a†2

and a†3
and vice versa with activity at a3 and changes of probability across complexes a† and a†2

. Thus, despite
the similarity in form to the deficiency-zero projector in the Liouville operator from Eq. (59), the s-flow projection
in Eq. (64) cannot be written as a stand-alone Liouville operator from a deficiency-zero subnetwork of the current
network.

To illustrate the way in which different combinations of s- and δ-flows control the scaling of �k in different regions, we note
the forms of projection operators at different orders in the sum (34):

Y = Y 1 = [1 2 3], Y 1A = [α 0 −β], Y 2 = [0 2 6],
Y 2A

2!
= [α ε −2β],

Y 3 = [0 0 6],
Y 3A

6!
= [0 ε −β]. (65)

The lowest-order term Y 1A projects out solutions �k+2/�k = α/β, while the highest-order term Y 3A projects out the solution
�k+2/�k+1 = ε/β. These turn out to be the two limiting moment ratios, respectively, in the limits k = 1 (the moment recursion
formula has no term at k = 0) and k → ∞, as we now demonstrate.

2. Scaling behavior of the rate equation used as a recursion relation

The Poisson background in the expansion (54), projected out by Y 1A and ensuring vanishing of the s-flow contribution to the
moment dynamics at each order k, is given by ψY = [ξ ξ 2 ξ 3]

T
, where the mean number ξ satisfies

ξ 2 = α

β
. (66)

This CRN has a unique steady state, so the terms appearing in Eq. (56) are

k
Y

ξ
ÂêêT〈�̂Y+(k−1)(N )〉′ = αk(�̂′

k − �̂′
k+2),

k∑
j=2

(
k

j

)
Y j

ξ j
Â{êêT + ˆ̃e ˆ̃e

T}〈�̂Y+(k−j )(N )〉′ = α

ξ

k!

(k − 2)!

{
(�̂′

k−1 − �̂′
k+1) +

(
ε√
αβ

�̂′
k − �̂′

k+1

)

+
(

k − 2

ξ

)(
ε√
αβ

�̂′
k−1 − �̂′

k

)}
,

c0

k∑
j=2

(
k

j

)
Y j

ξ j
Â ˆ̃e ˆ̃e

T
ψ̂Y (ξ ) = c0

α

ξ

k!

(k − 2)!

(
1 + k − 2

ξ

)(
ε√
αβ

− 1

)
. (67)

As the numerical evaluations below will show, this is a model in which, despite uniqueness of the Poisson solution matching the
first and third moments, the overall normalization of the moment hierarchy is not anchored in the lowest term �0, so a relative
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FIG. 4. Asymptotic expansions for moments and moment ratios for the model of Fig. 3. (a) Asymptotic expansion for ln �̂k descaled with
ξ = √

α/β under the recursion relation (68), upward from k = 1. Five traces are generated by starting with 〈N〉 ≡ 〈N3〉 fixed and 〈N2〉 values
spaced by 1 × 10−10 around the stable value. The group of trajectories become uncontrollably divergent by k = 25. Asterisks are evaluations
of the corresponding moments from a Gillespie simulation and the value of 〈N〉 was used to supply the unspecified normalization c0 ≈ 2.67
in Eq. (68) for the recursion series. (b) and (c), which differ only in the plotted range, show ratios �̂k+1/�̂k (for which c0 appears only in the
lowest term 〈N〉/1). Curves computed by recursion downward from k = 200 with the starting approximation (69), shown as the red dash-dotted
curve in (b). Gillespie simulation results overlaid as asterisks. The Poisson expectation ξ from MFT and the large-k asymptotic limit ε/β are
shown as green dashed lines for reference.

normalization c0 for the ψY (ξ ) contribution is undetermined. In this way, the role of the Poisson background in an exact solution
of the moment hierarchy is different from a mean-field approximation. Mean-field theory (MFT) would require 〈N〉2 = α/β in
place of Eq. (66), which requires 〈N〉2 = (c0ξ )2. The freedom for ξ to differ from 〈N〉 by the normalization c0 is necessary,
because even for this simple network, the MFT prediction for the mean is not valid.

The exact recursion relation for the deviations from Poisson moments is then the finite sum

�̂′
k − �̂′

k+2 + k − 1

ξ

{
(�̂′

k−1 − �̂′
k+1) +

(
ε√
αβ

�̂′
k − �̂′

k+1

)
+
(

k − 2

ξ

)(
ε√
αβ

�̂′
k−1 − �̂′

k

)}

= −c0
k − 1

ξ

(
1 + k − 2

ξ

)(
ε√
αβ

− 1

)
. (68)

For parameters that produce suitably small mean particle
number, the recursion relation implied by Eq. (68) may
be solved for all k to any desired precision, from the
upper asymptotic behavior alone, as shown in [34]. We are
interested here, however, in understanding the small-k and
large-k behaviors of the moments. To this effect, we can see
directly both aspects of the scaling presented in Sec. V. As
an asymptotic expansion, the recursion relation specifies the
higher-order difference �̂k+2 − �̂k as a power series in k/ξ

with coefficients from values and differences of � at lower k

indices.
The seed for the expansion at orders �̂′

4 and higher from the
Poisson background is the k-independent value c0(ε/

√
αβ −

1), multiplied by a polynomial of O(k/ξ ). Note, however,
that the terms �̂′

2 and c0, which are undetermined by the first-
moment condition eT〈�Y (N )〉 = 0, enter the recursion relation
according to the scaling of the overall asymptotic expansion
and are permitted to be O(1) relative to ε/

√
αβ − 1. Finally,

we observe that for a fine-tuned value of the rate parameters
ε = √

αβ, the correction term can be made to vanish and the
ACK-like solution projected to zero by the s-flow term AeeT

in Eq. (64) becomes a steady-state solution, even though for
this CRN δ = 1.

Next we illustrate how the asymptotic expansion with a
requirement of boundedness at large k anchors the moment hi-

erarchy at all orders. We seed the downward-going asymptotic
expansion with the leading nonconstant approximation to the
recursion relation around the limiting ratio projected out by
Y 3A from Eq. (65), which has the form

〈Nk+1〉
〈Nk〉 ≈

(
ε

β

)[
1 − ε2 − αβ

εβ

1

k − 1

]
. (69)

The corresponding leading-order approximation for large-k
moments may be written about any reference value k0 as

〈Nk〉 ≈ N
(

ε

β

)k[
1 − ε2 − αβ

εβ
ln

(
k − 1

k0

)]

≈ N
(

ε

β

)k(
k0

k − 1

)(ε2−αβ)/εβ

, (70)

where N is an overall normalization to be determined.
Figure 4 shows a comparison of the numerical regression

from Eq. (68), both for an upward-going recursion from
k = 1 and for a downward-going recursion with the large-k
asymptotic seed (70), to estimates of the first ten moments
from a Gillespie simulation of the underlying process. The
parameters used in the demonstration are α = 100, β = 10,
and ε = 70. So the relevant parameters are ξ = √

α/β = √
10,

ε/β = 7, and ε/
√

αβ = ε/βξ ≈ 2.2136. We have normalized
the constant c0, which is unspecified by the recursion relation
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k2 k1

ε k1
_

FIG. 5. This network, for some rate constants, can have two
nonequilibrium steady states in the mean-field approximation. Even
when this is the case, however, because the particle number is
finite, the stochastic system always has only one ergodically sampled
long-term steady distribution. Some subgraphs are common with
Fig. 3, but the complex graph has two linkage classes, again giving
δ = 1.

to the simulated mean 〈N〉, and find close agreement with all
other moment ratios.

C. A CRN with one species, four states, two linkage classes,
and no conserved quantities

We can preserve the number of s-flows and δ-flows from the
previous model, but introduce the possibility for multistability,
by increasing both the number of complexes and the number
of linkage classes by one. The resulting graph for a minimal
model with this elaboration is shown in Fig. 5 and its reaction
scheme is given by

∅

ε−⇀↽−
k2

A, 2A
k1−⇀↽−̄
k1

3A. (71)

The corresponding rate equation is

∂n

∂τ
= ε − k2n + k1n

2 − k̄1n
3. (72)

We have labeled the reaction rate constants in this model to
reflect a set of cases that are often important in biochemistry
and industrial synthesis: A reaction that is (directly or
indirectly) self-catalyzed by feedback through the synthetic
network is the main channel for production and decay of the
product (rate constants k1 and k̄1), compared to an uncatalyzed
pathway that has nonzero but small rate ε, while a significant
rate k2 remains for spontaneous decay of the product. The
scheme (71) is a slight generalization of the famous Schlögl
model [41] to yield a weakly reversible complex network.

Quadratic-order autocatalysis in this CRN comes from the
same pair of reactions as it does in Fig. 3. The addition of a
fourth state to the complex graph creates a cubic first-moment
rate equation and thus the possibility for multiple steady states.

For the graph of Fig. 5, the Liouville operator is

L = (1 − a†)[ε − k2a + k1a
†2

a2 − k̄1a
†2

a3]

= (1 − a†)[(ε − k2a) + (a†a)(a†a − 1)(k1 − k̄1a)]. (73)

The stoichiometric decomposition of this operator is similar
to that from the previous model and is given in Eq. (A5).

The factorials Y j and projection operators Y jA appearing
in Eq. (34) are given by

Y = Y 1 = [0 1 2 3],

Y 1A = [ε −k2 k1 −k̄1],

Y 2 = [0 0 2 6],
Y 2A

2!
= 2[0 0 k1 −k̄1],

Y 3 = [0 0 0 6],
Y 3A

3!
= [0 0 k1 −k̄1]. (74)

The lowest-order (in k/ξ ) projector in Eq. (74) is Y 1A, which is
the projection operator corresponding to the s-flow in Eq. (A5).
If required to vanish on a coherent state, it gives

ε − k2ξ + k1ξ
2 − k̄1ξ

3 = 0. (75)

For appropriate parameter choices, this may have either a
unique stable solution or three solutions, two stable and one
between them that is unstable. Unlike the model of Fig. 3,
both �0 and �2 have nonzero coefficients in 〈�Y (N )〉, so the
normalization of the mean is fixed relative to �0 ≡ 1. Solutions
of the form (54) must satisfy

∑
γ cγ = 1 and therefore we may

set 〈�Y (N )〉′ ≡ 0.
In this model [contrasted with the result in Eq. (65)], both

of the projection operators Y 2A and Y 3A cancel the same
ratio �k+2/�k+1 = k1/k̄1 ≡ K1, so there are only two scaling
behaviors expressed in the model, respectively, at k → 0 and
k → ∞. This CRN, also being a birth-death-type process,
can be solved exactly [42] for the steady state. As for the
three-state model, this moment hierarchy may also be solved
by recursion from an upper asymptotic limit that is derivable
analytically (though again the numerical calculation is stable
only for sufficiently small mean particle numbers). If we define
〈Nk〉/〈Nk−1〉 ≡ Rk , then the set of Rk must obey the recursion

Rk = ε + (k − 1)(k − 2)k1

k2 − k1Rk+1 + k̄1Rk+2Rk+1 − (k − 1)(2k1 − 2k̄1Rk+1) + k̄1(k − 1)(k − 2)
. (76)

When we solve the recursion (76) numerically, directly in
terms of moments �k , we begin with a more refined large-
k approximate form than the first-order approximation used
as a seed in Eq. (69). The second-order leading nonconstant
approximation, corresponding to the form (70) given for the
previous model, is

�k ≈ N
(

k1

k̄1

)k[
1 + η

k − 1
+ η(η/2 − K1)

k(k − 1)
+ O

(
1

k3

)]
,

(77)

where N is an arbitrary normalization to be fixed by �0 = 1
and

η ≡ k2

k̄1
− ε

k1
. (78)

The large-k asymptotic behavior of Rk in Eq. (76) can
likewise be solved for an expansion in 1/k about the leading
fixed point, in the same manner as Eq. (69) for the previous
model. In this case, the leading departure is O(1/k2) rather
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than O(1/k) as in the three-complex model. In general, it
can be shown that that the first departure from whatever fixed
point is dictated by the leading large-k projection operator in
Eq. (34) is determined by the highest power of k appearing in
the expansion in the sum. This order corresponds to the largest
stoichiometric coefficients for that component of k appearing
in the CRN.

1. Bistability in MFT and handling mixtures of Poisson
basis elements around k = 0

The handling of multistability in CRNs with δ > 0 in-
troduces several new interesting properties, both within the
moment recursion relations and in their relation to mean-field
theory. First, MFT will generally predict multistability for
Poisson solutions, whether or not the mean particle number
is large enough that trajectories in the stochastic process
actually generate a multimodal density of particle numbers.
The meaning of MFT solutions in relation to the analytic
structure of representations of the generating function is an
interesting topic from which we briefly draw results below, but
mostly refer to other developments [36–38,43] (see also [44],
Chap. 7). Second and more important, the moment relations are
exact and we therefore expect them to possess unique solutions
corresponding to the ergodic distribution, even when the mean
particle number is large enough that the MFT representation
of multistability corresponds to a true incipient17 breaking of
ergodicity. The expansion in high-order moments becomes
an important if cryptic representation of the trajectories
responsible for first-passages between domains.

We illustrate some of these properties for the case of
bistability with a numerical example at the parameters ε = 36,
k2 = 49, k1 = 14, and k̄1 = 1. The two stable solutions to
Eq. (75) are ξ (1) = 1 and ξ (3) = 9 and an unstable solution
exists at ξ (2) = 4.

Figure 6 shows the recursive solution for 〈N̂k〉, descaled
with ξ (3) = 9, starting from the large-k asymptotic form (77).
The solution exactly matches the expansion (54), with the
coefficients given by

c1 ≈ 0.987, c2 ≈ −0.092, c3 ≈ 0.105. (79)

Mean-field theory suggests no natural interpretation of
the mixture (79) with a negative coefficient on an unstable
solution. What would normally be done instead in MFT is
to express the mean 〈N〉 ≈ 1.56 directly as a mixture of the
two MFT stable values ξ (1) = 1 and ξ (3) = 9 with a mixing
coefficient

ceff ≡ 〈N〉 − 1

9 − 1
≈ 0.071. (80)

17We say “incipient” because in conventional usage, breaking of
ergodicity is an asymptotic property, here in the scaling variable 〈N〉
as 〈N〉 → ∞. Formally, ergodicity breaking can still be considered
well defined even in finite-size systems, to the extent that it is
associated with stationary paths in a semiclassical approximation that
are essential singularities with respect to the asymptotic expansion in
fluctuations [43].

0 10 15 20 25 30
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-2
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ln
(Φ

k)
^

FIG. 6. Solution ln �̂k to the recursion relations (33), descaled
with ξ (3) = 9, extended downward from k = 200 using the asymptotic
approximation (77). The Poisson basis elements for ξ (1) = 1 and
ξ (3) = 9 corresponding to the stable solutions in MFT are shown,
respectively, as red dash-dotted and green dotted lines, for reference.
The values �̂k for k ∈ 0, . . . ,3 match an expansion (54) with the
coefficients (79) and 〈�Y (N )〉′ ≡ 0. Symbols are from a direct
Gillespie simulation.

We will use the phenomenological description (80) to under-
stand qualitatively how MFT and stationary-point expansions
relate to the exact solution of the moment hierarchy.

2. Interpretation with a Kramers approximation
for first-passage times

The interpretation of the ergodic solution in terms of a
sum over naive mean-field backgrounds can be compared to
a stationary-point expansion using the method of instantons,
which is developed in [36,38,44]. Stationary-point locations
and probabilities are governed by the minima of a nonequi-
librium effective potential, which we have computed for this
particular network in [45] (Chap. 7) and which takes the form18

�(n̄) =
∫ N̄

4
dn ln

(
k2n + k̄1n

3

ε + k1n2

)
. (81)

The extrema of the effective potential are exactly the values of
the Poisson parameters ξ (γ ). (Here we arbitrarily set the zero
of the effective potential to n = 4, the saddle point.) A plot of
the effective potential versus n is shown in Fig. 7.

The probability to occupy either minimum may be approx-
imated by the Kramers formula [46] derived from �,

pn̄ ∝
√

�′′(n̄)e−�(n̄), (82)

which follows from a semiclassical approximation to the
escape rates by the nontrivial stationary trajectories known
as instantons. Figure 7 shows that for these parameters, the

18In Ref. [45], we used the notation �(n̄) for the effective potential,
which we change here to �(n̄) to avoid overlap with the notation for
the moment hierarchy.
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FIG. 7. Effective potential �(n̄) from Eq. (81).

minima of � are approximately equal to −0.25 and −0.19,
respectively, at n̄ = 1 and 9, so the Kramers approximation is
not expected to be quantitatively accurate. The corresponding
second derivatives �′′ take values approximately equal to 0.07
and 0.02.

Figure 8 shows a time series for the particle number N in a
Gillespie simulation, with dashed lines indicating the minima
of the effective potential (81). Some features of the stationary-
point approximation are reflected: A majority of the time series
remains near N = ξ (1) = 1 with strong mean regression, while
excursions with modest persistence and wider fluctuations
occur out to N ∼ ξ (3) = 9. However, the excursions do not
have the character of fully metastable equilibria. The logarithm
of the empirical stationary distribution from the simulations
is monotonically decreasing, with a visible shoulder (the
signature that excursions are persistent) with a mode around
N ≈ 15.

Equation (82) gives, for the occupation probabilities of the
two states, approximate values

p9̄ ≈ 0.20, p1̄ = (1 − p9̄) ≈ 0.80, (83)

in which p9̄ corresponds roughly to the empirical mixing
coefficient ceff in Eq. (80). The Kramers formula captures the
larger weight on 〈�Y (N )〉(1), but overestimates the admixture
of 〈�Y (N )〉(3) by about a factor of 3.

This CRN was also studied by Anderson et al. [42]. Using
the fact that the steady-state probability ρss is known, they
showed that the nonequilibrium potential, defined here as
− ln(ρss), converges to the Lyapunov function for the cor-
responding deterministic dynamics, in an appropriate scaling
limit. The resulting Eq. (38) in [42] is our Eq. (81) obtained as
a large-deviation function.

D. Two species, cross catalysis, and loss of factorability

The final model we will develop shows the loss, for δ > 0,
of the factorability that characterizes the steady states of
deficiency-zero CRNs under the ACK theorem. We retain
the properties already developed, of deviation from Poisson
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FIG. 8. (a) Time series for the particle number N in the four-
state model of Fig. 5. Dotted lines label the minima of the effective
potential (81) in the stationary-point expansion. (b) Histogram of
the stationary distribution for N from the simulations, showing a
monotonic decrease and a shoulder with a mode around N ≈ 15.

statistics, and the capacity for multistability, by simply
changing the autocatalytic feedback in the model of Fig. 5 to
a cross-catalytic feedback between two symmetric chemical
species.

The resulting multistable network, for two species A and
B, is shown in Fig. 9 and its reaction scheme is given by

∅

ε−⇀↽−
k2

A, A + B
k1−⇀↽−̄
k1

2A + B,

∅

ε−⇀↽−
k2

B, B + A
k1−⇀↽−̄
k1

2B + A. (84)

The (now vector-valued) rate equation takes the form

∂na

∂τ
= ε − k2na + nb

(
k1na − k̄1n

2
a

)
,

∂nb

∂τ
= ε − k2nb + na

(
k1nb − k̄1n

2
b

)
. (85)
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FIG. 9. This CRN uses two species in a cross-catalytic configu-
ration to produce the same potential for bistability that the network
of Fig. 5 produces through one-species autocatalysis. In this CRN
δ = 2 and the scaling behavior of each species separately is similar
in many respects to one-species scaling of the network from Fig. 5.

The cross-catalytic CRN from Fig. 9 has the Liouville
operator

L = (1 − a†)[(ε − k2a) + (b†b)(a†a)(k1 − k̄1a)]

+ (1 − b†)[(ε − k2b) + (a†a)(b†b)(k1 − k̄1b)]. (86)

We introduce pairs of raising and lowering operators (a†,a) and
(b†,b), for the species A and B, respectively. The convention
we adopt for ordering the components of the (somewhat
complicated) vectors ψ(a,b) and ψ†(a†,b†) is given in Eq. (A6)
and the corresponding stoichiometric decomposition of the
Liouville operator is given in Eq. (A7).

1. Mean-field solutions and scaling regimes

The truncated factorials Y
ja

a and Y
jb

b that govern the scaling
regimes in the steady-state moment hierarchy are provided in
Eq. (A8). The lowest-order terms in the descaled form (51) of
the moment equation are(

ka

ξa

Yae
(ka−1)∂/∂Ya + kb

ξb

Ybe
(kb−1)∂/∂Yb

)
Â〈�̂Y (N )〉. (87)

The two vanishing conditions for YaÂ and YbÂ (coming from
the projectors for the two s-flows of this network) are

(ε − k2ξa) + ξaξb(k1 − k̄1ξa) = 0,

(ε − k2ξb) + ξaξb(k1 − k̄1ξb) = 0. (88)

These are solved at ξa = ξb = ξ , with ξ again satisfying
the mean-field equation (75) for the single-species model of
Sec. VI C.

In the other asymptote, the highest-order terms in Eq. (51)
that are not identically zero in the componentwise product of

Y
ja

a · Y
jb

b are

kakb

2ξaξb

(
ka − 1

ξa

Y 2
a · Ybe

−∂/∂Ya + kb − 1

ξb

Ya · Y
2
b e−∂/∂Yb

)

× Âe(ka−1)∂/∂Ya+(kb−1)∂/∂Yb 〈�̂Y (N )〉. (89)

The vanishing conditions for these two projectors are

ξaξb(k1 − k̄1ξa) = 0,

ξaξb(k1 − k̄1ξb) = 0. (90)

They are again solved at ξa = ξb = ξ but now with ξ =
k1/k̄1 ≡ K1, reproducing the large-k asymptotic condition
from the single-species model of Sec. VI C.

This two-species case may again be solved for mixed
moments in the neighborhood of the diagonal ka = kb,
writing coupled recursion relations for the ratios of the
factorial moments, as shown in [34]. In the following sec-
tion we illustrate an alternate solution method using the
asymptotic expansions that we have developed in the earlier
sections.

2. Polynomial expansion of a solution for the moment equation
in a neighborhood of the diagonal ka = kb

We now illustrate how the representation  of the generator
for the stochastic process, acting similarly to a Laplacian
on the two-dimensional lattice of moments �(ka,kb), can be
approximately solved in a neighborhood of the diagonal
ka = kb. The method of solution is to use the symmetry of
the recursion equations under ka ↔ kb to expand solutions in
even powers of ka − kb, with coefficient functions of ka + kb

solved by asymptotic expansion in a manner similar to that
used in the one-species models of Secs. VI B and VI C.

The diagonal ka = kb serves as an anchor for this approx-
imation method, because it is also the contour of slowest
approach for the classical mean-field solution.19 Stabilization
of a series solution in matched asymptotic expansions, for
more complicated multidimensional stoichiometric subspaces
in which the contour of slowest approach is nonaffine, is a
challenging problem of a different kind, which falls outside
the scope of our present treatment.

Even for the symmetric model, we do not have a proof that
the radius of convergence of these solutions covers the entire
lattice of k values, but comparisons to Gillespie simulation
show good agreement in neighborhoods of the diagonal,
suggesting that the asymptotic boundary conditions we use
are consistent with those of full solutions. The existence
of approximate solutions with this form shows a strong
breaking of factorability from the form of products of Poisson
distributions that is a characteristic of the ACK solution for
deficiency-zero networks.

In the following solutions, two combinations of the rate
constants that will appear repeatedly are given shorthand
notation20

ω ≡ ε/k1, η ≡ k2/k̄1 − ω. (91)

As in the asymptotic solutions for the one-species models,
we begin by recognizing that the large-k asymptotic form is
dominated by the scaling of the projection operator that is
nonzero for the largest value of j in the sum (51). This is the
projector given in Eq. (89). Therefore, we define the descaled

19The importance of contours of slowest approach was shown for
a similar problem of the stabilization of instanton approximations in
[36,47] and [38], Chap. 5.

20The second term η has already appeared in Eq. (78).
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FIG. 10. Graphic representation of the action of the generator ̂ given by Eq. (51) for the CRN of Fig. 9. The grid represents adjacent
values of the index pair (ka,kb), (ka ± 1,kb), (ka,kb ± 1), and (ka ± 1,kb ± 1), as indicated by axis labels in the first panel. The closed circle
in the first panel represents multiplication by the moment at (ka,kb). Solid arrows indicate multiplication of moments by the projection vector
[1 −1], acting on the moments at the tip and tail of the arrow. The labels on the lines indicate the function of parameters and k values that
multiplies each such projector. Thus the first panel is simply the term −η(ka + kb)�̂(ka ,kb ), etc. The first and second panels, and the lower right
pair of terms in the third panel, come from the terms at order ja + jb = 1 in Eq. (51), given in Eq. (87). The terms running antidiagonally
through the center in the third panel come from the terms at order ja + jb = 2 and the terms in the upper left corner of the third panel come
from the terms at order ja + jb = 3, shown in Eq. (89). The large-k asymptotic Poisson �̂ → N1 is annihilated identically by both panels with
arrows.

moment operator by �(ka,kb) ≡ K
ka+kb

1 �̂(ka,kb) and look for
solutions in the form

�̂(ka,kb) = N
[
1 + ηϕ(ka,kb)

]
, (92)

where ϕ(ka,kb) → 0 at large ka or kb.21

We introduce diagonal and transverse variables, written as
functions of the vector argument k,

κ(k) ≡ ka + kb, q(k)2 = (ka − kb)2. (93)

In matrix multiplications below, we will often use κ and q2

as function names, with the argument k, which is the index of
summation suppressed as in usual matrix notation. We look
for solutions to ϕ in the form of power series

ϕ =
∞∑

α=0

ϕ(α)
κ q2α. (94)

Each term is to be chosen so that ϕ(α)
κ → 0 as κ → ∞. The

functions ϕ(α)
κ obey recursion relations similar to those for

an infinite sequence of one-dimensional moment hierarchies
labeled by α, except that the vectors in the sequence are
coupled across values of α. Within the solution for each
ϕ(α)

κ , we may treat κ itself as the discrete index of the
recursion. Here, as in the one-species models, the descaled
recursion relation suggests leading-order asymptotics for ϕ(α)

κ

in powers of 1/κ , which may be used to seed numerical
solutions.

The conversion from the original lattice �̂k to the sequence
of vectors ϕ(α)

κ leads to the following approximation procedure
to solve for steady states: The steady-state condition from

21We justify this assumed scaling by reference to the large-k limit
(77) from the similar one-species model, because the orders of
catalysis are more similar to that case than to the model of Sec. VI B
leading to the soft (logarithmic) divergence of Eq. (70).

Eq. (51) is

0 = ̂[1 + ηϕ] = ̂1 + η̂

∞∑
α=0

ϕ(α)
κ q2α, (95)

where 1 ≡ [1][1]T is the dyadic matrix of all 1’s. We introduce
a zeroth-order source term s(0)

κ defined by

̂1 = −η
κ

K1
≡ −ηs(0)

κ , (96)

so the steady-state condition is equivalent to the series solution
of an inhomogeneous Laplacian equation

̂

∞∑
α=0

ϕ(α)
κ q2α = s(0)

κ , (97)

in which ̂ serves as Laplacian and s
(0)
k is the source for the

inhomogeneous solution.
The form of ̂ can be described graphically in terms of

difference operators acting across adjacent positions on the
lattice of k values, as shown in Fig. 10. Here ̂ acts nontrivially
on q2α as well as on ϕ(α)

κ , so Eq. (97) induces connections
across orders in α and we relegate the details of a solution by
successive approximations to Appendix B.

3. Properties of steady states in the two-species model

The major features of the steady-state solution in this model,
which we have verified against Gillespie simulations, are the
following.

Order of terms versus α. The naive scaling dimensions
implied for ϕ(α)

κ by Eq. (51) suggest that these functions should
decay at large κ with increasing powers of 1/κ . Numerically,
this appears to be borne out, with indeed the entire series ϕ(α)

κ

decreasing in magnitude with increased α. In addition to the
on-diagonal terms (where q2 ≡ 0), which are defined entirely
in terms of ϕ(0)

κ , terms adjacent to the diagonal, which should
be dominated by ϕ(α)

κ at low orders in α, are well approximated
by the solution ϕ(0)

κ across the whole range of ka = kb.
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Scaling of finite-order approximations along rays of |q|/κ .
The measure of error (nonzero values of ∂�k/∂τ ) appears
roughly constant along rays of fixed |ka − kb|/(ka + kb) ≡
|q|/κ at finite orders of approximation in ϕ(α)

κ . Stabilizing
the asymptotic expansion independently at each order of ϕ(α)

κ

becomes increasingly difficult as α increases, due to cross-
level feedback and the successive-approximation algorithm
we use for solution. Thus we obtain an approximate solution
only through order ϕ(5)

κ .
Comparison of the two-species cross-catalytic and one-

species autocatalytic models. The ratios of adjacent moments
in the value ka + kb, which require at minimum comparing on-
diagonal and first off-diagonal moments, are shown in Fig. 11
and compared to the corresponding sequence of ratios derived
from the moment solutions in Fig. 6. We find that the mean
value 〈Na〉 ≡ 〈Nb〉 in the two-species model is very close to
the mean value 〈N〉 from the one-species model, as suggested
by the equivalence of their mean-field forms, even though
both models differ significantly from the MFT approximation,
which is the solution ξ to Eq. (75). Moreover, the second
moments 〈NaNb〉 remain close to the one-species expectation
〈N (N − 1)〉 and again different in both cases from the MFT

prediction. At higher k, a different behavior is seen: The
transition to scaling dominated by the term (89) is governed in
the two-species model by ka and kb comparable to one-species
k and not by the sum ka + kb. This is expected by comparing
the forms of the two Liouville operators (73) and (86).

4. Breaking of the factorability of the ACK theorem
through cross catalysis

The solution scheme defined in Sec. VI D 2 and worked
out in Appendix B 1 suggests that the moment hierarchy
near the diagonal is well approximated (at least at large
k) by a function of ka + kb, which is a strong deviation
from the factorability that would be produced by the ACK
theorem for a deficiency-zero network. To study the failure
of factorability more directly than through the numerical
approximation scheme of Appendix B 1, we may alternatively
approximate the large-k behavior of the moment hierarchy by
a sum of products of powers of 1/ka and 1/kb, solved fully
for ̂�̂ = 0 order by order in 1/k. The two expansions do not
have the same asymptotics along the boundaries ka = 0 and
kb = 0, but they can be made to satisfy the same boundedness
criteria at large k in a neighborhood of ka = kb.

An expansion of the solution to ̂�̂ = 0 to second order in 1/k is given by

�(ka,kb) ≈ NK
ka+kb

1

[
1 + η

ka + (K1 − η)/2
+ η

kb + (K1 − η)/2
+ η(η − K1)

[ka + (K1 − η)/2][kb + (K1 − η)/2]

]

≈ NK
ka+kb

1

[(
1 + η

ka + K1/2
+ η2/2

(ka + K1/2)2

)(
1 + η

kb + K1/2
+ η2/2

(kb + K1/2)2

)
− ηK1

(ka + K1/2)(kb + K1/2)

]
,

(98)

which we have checked numerically cancels the error term
∂�̂/∂τ to the correct order of 1/k.22 The first departure from
factorability occurs in the second-order term with numerator
−ηK1, showing where the δ-flow contributions create corre-
lated fluctuations that would be ruled out in a δ = 0 network.

5. Generalizing to a larger number of species

Our constructions apply to CRNs with arbitrary numbers of
species, but the foregoing models show how the character of
solution methods changes with increasing numbers. Because
the generator (34) has finitely many terms for any finite CRN,
for one-species problems, the number of undetermined bound-
ary data that must be sampled to search for stable asymptotic
expansions is always finite. Moreover, the large-k limit may

22Equation (98) may be compared to Eq. (77) for the one-species
model and also to the leading-order scaling estimate for the term
ϕ(0)

κ from Eq. (B6). Along the diagonal ka = kb, Eq. (98) becomes
�(ka ,kb ) ≈ NK

ka+kb

1 [ 4η(ka+kb)
(ka+kb+K1−η)2 ]. The leading behavior differs from

Eq. (B6) by a factor 4/3 multiplying K1 − η, which is consistent with
the fact that the scaling solutions in Appendix B 1 only propagate
the effects of ̂ upward in a hierarchy of powers; feedbacks
down the hierarchy are absorbed in higher-order correction terms
that have the same large-k order as corrections in the multiplier of
K1 − η.

be extended to improve the precision of approximations from
coarser seed functions. In two or more dimensions, unknown
boundary data can exist along all surfaces of codimension
1 or more, in which one or more kp = 0. If an asymptotic
bounding surface is moved outward for the nonzero values
of kp, new unknown values are added to the set that must be
sampled along small-kp boundaries. Therefore, increasingly
much of the information in a solution must come from
boundary-condition data, compared to the constraint in the
scalar condition � = 0.

Other problems of convex analysis, analogous to the Fein-
berg deficiency-zero argument, are also left as questions for
future work. Is there a systematic way to represent the number
of distinct scaling regions controlled by terms in the sum (34)
over j? Do large-k asymptotic conditions on the vector ξ of
coherent-state parameters always possess unique solutions?
When are they underdetermined, and in these cases do the
solutions from s-flow conditions extend outward indefinitely?

Despite leaving several detailed questions to be addressed,
we emphasize that the finite rank of the operator  reduces
the solving of a moment hierarchy to all orders, to a problem
of equal complexity to solving a Laplacian diffusion equation,
generally with beyond-nearest-neighbor couplings. This is
a simpler and less-costly problem than direct simulation,
especially for high-order moments in systems with large
particle numbers.
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FIG. 11. Comparison of Gillespie simulations (circles) for the CRN model of Fig. 9 to the leading solution ϕ(0)
κ (solid curve and crosses)

from Eq. (94). (a) Ratios �̂(ka ,kb )/�̂(ka−1,kb) = �̂(ka ,kb )/�̂(ka ,kb−1) for ka = kb (black × and adjacent circles) and �̂(ka−1,kb )/�̂(ka−1,kb−1) =
�̂(ka ,kb−1)/�̂(ka−1,kb−1) for ka = kb (red + and adjacent circles). (b) and (c) Comparisons between these adjacent-moment ratios in the two-species
model and moment ratios �̂k/�̂k−1 in the one-species model of Fig. 5 (red dash-dotted curve and asterisks) that has an equivalent MFT solution.
(b) Plot of ka + kb directly against one-species k, showing that for the lowest moments the total particle number controls similar moment values
in the two models. (c) Plot of (ka + kb)/2 (equivalently, ka or kb) against one-species k, showing that the transition to scaling dominated by the
autocatalytic reactions is governed independently by ka and kb.

VII. CONCLUSION

The observations and results of this work may be grouped
under the following four main topics.

A shift in emphasis from topology to dynamics. In this article
we have bypassed the use of deficiency as a topological index
to categorize networks and focused instead on the contrast
between mean-regressing and non-mean-regressing flows on
the complex graph, which is the dynamical property that
causes deficiency to be important. The dynamical distinction,
which we express in the stoichiometric representation (40) of
the stochastic-process generator, continues to be definable in
terms of the images and kernels of A and YA, even in δ > 0
networks where it cannot be associated with a deficiency-zero
subnetwork. As shown in Sec. V C, the unique role of the
mean-regressing flows as the determinants of the first-moment
conditions, which persists to all orders in deficiency-zero
networks, persists in a more limited form as the leading term
in a 1/n expansion for the determination of moments in more
general networks.

The Doi operator algebra, Laplace transforms, and an
expanded role for Poisson basis distributions. The Doi operator
algebra used to express the generators of the stochastic process
is the tool that allows us to associate the s-flows and δ-flows in
the stoichiometric representation with corresponding product-
Poisson distributions, the origin and meaning of which are the
same as those of the unique steady-state distributions in the
Anderson-Craciun-Kurtz theorem. In this way, not only the
linear algebra of first moments in the stoichiometric subspace,
but the Poisson family of distributions as basis functions
extends directly from deficiency-zero to deficiency-nonzero
cases. This simplification and clarification results from work-
ing with the Laplace transform and the Liouville operator: The
elementary projection operators in terms of which L naturally
decomposes, which annihilate particular Poisson distributions,
describe collective motions that recursively relate all orders in
the moment hierarchy.

The manifestation of fundamental symmetries in the
generator of the stochastic process. The Doi operator algebra

also exposes symmetries of the generators (27) for stochastic
CRNs that are obscured in the combination of index shifts
and number dependence of rates in the master equation (26)
and masked entirely in the asymmetric form of the mean-field
mass-action rate equations (41) and (44). We use the simpli-
fications this formalism affords to both derive the moment
hierarchy and develop approximations to solve them.

Locality of scaling regions and connection to the Poisson
approximations. The finiteness of the generator acting on
the moment hierarchy is the feature that allows scaling
regimes to be defined locally in different asymptotic ranges
of moments and that makes Poisson-form basis distributions
good approximations to the moment recursion relations in
such regions. Despite the fundamental underlying complexity
of CRNs–remember that the search for nonlocally defined
topological properties such as shortest paths or feedback cycles
can be NP-hard [13]—the convergence of both high- and low-k
asymptotic expansions toward the matching region buffers
the strength with which different regions are coupled and
allows the convergence toward the Poisson basis elements to
be locally governed. In this way, Poisson distributions that are
among the lowest-information distributions serve as a basis for
the evaluation of the moments in systems with the potential for
very high information capacity. As a by-product, we also obtain
a systematic approach to moment closure, which does not have
any of the problems of ad hoc character and unphysical results
[48] prevalent in existing schemes.
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APPENDIX A: SUPPORTING ALGEBRA FOR CRN EXAMPLES

This appendix provides explicit forms for transfer matrices, Liouville operators, and truncated factorials of the stoichiometric
matrix for the CRN models in the main text.

1. Forms of the transfer matrices appearing in master equations

Transfer matrices are given below for the indicated CRN models.
For the graph of Fig. 2 the evolution equation for the density that defines the transfer matrix has the form

ρ̇N = [(e−∂/∂N − 1)αN + (e∂/∂N − 1)βN (N − 1)(N − 2)]ρN. (A1)

This equation illustrates in the simplest form how Poisson steady states come to be ruled out when the ACK theorem no longer
applies. The shift operator acts by single units N → N ± 1, but the numerical factors in the rates for particle creation and
annihilation differ by second-order terms in N , which cannot be absorbed in any Poisson distribution.

For the weakly reversible graph of Fig. 3, the master equation adds a term affecting fluctuations though it preserves the
first-moment rate equation

ρ̇N = {(e−∂/∂N − 1)[αN + εN (N − 1)] + (e∂/∂N − 1)[εN (N − 1) + βN (N − 1)(N − 2)]}ρN. (A2)

The master equation for the CRN of Fig. 5 is

ρ̇N = {(e−∂/∂N − 1)[ε + k1N (N − 1)] + (e∂/∂N − 1)[k2N + k̄1N (N − 1)(N − 2)]}ρN. (A3)

For the CRN of Fig. 9, N becomes a two-component index to ρ and the master equation becomes

ρ̇N = {(e−∂/∂Na − 1)[ε + k1NbNa] + (e∂/∂Na − 1)[k2Na + k̄1NbNa(Na − 1)] + (e−∂/∂Nb − 1)[ε + k1NaNb]

+ (e∂/∂Nb − 1)[k2Nb + k̄1NaNb(Nb − 1)]}ρN. (A4)

2. Stoichiometric representation forms for Liouville operators of the models

The stoichiometric decompositions of Liouville operators not explicitly written in the main text are provided here.

a. The one-species, four-complex model of Sec. VI C

The diagonalized form of the Liouville operator (73), corresponding to master equation (A3), is

L =
[1 a† a†2

a†3]
1

ε2 + k2
2 + k2

1 + k̄2
1

⎧⎪⎨
⎪⎩
⎛
⎜⎝(ε2 + k2

2

)⎡⎢⎣
1

−1
0
0

⎤
⎥⎦+ (k2

1 + k̄2
1

)⎡⎢⎣
0
0
1

−1

⎤
⎥⎦
⎞
⎟⎠

[ε −k2 k1 −k̄1]

+

⎡
⎢⎣

1
−1
−1

1

⎤
⎥⎦
⎛
⎝
(
k2

1 + k̄2
1

)
[ε −k2 0 0] − (ε2 + k2

2

)
[0 0 k1 −k̄1]

⎞
⎠
⎫⎪⎬
⎪⎭
⎡
⎢⎣

1
a

a2

a3

⎤
⎥⎦ (A5)

in which the top line is the s-flow and the bottom line is the δ-flow.

b. The two-species, cross-catalytic model of Sec. VI D

For the two-species model of Fig. 9, the vectors of creation and annihilation operators with respect to which we will write L
in matrix form are

ψ† = [1 a† b† a†b† a†2
b† a†b†

2], (ψ)T = [1 a b ab a2b ab2]. (A6)

Then L from Eq. (86), corresponding to the master equation (A4), in matrix form and also diagonalized, becomes

L = ψ†

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
(
2ε2 + k2

2 + 2k2
1 + k̄2

1

)
⎛
⎜⎜⎜⎜⎜⎝
(
2ε2 + k2

2

)
⎡
⎢⎢⎢⎢⎢⎣

2
−1
−1

0
0
0

⎤
⎥⎥⎥⎥⎥⎦+ (2k2

1 + k̄2
1

)
⎡
⎢⎢⎢⎢⎢⎣

0
0
0
2

−1
−1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

[2ε −k2 −k2 2k1 −k̄1 −k̄1]
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+ 1

2
(
k2

2 + k̄2
1

)
⎛
⎜⎜⎜⎜⎜⎝k2

2

⎡
⎢⎢⎢⎢⎢⎣

0
−1

1
0
0
0

⎤
⎥⎥⎥⎥⎥⎦+ k̄2

1

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0

−1
1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

[0 −k2 k2 0 −k̄1 k̄1]

+ 1

2
(
2ε2 + k2

2 + 2k2
1 + k̄2

1

)
⎡
⎢⎢⎢⎢⎢⎣

2
−1
−1
−2

1
1

⎤
⎥⎥⎥⎥⎥⎦

(
2k2

1 + k̄2
1

)
[2ε −k2 −k2 0 0 0] − (2ε2 + k2

2

)
[0 0 0 2k1 −k̄1 −k̄1]

+ k2k̄1

2
(
k2

2 + k̄2
1

)
⎡
⎢⎢⎢⎢⎢⎣

0
−1

1
0
1

−1

⎤
⎥⎥⎥⎥⎥⎦

[0 −k̄1 k̄1 0 k2 −k2]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

ψ. (A7)

The first line is the s-flow projected out by a†a + b†b; the second line is the s-flow projected out by a†a − b†b. The next two lines
are the δ-flows with the same symmetry or antisymmetry. The stoichiometric vectors appearing in Eq. (51), and their products
with A are

Ya ≡ Y 1
a = [0 1 0 1 2 1], Y 1

a A = [ε −k2 0 k1 −k̄1 0],

Yb ≡ Y
1
b = [0 0 1 1 1 2], Y

1
b A = [ε 0 −k2 k1 0 −k̄1],

Ya · Yb = [0 0 0 1 2 2], (Ya · Yb)A = [0 0 0 2k1 −k̄1 −k̄1],

Y 2
a = [0 0 0 0 2 0] = Y 2

a · Yb, Y 2
a A = 2[0 0 0 k1 −k̄1 0] = (Y 2

a · Yb

)
A,

Y
2
b = [0 0 0 0 0 2] = Y

2
b · Ya, Y

2
b A = 2[0 0 0 k1 0 −k̄1] = (Y 2

b · Ya

)
A. (A8)

APPENDIX B: POLYNOMIAL EXPANSION FOR SOLUTIONS TO THE TWO-SPECIES CRN OF SEC. VI D

This Appendix describes the combination of the recursive solution and the successive approximation used to solve the
hierarchical expansion (94) for the lattice of moments in the two-species model of Sec. VI D 2. Here, to simplify notation and
improve readability, we will regard matrices such as ̂ as operators that shift the indices (ka,kb) in terms ϕ

(α)
k q2α by means of

discrete index-shift operators e∂/∂ka and e∂/∂kb , as we did for transfer matrices in Eq. (26), etc. Because of the exchange symmetry
in the dynamical equations under ka ↔ kb, ̂ acts on ϕ

(α)
k through a shift of the κ value (by integers) and on q2α through shifts in

α. This allows us to treat κ as an index shifted by integers, analogous to k in single-species models. Where we suppress subscript
κ indices, the whole vector is intended.

With these notational conventions, the action of the generator in Eq. (97) can be broken down into three terms

̂(ϕ(α)q2α) = (̂0ϕ(α))q2α − s(α+1)q2(α+1) +
α−1∑
β=0

σ
(α)
β q2β. (B1)

Here ̂0 is a diagonal operator (in α) acting only on ϕ(α), which takes the form (refer to Fig. 10)

(̂0ϕ(α))κ =
[

(κ2 − θα>0)(κ − 2 − 2α) − 2αθα>0

4K1
+ ω

K1
(κ − 2α)

](
ϕ

(α)
κ−1 − ϕ(α)

κ

)−
[
κ

(
η

K1
+ 2α

)
+ 2α

(
ω

K1
− 2α

)

+ 2ακ2

4K1
+ θα>0

κ − 2

4K1

]
ϕ(α)

κ + [(κ − 2α)(κ − 1)]
(
ϕ(α)

κ − ϕ
(α)
κ+1

)+ κK1
(
ϕ

(α)
κ+1 − ϕ

(α)
κ+2

)− 2αK1ϕ
(α)
κ+1. (B2)

In the same way as the action of ̂ on the constant background 1 produced the zeroth-order source −ηs(0) in Eq. (97), the action
on each order ϕ(α) generates a source term s(α+1) in Eq. (B1) that propagates cross terms one order upward in α, defined by

s(α+1)
κ = 1

4K1

[
(κ − 2)

(
ϕ

(α)
κ−1 − ϕ(α)

κ

)− 2αϕ
(α)
κ−1

]
. (B3)
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In addition to an upward-propagating source term, Eq. (B1) contains feedback terms, which propagate cross terms downward
from order q2α to all lesser orders q2β with β < α, given by

σ
(α)
β =

[
κ

(
2α

2β

)
−
(

2α

2β − 1

)](
ω

K1
ϕ

(α)
κ−1 + [K1 − (κ − 1)]ϕ(α)

κ+1

)

+ 22(α−β)

[
κ(κ − 2)

2

(
2α

2β

)
− 2(κ − 1)

(
2α

2β − 1

)
+ 2

(
2α

2β − 2

)]
ϕ(α)

κ

+ 1

4K1

{
κ2

[
(κ − 2)

(
2α

2β

)
−
(

2α

2β − 1

)]
−
[

(κ − 2)

(
2α

2β − 2

)
−
(

2α

2β − 3

)]}
ϕ

(α)
κ−1. (B4)

In Eq. (B4), referring to the graphical form of Fig. 10, all terms
from ja + jb = 1 are grouped in the first line, all terms from
ja + jb = 2 are grouped in the second line, and all terms from
ja + jb = 3 are grouped in the third line.

1. Solution by upward propagation in powers of q2

and perturbative correction in 1/κ

The decomposition (B1) of the steady-state condition can
now be solved by alternating steps of exact cancellation
of source terms at ascending orders in α and successive
approximation to cancel feedback terms, which takes the
form of a perturbative expansion in 1/κ . Upward propagation
consists of solving a series of Laplacian equations in the
operator ̂0 in terms of the sources (B3) as

̂0ϕ(α) = s(α) (B5)

for all α � 0.
Examination of the scaling terms in κ in Eq. (B2) suggests

that a bounded large-κ asymptotic approximation for each
order is

ϕ(α)
κ = 4

[κ + 4(K1 − η)/3]2α+1 + O

(
1

κ2α+2

)
. (B6)

Solution of Eq. (B5) at each order α by a one-dimensional
matched asymptotic expansion proceeds as for the one-species
models. At order α = 0, the solution can be stably extended
down to κ = 0, but for α > 1 the asymptotic approximation
(B6) is not sufficient to produce convergence below κ ∼ 20
and a nontrivial matched expansion is needed to produce valid
higher-order corrections in q2 to the low-order moments.

One round of forward propagation (through all orders α)
will produce a solution that does not satisfy ̂

∑∞
α=0 ϕ(α)q2α −

s(0) = 0, but rather

̂

∞∑
α=0

ϕ(α)q2α − s(0) =
∞∑

α=0

α−1∑
β=0

σ
(α)
β q2β. (B7)

The full solution can be approached perturbatively by using the
feedback terms on the right-hand side of Eq. (B7) as sources
for an iterative correction to the original ϕ.

Successive-approximation approach to full solutions ϕ(α)

A scaling analysis following from Eq. (B6) suggests that
the correction terms needed to cancel the residuals in Eq. (B7)
are suppressed by powers of 1/κ and thus that a method of
successive approximations should converge. No feedback term

σ
(α)
0 to q0 order from α = 0 exists, because β � α − 1 in the

sum (B1). For all α � 1, σ
(α)
0 is given by

(
σ

(α)
0

)
κ

=
(

ωκ

K1
+ κ2(κ − 2)

4K1

)
ϕ

(α)
κ−1 + κ[K1 − (κ − 1)]ϕ(α)

κ+1

+ 22α κ(κ − 2)

2
ϕ(α)

κ . (B8)

Since the lowest-order contribution is from ϕ(1)
κ ∼ 4/κ3, it

follows that σ
(α)
0 is no larger for any α than the leading term

(
σ

(1)
0

)
κ

= 1

K1
+ O

(
K1

κ2

)
+ O

(
1

κ

)
, (B9)

one order lower (in either K1 or κ , according to the range of
κ) than the scaling of s(0) in Eq. (96). The same argument
extends to higher β in Eq. (B7); the first term that contributes
at each order scales with two additional powers of 1/κ and so
is smaller than the corresponding s(α) term in the first iteration
of Eq. (B3).

We therefore introduce a second-order correction term ϕ(α)′,
satisfying

̂

∞∑
α=0

ϕ(α)′q2α = −
∞∑

α=0

α−1∑
β=0

σ
(α)
β q2β +

∞∑
α=0

α−1∑
β=0

σ
(α)′
β q2β,

(B10)

where ϕ(α)′ is solved by upward propagation in q2α , as
in Eq. (B5), but now with an entire tower of sources
−∑∞

α=β+1 σ
(α)
β at each order q2β , rather than just the zeroth-

order source s(0) that was used for ϕ(α), and leaving its own
residues σ (α)′. After infinitely many iterations, the residue
terms go to zero as a sequence in powers of 1/κ , and if the
sequence converges, the sum over corrections will be a solution
to the original steady-state condition (97).

An equivalent expression for the closed solution (summing
over all orders of perturbative correction), expressed in terms
of the homogeneous operator ̂0, is

∞∑
α=0

(̂0ϕ(α) − s(α))q2α = −
∞∑

α=0

α−1∑
β=0

σ
(α)
β q2β. (B11)

Equation (B11) is similar in form to a Schwinger-Dyson
equation for a Green’s function solution, in which ̂0ϕ(α) −
s(α) serves as a bare Green’s function, which defines a basis for
perturbative incorporation of an interaction term

∑∞
α=β+1 σ

(α)
β .
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FIG. 12. Ratios of moments �̂(ka ,kb)/�̂(ka−1,kb−1) plotted versus
ka + kb ≡ k, along the diagonal ka = kb. The series (94) is truncated
at five successive orders of approximation ϕ(αmax) for αmax = 0, . . . ,4
(color sequence blue, green, red, cyan, magenta). Symbols are the
ratios obtained directly from sampled moments of a stationary
Gillespie simulation, showing that the order αmax = 0 provides a
good approximation to the diagonal moments, as shown in Fig. 11.
Divergence of higher-order terms, which occurs with opposite sign for
odd versus even αmax, reflects instability of the asymptotic expansion
downward from large κ .

2. Numerical evaluations

We have implemented the above solution method for a
series (94) truncated at five successive orders of approximation
ϕ(αmax) for αmax = 0, . . . ,4. Under perfect convergence of the
perturbative recurrence (B10), the error measure ∂�̂(ka,kb)/∂τ

would cancel to order q2(αmax+1) around the diagonal (order q10

for the highest-order approximation we compute). We obtain
cancellation along the diagonal to machine precision for the
lowest-order correction ϕ(0), but instability of the downward-
going asymptotic expansion at higher orders degrades both
the accuracy of �̂(ka,kb) on the diagonal for ka + kb � 20 and
convergence toward the q2(αmax+1) residual.

Figure 12 shows the successive approximations to the ratio
�̂(ka,kb)/�̂(ka−1,kb−1) along the diagonal ka = kb, compared to
values obtained from a Gillespie simulation. The approxima-
tion αmax = 0 already shows good agreement with simulations.
Divergence of the downward-going asymptotic expansion for
higher-order terms begins around ka = kb ≈ 9, which is the
upper stable solution for the coherent-state mean number (75),
as predicted in the scaling analysis of Sec. V B.

Figure 13 shows the error measure ∂�̂(ka,kb)/∂τ (the
deviation from a full steady-state condition) across the an-
tidiagonal contour ka + kb = 49, testing the quality of the
convergence of the ϕ(αmax) approximation. This contour is
in a range ka,kb � 9 where the asymptotic expansions are
still fairly well controlled. The qualitative character of the
convergence is well approximated along the diagonal, but
exact cancellation to order q2(αmax+1) degrades at higher αmax,
as both the asymptotic expansion and the recursive solution
(B10) accumulate numerical errors. The figure also shows the
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FIG. 13. Graph of the residual error measure ∂�̂(ka ,kb)/∂τ across
the contour ka + kb = 49, with the series (94) truncated at five
successive orders of approximation ϕ(αmax) for αmax = 0, . . . ,4 (color
sequence blue, green, red, cyan, magenta). Under perfect cancellation,
the residual error at each order αmax would scale as q2(αmax+1). This
scaling is very closely approximated for αmax = 1 and degrades due to
imperfect control of asymptotic expansions at higher orders, though
the approximate behavior is attained. Crossing of the error curves
suggests a finite radius of convergence in q2 of the series (94), for
|q|/κ ∼ 0.38. The asymptotic expansion remains this good or better
for all larger κ .

crossing of error contours at |q|/κ ∼ 0.38, suggesting a finite
radius of convergence that does not cover the entire (ka,kb)
lattice.

Figure 14 is a contour plot of the errors ∂�̂(ka,kb)/∂τ

for αmax = 5. The antidiagonal cross section corresponds to
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FIG. 14. Linear color map of the error function ∂�̂(ka ,kb)/∂τ for
αmax = 5, evaluated as the left-hand side of Eq. (95), which would
equal zero for a stationary distribution. The deviation from zero is
raised to the 0.1 power to produce a linear cross section if the true
residuals scale as q10.
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the outermost curve from Fig. 13, raised to the 0.1 power
appropriate if the total error scales as q10. The region ka + kb �
20 shows the divergence of the asymptotic expansions already

noted in Fig. 12. In the region where the asymptotic expansions
converge, the errors are roughly constant along contours of
fixed |q|/κ for large k.
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