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We consider an arbitrary quantum system coupled nonperturbatively to a large arbitrary and fully quantum
environment. In the work by Ithier and Benaych-Georges [Phys. Rev. A 96, 012108 (2017)] the typicality of
the dynamics of such an embedded quantum system was established for several classes of random interactions.
In other words, the time evolution of its quantum state does not depend on the microscopic details of the
interaction. Focusing on the long-time regime, we use this property to calculate analytically a partition function
characterizing the stationary state and involving the overlaps between eigenvectors of a bare and a dressed
Hamiltonian. This partition function provides a thermodynamical ensemble which includes the microcanonical
and canonical ensembles as particular cases. We check our predictions with numerical simulations.
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I. INTRODUCTION

In what state of equilibrium can a quantum system be?
Does this state have universal properties and what are the
conditions for its emergence? These questions are not new,
dating even from the very birth of quantum theory [1],
and are surprisingly open [2,3]. Indeed, the foundations of
statistical physics still rely today on a static Bayesian point
of view assuming the equiprobability of the accessible states
defining the microcanonical ensemble. Assuming temperature
and chemical potential can be defined, then the canonical
and grand canonical ensembles can be derived, allowing
one to calculate all relevant macroscopic quantities in the
thermodynamical limit [4–6]. In order to link theoretical
predictions calculated with averages over these ensembles
to experimental quantities measured on a single system, an
assumption of ergodicity is made. Despite being broadly
accepted, this assumption is not justified in a satisfactory
manner (see, e.g., the discussion in Ref. [7]). Triggered by
recent progress in the quantum engineering of mesoscopic
systems [8,9], some theoretical progress has been achieved
for attempting to explain thermodynamical equilibrium with a
purely quantum point of view.

From the early work of von Neumann on quantum ergod-
icity [1,10], most theoretical studies aiming at understanding
thermalization as a quantum and universal [11] process have
focused on looking for signatures of thermalization on physical
observables of large quantum systems [12–15], for instance
with the eigenstate thermalisation hypothesis (ETH) surmise
[16–18]. Instead of observables, one can also focus on the state
of a system embedded in a larger one for which a “canonical
typicality” property has been established: the overwhelming
majority of pure quantum states of the composite system are
locally [19] canonical [20–22]. This static “typicality” has
been extended to the dynamics of embedded quantum systems
(two-level [23], four-level [24], and arbitrary [25] quantum
systems). We apply here this “dynamical typicality” property
in order to calculate analytically and with full generality the
stationary state of an embedded quantum system at long time.
We find a thermodynamical ensemble of purely quantum
origin characterizing this state. This ensemble captures the

microcanonical and the canonical ensembles as particular
cases, and as such provides a quantum explanation for the
Gibbs distribution.

We consider an arbitrary quantum system coupled to a large
arbitrary quantum environment through a random interaction.
We emphasize the fact that the initial state of this composite
system can be chosen arbitrarily; in particular, the environment
does not have to be in thermal equilibrium initially nor the full
composite system in the microcanonical situation.

Dynamical typicality [25] states that for almost all inter-
action Hamiltonians [26] the reduced density matrix of the
system has a self-averaging property in the large environment
limit [27]; in other words, it follows a universal dynamics.
Despite this does not imply a priori equilibration, since it
can be consistent with sustained oscillations and revivals
[28], this property has a very practical consequence. It allows
one to perform nonperturbative analytical calculations with
full generality, i.e., for arbitrary system, environment, and
global initial state, by justifying rigorously an averaging
procedure over some randomness introduced only at the level
of the interaction Hamiltonian. We apply this calculation
framework here to study the state of the system at long but
finite times, i.e., smaller than any recurrence time. Postponing
all questions regarding the out-of-equilibrium dynamics to a
further publication [29], we show that if the system converges
toward a stationary state, then this state is characterized by a
new quantum partition function which can be calculated. This
partition function relies on an average transition probability
between states involving some purely quantum quantities:
the fourth-order moments of the overlap coefficients between
eigenvectors of a bare and a dressed Hamiltonian. We calculate
this transition probability for several classes of random
interactions. Then we calculate the probabilities of occupation
of the states of the system and find a new thermodynamical
ensemble more general than the microcanonical one.

II. MODEL SETUP

The setup is identical to [25]: we consider a system S

in contact with an environment E, writing Hs ,He for their
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respective Hilbert spaces. The total system S + E is closed
and its Hilbert space is the tensor product H = Hs ⊗ He

(with dimension N = dimHe dimHs). The total or dressed
Hamiltonian Ĥ is the sum Ĥ = Ĥs + Ĥe + Ŵ where Ŵ is an
interaction term. Eigenvectors of the “bare” Hamiltonian Ĥs +
Ĥe are written as |φn〉 and are tensor products of eigenvectors
|εs〉 of Ĥs and eigenvectors |εe〉 of Ĥe, with the eigenenergy
εn = εs + εe. We write |ψi〉 for the dressed eigenvectors and
{λi}i the set of associated dressed eigenvalues. The state of
S + E is described by a density matrix �(t) which follows the
well-known relation

�(t) = Ût�(0)Û †
t with Ût = e−(i/h̄)Ĥ t .

The state of the subsystem S is described by a reduced
density matrix: �s(t) = Tre �(t), Tre being the partial trace
with respect to the environment. Decomposing the initial state
�(0) on the bare eigenbasis {|φ1〉, . . . ,|φN 〉} and using linearity,
we consider the matrix elements 〈φn|Ût |φm〉〈φp|Û †

t |φq〉 in
order to calculate �s(t). By expanding the evolution oper-
ator Ût over the dressed eigenbasis {|ψ1〉, . . . ,|ψN 〉}: Ût =∑

i e
−(i/h̄)λi t |ψi〉〈ψi |, these matrix elements can be rewritten

as the two-dimensional Fourier transform of a product of four
“overlaps” 〈φn|ψi〉:

〈φn|Ût |φm〉〈φp|Û †
t |φq〉

=
∑

i,j

e−(i/h̄)(λi−λj )t 〈φn|ψi〉〈ψi |φm〉〈φp|ψj 〉〈ψj |φq〉. (1)

To calculate the expression in Eq. (1), one needs an analytical
formula for the overlap coefficients 〈ψi |φn〉 and the dressed
eigenvalues λi , which are quantities usually accessible in a
perturbative framework only. In this Rapid Communication,
we use a statistical method for calculating these quantities
in a nonperturbative setting and for an arbitrary system and
environment.

The method relies on the hypothesis assumed for the
interaction Hamiltonian: we introduce deliberately some
randomness in and only in the interaction Ŵ in order to perform
calculations, knowing that this randomness actually will not
matter in the large dimensionality limit (dimHe → ∞) due to
the typicality of the dynamics [25]. This randomness should be
compatible with some macroscopic constraints: Ŵ “centered,”
i.e., Tr(Ŵ ) = 0 and with fixed spectrum variance σ 2

w = Tr(Ŵ ·
Ŵ †)/N independent of N . Then regarding the symmetry class
of the randomness, we will assume Ŵ to be either a Wigner
band random matrix (WBRM) [30] or a randomly rotated
matrix (RRM; i.e., of the type Û · Q̂ · Û † with Q̂ real diagonal
fixed and Û unitary or orthogonal Haar distributed). The
WBRM ensembles are convenient for modeling interactions
in heavy atoms and nuclei [31–33,65]. The sparsity of WBRM
comes from the finite energy range of the interaction. On the
other hand, RRM ensembles are dense, which contradicts the
a priori two-body nature of the interaction, but provides a
convenient way for modeling the local spectral statistics of
more physical interaction Hamiltonians [33–37].

III. TYPICAL DYNAMICS

We now focus on the reduced density matrix: �s(t) =
Tre �(t) and consider it as a function of the interaction Ŵ ,

keeping all other parameters constant (time, spectra of S and E,
initial state). This function exhibits a generalized central limit
theorem phenomenon known as the concentration of measure
[25,38].

A. Concentration of measure

This phenomenon can be described informally as follows:
a numerical function which depends on many independent
random variables in a balanced way (i.e., there are no outliers
on which this function depends) is very close to its mean value
almost everywhere. On the quantitative side, this phenomenon
can be characterized rigorously with the following upper
bound on the variance of this function away from its mean
behavior [25]:

σ 2
�s

= E[‖�s(t) − E[�s(t)]‖2] � 4σ 2
wt2

h̄2

1

dimHe

,

where E is the average over the set of interaction Hamiltonians
considered (WRBM and RRM) and ‖A‖2 = Tr(AA†).

As dimHe → ∞, σ 2
�s

→ 0 and consequently �s(t) is get-
ting very close to its mean value which provides the typical dy-
namics. We can thus compute an approximate �s(t) simply by
averaging: �s(t) = Tre[�(t)] ≈ E[Tre(�(t))] = Tre (E[�(t)]).
We are led to consider the average of Eq. (1).

We will now focus specifically on the stationary regime
at long times. Under the hypothesis assumed on the statistics
of the interaction (WBRM and RRM ensembles) the dressed
eigenvalues {λ1, . . . ,λN } undergo level repulsion and, as such,
are nondegenerate. This implies that the time-independent
terms are provided by the case i = j in the summation in
Eq. (1) averaged over Ŵ :

∑

i

E[〈φn|ψi〉〈ψi |φm〉〈φp|ψi〉〈ψi |φq〉]. (2)

The time-dependent regime (given by the summation over
i and j such that i 	= j ) is outside the scope of this Rapid
Communication. We will assume this regime to be damped (see
[39] for Ŵ in the WRBM ensemble), without revivals [28] at
least on the largest time scale of this model (1/D where D is the
mean level spacing of the dressed Hamiltonian) such that con-
sidering a stationary regime is meaningful over this time scale.

We first single out the nonzero cases for the
fourth-order moments of the overlap coefficients:
E[〈φn|ψi〉〈ψi |φm〉〈φp|ψi〉〈ψi |φq〉] which are when n = m

and p = q or when n = q and m = p [40]. The former case is
involved in the asymptotic value of the off-diagonal terms of
�s(t), i.e., the quantum coherences of the state of S, which can
be shown to be zero as expected in the limit t → ∞ [40]. In
the following, we focus on the latter case (n = q and m = p)
which governs the dynamics of the diagonal terms of �(t) and
�s(t), i.e., the probabilities of occupation.

B. Average transition probability

We define from Eq. (2) with n = q and m = p, an average
transition probability p̄m→n from an initial state |φm〉 at t = 0
to a final state |φn〉 at t → ∞:

p̄m→n =
∑

i

E[|〈φn|ψi〉|2|〈φm|ψi〉|2]. (3)
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Such sum provides quantitatively how |φn〉 is accessible
from |φm〉 and has been considered, e.g., numerically in the
context of random two-body interaction (TBRI) ensembles
[41] and analytically for some specific systems: quantum
walkers [42–44]. The particular case m = n provides the
return probability whose reciprocal 1/p̄n→n is the so-called
purity [45–48]. The leading order of p̄m→n is given by∑

i E[|〈φn|ψi〉|2]E[|〈φm|ψi〉|2] and involves the second-order
moment of the overlaps E[|〈φn|ψi〉|2]. This quantity, multi-
plied by the density of states, is called the local density of
states (LDOS) and quantifies how much a bare eigenvector
is delocalized or hybridized with the dressed eigenbasis and
has already been considered in various contexts (nuclear
physics [49–51], molecular physics [52], atomic physics [31],
thermalization[12,59], quantum chaos [31], financial data
analysis [53,54], and free probability theory [60–62,65]; see
also the review in [33]) for various cases of Ĥ0 and Ŵ . It has
the following typical shape:

E[|〈φn|ψi〉|2] ≈ f (λ̄i − εn)∫
ρs+e(ε)f (λ̄i − ε)dε

, (4)

where ρs+e is the bare density of states, λ̄i is the mean
of the dressed eigenvalue λi , and f is a function peaked
around zero with a typical width 	. The denominator is here
for the purpose of normalization. For most models of Ĥ0

and Ŵ , the function f is a Lorentzian reminiscent of the
Breit-Wigner law with a generalized Fermi golden rule rate
	 = πσ 2

wρ/N , ρ being the dressed density of states (see, e.g.,
Ref. [33]). Interestingly, such a Lorentzian shape has been
shown to preclude thermalization in closed quantum systems
made of interacting particles as far as observables of these
systems are concerned [33,55,56]. However, regarding the
problem we are interested in—a quantum system coupled
to a large environment—it is important to stress that this
Lorentzian shape does not preclude thermalization, as we
observe numerically (see Fig. 1) and as far as the state of
this embedded system is concerned.

This point is rather subtle and its explanation involves
dynamical typicality (see [40] for a detailed discussion).
Finally, we emphasize that the subsequent calculation can also
be performed using other shapes (see [40] for details and a
short review of possible LDOS). In particular, our derivation
can be applied to a Gaussian LDOS, relevant if Ŵ enforces a
two-body nature of the interaction (TBRI) [41,57,63,64].

Assuming the interaction to be nonperturbative, i.e., the
mean level spacing D is much smaller than the width 	 and
consequently the bare eigenvector |φm〉 is delocalized over
several (≈	ρ) dressed eigenvectors, then one can proceed
further with the calculation of p̄m→n by using a continuous
approximation for the summation

∑
i ↔ ∫

ρ(λ)dλ. The tran-
sition probability is then given by

p̄m→n ≈ g(εm − εn)∫
ρs+e(ε)g(εm − ε)dε

, (5)

where g = f ∗ f is the convolution of f with itself and
with a typical width 	′. For instance, if the LDOS is
Lorentzian (respectively, Gaussian), then g is also a Lorentzian
(respectively, Gaussian) with a width 	′ = 2	 (respectively,
	′ = √

2	).
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FIG. 1. Crossover from a local microcanonical ensemble to a
global microcanonical ensemble. We consider here numerically the
particular case of a two-level system S (gap � = 2) coupled to an
environment having a Gaussian density of states (standard deviation
σe = 1) through an interaction Ŵ in the GOE ensemble. We plot
P1 the probability for the system to be in its excited state as a
function of time (left panel) and then the long-time average of
P1 as a function of interaction strength σw = √

Tr(W 2)/N (right
panel). The environment Hilbert space dimension is set to dimHe =
4096 (so that the total Hilbert space dimension is N = 8192), the
initial state to |1s〉〈1s | ⊗ |2048e〉〈2048e| (i.e., the middle of the
spectrum for E: εe ≈ 0) and we numerically integrate the Schrödinger
equation for different values of σw . After a transient regime at short
times (t � 40), a stationary regime takes place. As the interaction
strength increases, the time average value of P1 goes from a local
microcanonical prediction P1 ≈ ρe(�)/[ρe(�) + ρe(0)] ≈ 0.87 to a
global microcanonical prediction: P1 ≈ 0.5. The analytical prediction
for this crossover (dashed) is given by Eq. (6) which can be calculated
analytically in this case: it is the convolution of a Gaussian DOS with
a Lorentzian transition probability g giving the Voigt function [58]
(see [40] for details). Note that in the intermediate coupling regime,
the LDOS (and consequently the average transition probability p̄m→n)
is of the Breit-Wigner type and does not preclude thermalization (see
discussion in [40] for details).

At this stage, one should note that Eq. (5) is in sharp contrast
with the microcanonical hypothesis of equiprobability of the
accessible states. We have performed numerical simulations
for p̄m→n with Ŵ in the Gaussian orthogonal ensemble (GOE)
and found satisfactory agreement with our prediction [40].

IV. MAIN RESULT

A. General case

In order to perform the partial trace and get �s(t), we recall
the final state |φn〉 = |εs〉|εe〉 and sum Eq. (5) over εe using
a continuous approximation: Tre = ∑

εe
↔ ∫

dε ρe(ε). This
provides the main result of this Rapid Communication: for an
initial state �(0) = |φm〉〈φm|, the long-time stationary state of
S is distributed according to

pεs
= lim

t→∞〈εs |�s(t)|εs〉 ≈
∫

ρe(εe)g(εm − εs − εe)dεe∫
ρe+s(ε)g(εm − ε)dε

. (6)
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The denominator is the convolution of the bare density of states
by the transition probability g which provides the effective
number of bare states accessible from the initial |φm〉. Such
a quantity

∫
ρe+s(ε)g(εm − ε)dε enforces the normalization

condition and can be considered as a new partition function.
The numerator is the convolution of the environment density

of states by the transition probability g and provides the
effective number of accessible states such that S is in the state
of energy εs . The probability of occupancy is the ratio of these
two numbers. Let us now consider the case of intermediate
coupling.

B. Intermediate coupling case

A temperature can be defined by β = 1
kT

= d ln ρe

dε
. As-

suming a good decoupling between the micro (D = 1/ρ),
meso (	′), and macro (kT ) energy scales: D � 	′ � kT ,
and considering all energies εn,εm to be inside the bulk of the
spectrum, then the function g in Eq. (6) can be approximated
by a Dirac function which is “sampling” ρe(ε) at εe = εm − εs

and simplifying Eq. (6) for

pεs
≈ ρe(εm − εs)

ρs+e(εm)
. (7)

We are recovering here the same prediction as the one resulting
from a microcanonical ensemble defined locally in energy,
i.e., by assuming the equiprobability of all bare eigenstates
inside a small energy window centered around the initial
energy εm. This prediction is checked numerically in Fig. 1.
It is important to stress that we recovered this prediction
with a purely quantum point of view: from the geometrical
relation between the eigenvectors of the bare and dressed
Hamiltonians. Note that by assuming the environment to be
macroscopic, i.e., kT does not depend on energy on a wide
range and consequently ρe scales exponentially with energy,
one can recover the canonical ensemble prediction following
the usual derivation [4]:

pεs
≈ ρe(εm − εs)

ρs+e(εm)
= ρe(εm)e−βεs

∑
εs′

ρe(εm)e−βεs′
≈ e−βεs

Zβ

with Zβ = ∑
εs

e−βεs the canonical partition function. In other
words, the Boltzmann distribution is a particular case of the
more general distribution provided by Eq. (6) whose origin is
quantum.

C. Strong-coupling case

If the coupling is strong enough that 	′ � kT , then the
transition probability g cannot be approximated by a Dirac
function and its finite width must be taken into account in

the convolution in Eq. (6). From this convolution effect,
one should expect a decrease of contrast in the probability
distribution of S when the interaction strength is increased:
the equilibrium probability then undergoes a continuous
crossover from the local microcanonical ensemble prediction
we described earlier (i.e., equiprobability over a small energy
shell of accessible states around initial energy) to a global
microcanonical ensemble prediction (i.e., all bare states are
accessible and equiprobable). The convolution in Eq. (6)
can be done analytically, e.g., when ρe is Gaussian and g

is Lorentzian: one obtains the Voigt distribution, relevant in
atomic spectrocopy when a natural linewidth is broadened
by the Doppler effect [58]. We check numerically these
predictions in Fig. 1 and find satisfactory agreement.

Finally, we stress that the above results are valid for an
initial state |φm〉〈φm| = |εs〉〈εs | ⊗ |εe〉〈εe| and can be extended
by linearity to any initial state, pure or not: the extra diagonal
terms (i.e., of the type |φm〉〈φp| with m 	= p) do not contribute,
only the diagonal ones contribute (see [40]). Therefore the
stationary state of S is the weighted average of Eq. (6) by the
initial energy distribution of the composite system.

V. CONCLUSION AND SUMMARY

We showed that the stationary properties of an embedded
quantum system are encoded in the geometric relation between
the eigenvectors of a bare and a dressed Hamiltonian, more
precisely in the fourth-order moments of the overlaps between
their eigenvectors. This fact provides a purely quantum way to
define a new partition function which can be calculated thanks
to dynamical typicality [25]. In the intermediate-coupling
case D � 	′ � kT , this partition function simplifies to the
prediction of a local microcanonical ensemble defined on a
small energy window around the initial energy. In the strong-
coupling regime (i.e., D � kT � 	′), one gets a more general
ensemble which depends on the interaction strength and leads
to a loss of contrast of the probabilities of occupation (i.e.,
a convergence toward global equiprobability). We considered
here two random matrix ensembles for the interaction which
have broad applicability. Our framework could be used with
other interaction Hamiltonian ensembles (e.g., conserving
some set of observables or enforcing the two-body nature of
the interaction) as soon as dynamical typicality is shown to be
verified and a local density of states is available.
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