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Maximum of an Airy process plus Brownian motion and memory in Kardar-Parisi-Zhang growth
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We obtain several exact results for universal distributions involving the maximum of the Airy2 process minus
a parabola and plus a Brownian motion, with applications to the one-dimensional Kardar-Parisi-Zhang (KPZ)
stochastic growth universality class. This allows one to obtain (i) the universal limit, for large time separation,
of the two-time height correlation for droplet initial conditions, e.g., C∞ = limt2/t1→+∞ h(t1)h(t2)

c
/h(t1)2

c
, with

C∞ ≈ 0.623, as well as conditional moments, which quantify ergodicity breaking in the time evolution; (ii) in
the same limit, the distribution of the midpoint position x(t1) of a directed polymer of length t2; and (iii) the
height distribution in stationary KPZ with a step. These results are derived from the replica Bethe ansatz for
the KPZ continuum equation, with a “decoupling assumption” in the large time limit. They agree and confirm,
whenever they can be compared, with (i) our recent tail results for two-time KPZ with the work by de Nardis and
Le Doussal [J. Stat. Mech. (2017) 053212], checked in experiments with the work by Takeuchi and co-workers
[De Nardis et al., Phys. Rev. Lett. 118, 125701 (2017)] and (ii) a recent result of Maes and Thiery [J. Stat. Phys.
168, 937 (2017)] on midpoint position.

DOI: 10.1103/PhysRevE.96.060101

Stochastic processes, such as the Brownian motion, are
useful unifying mathematical tools to describe the universal
behavior of complex systems. In recent years, the Airy2
process, introduced in [1], appeared in several contexts in
physics and mathematics. Its simplest definition (see e.g., [2])
involves the Dyson Brownian motion (DBM) [3]: consider a
large Hermitian random matrix H whose independent entries
(both real and imaginary parts) perform independent stationary
Orstein-Ulhenbeck processes (i.e., Brownian motions equi-
librated in a harmonic well). The Airy2 process describes
the evolution of the largest eigenvalue of H (centered and
scaled). The Airy2 process appears as a limit process in directed
last passage percolation [4], nonintersecting Brownian bridges
[1,4–10], random tilings [11], interacting particle transport in
one dimension (1D) [12,13], quantum dynamics of fermions
[14–16], and stochastic growth models, either discrete [1,17]
or the continuum 1D Kardar-Parisi-Zhang (KPZ) equation
[18,19] (for a review, see [20–22]). In fact, the Airy2 process is
a hallmark of the very broad 1D-KPZ universality class, which
arises in all these models.

Models in the 1D-KPZ class usually allow for the definition
of a height field h(x,t), which undergoes stochastic growth.
The prominent example is the continuum KPZ equation [18],
where h(x,t) is an interface height at point x ∈ R, evolving as
a function of time t as

∂th(x,t) = ν∂2
xh(x,t) + λ0

2
[∂xh(x,t)]2 +

√
Dξ (x,t) (1)

driven by unit white noise ξ (x,t)ξ (x ′,t ′) = δ(x − x ′)δ(t − t ′).
For the curved (i.e., droplet) initial condition (IC) it is known
(in some cases proved) that it converges at large time t → +∞
(rescaled and centered) to [1,4,22,23]

(�t)−1/3[hdrop(x,t) − v∞t] � A2(x̂) − x̂2, x̂ = A
x

2t2/3
,

(2)

where A2(x̂) is the Airy2 process, as an identity between
processes (i.e., as x̂ is varied). SinceA2 is stationary (statistical
translational and reflection invariant in x̂) the −x̂2 term

embodies the mean parabolic profile. We use units such that
the nonuniversal constants � = A = 1, i.e., λ0 = D = 2 and
ν = 1 for the KPZ equation (1), and set v∞ = 0 (upon a shift of
h). The equilibrium measure of the DBM being the Gaussian
unitary ensemble (GUE) measure for H , the fluctuations of
the Airy2 process, hence of the KPZ height from (2), at any
given point, e.g., x = 0, is the Tracy-Widom (TW) distribution
for the largest eigenvalue of a GUE random matrix [24]. Its
cumulative distribution function (CDF) is explicitly known as
a Fredholm determinant

Prob [A2(0) < σ ] = F2(σ ) = Det (I − Pσ KAi), (3)

where KAi(u,v) = ∫ +∞
0 dy Ai(y + u)Ai(y + v) is the Airy

kernel, Pσ being here the projector on [σ, + ∞[. Furthermore,
from properties of the DBM, the Airy2 process is determi-
nantal, i.e., any p-point joint CDF (JCDF) of A2(x̂) can be
written as p×p matrix Fredholm determinants, in terms of an
extended Airy kernel [1,20].

Although much studied, and fully characterized by its
determinantal structure, important open questions remain
about the Airy process, with applications to the 1D KPZ class.
First, for more general initial conditions h(x,t = 0), the value
at a given point, e.g., x = 0, is obtained from the variational
problem [25,26]

t−1/3h(0,t) � max
ŷ

[A2(ŷ) − ŷ2 + h0(ŷ)] (4)

when a limit exists for the rescaled IC h0(ŷ) �
t−1/3h(2t2/3ŷ,0). Droplet subclass ICs correspond to h0(0) =
0 and h0(ŷ) = −∞ for ŷ 	= 0, recovering (2), while flat
subclass ICs correspond to h0(ŷ) = 0. The CDF of h(0,t)
and of the argmax in (4) (i.e., the end-point distribution of
a directed polymer; see below) for flat IC, and other results
such as intermediate classes of IC, have been obtained from
exact solutions of models in the KPZ class at large t , or from
powerful methods directly on the Airy process which allow
one to treat a large class of h0 [20,23,26]. The latter, however,
do not readily extend to random initial conditions, such as the
Brownian IC, related to the important stationary KPZ subclass.
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FIG. 1. Two directed polymers in a random potential with fixed
end points, starting at (x,0), ending, respectively, at (0,t1) and (0,t2).
Minus their free energies maps to KPZ heights h(0,t1) and h(0,t2)
with droplet initial condition centered at x. The PDF of the midpoint
y, and the correlations between h(0,t1) and h(0,t2) are obtained here
exactly in the limit t1,	 = t2−t1

t1
→ +∞.

The aim of this Rapid Communication is to study some
properties of the optimization problem

max
ŷ

[A2(ŷ) − ŷ2 +
√

2B(ŷ)], (5)

where B(ŷ) is the two-sided unit Brownian motion. Equation
(5) defines Astat(0), the Airy process associated to the station-
ary KPZ equation, at x̂ = 0. We first describe our three main
results and applications, then give an explicit formula, and
finally sketch the replica Bethe ansatz method.

Our first result is the probability distribution function (PDF)
of the position ŷm of the maximum in (5), i.e.,

ŷm = argmax
ŷ∈R

[A2(ŷ) − ŷ2 +
√

2B(ŷ)] (6)

This distribution arises in the midpoint probability of a directed
polymer (DP) in the white noise d = 1 + 1 random potential ξ .
Recall that the partition sum Z(x,t |y,0) of continuum directed
paths from (y,0) to (x,t) defined as

Z(x,t |y,0) :=
∫ x(t)=x

x(0)=y

Dx e− ∫ t

0 dτ {1/4(dx/dτ )2−√
2ξ [x(τ ),τ ]} (7)

equals eh(x,t) where h(x,t) is the solution of (1) with droplet
initial condition (centered at y). Consider a DP from (0,0) to
(0,t2) and ask about the PDF, Pt1,t2 (y), of the position x(t1) = y

at intermediate time t1 (see Fig. 1). In the limit of large times
t1,t2, with ŷ = y/(2t

2/3
1 ),

Pt1,t2 (y)dy = Z(0,t2|y,t1)Z(y,t1|0,0)

Z(0,t2|0,0)
dy → P	(ŷ)dŷ. (8)

One finds (see below) that as 	 = t2−t1
t1

→ +∞, Pt1,t2 (y)
concentrates on ŷ = ŷm defined in (6), hence

P(ŷ)dŷ := P+∞(ŷ)dŷ = Prob (ŷm ∈ [ŷ,ŷ + dy[). (9)

Here we calculate this distribution, which also arises in the
study of the coalescence of optimal paths [27].

Our second result is the following joint CDF:

G(σ1,σ2) := Prob {A2(0) < σ1, max
ŷ∈R

[A2(ŷ) − ŷ2

+
√

2B(ŷ)] < σ2}. (10)

It is important in the study of the so-called persistence
of correlations in the two-time KPZ problem for droplet
initial conditions, which exhibits an interesting memory effect,
also called ergodicity breaking [28–32]. Indeed, consider the
rescaled heights at t1 and at t2 > t1, in the limit where both
times are large, with 	 = (t2 − t1)/t1 fixed:

t
−1/3
1 h(0,t1) � A2(0),

t
−1/3
1 h(0,t2) � max

ŷ∈R

{
A2(ŷ) − ŷ2

+	1/3

[
Ã2

(
ŷ

	2/3

)
− ŷ2

	4/3

]}

�
	 → +∞

	1/3Ã2(0) + max
ŷ∈R

[A2(ŷ) − ŷ2

+
√

2B(ŷ)] + O

(
1

	1/3

)
, (11)

where A2 and Ã2 denote two independent Airy processes.
The second line expresses that the height at t2 is the sum
of a first contribution from the time interval [0,t1] and the
second from [t1,t2] which, for a fixed intermediate point y, are
independent (see Fig. 1). Optimization over ŷ correlates them.
Obtaining the resulting joint PDF (JPDF) of the two rescaled
heights for arbitrary 	 is a difficult problem [28,29,32–37]. In
the limit of well separated times, i.e., large 	, using that the
Airy process Ã2 is locally a Brownian, one obtains the third
line in (11), where B and A2 are independent processes [38].
As is clear from (11), h(0,t1) ∼ t

1/3
1 , h(0,t2) ∼ t

1/3
2 are quite

different in magnitude (for large t2/t1), but remain correlated
by the O(t1/3

1 ) term. To measure this memory effect one usually
defines the dimensionless ratio of the two covariances

C(t1,t2) = h(0,t1)h(0,t2)
c

h(0,t1)2
c � C	 (12)

which, at large times t1,t2 → +∞, becomes a universal
function C	 of 	. From (11) the latter has a finite limit

C∞ =
∫

dσ1dσ2σ1σ2p(σ1,σ2)

κGUE
2

, (13)

where p(σ1,σ2) = ∂σ1∂σ2G(σ1,σ2) is the JPDF associated to
(10), obtained here exactly (here and below κGUE

p is the pth
cumulant of the GUE-TW distribution).

Finally, our third main result is the CDF for the height h(x,t)
for an IC equal to a Brownian plus a step, corresponding to
a rescaled IC h0(ŷ) = √

2B(ŷ) − Ĥ sgn(ŷ). It will be relevant
for any KPZ system where two half spaces, each stationary,
are put in contact at t = 0, with a mismatch in height 2Ĥ t1/3.

Before displaying our explicit formula, it is important
to recall some known results about the stationary KPZ IC
subclass, which corresponds to h0(ŷ) = √

2B(ŷ) where B(x)
is a two-sided unit Brownian 〈dB(x)2〉 = dx with B(0) = 0.
It is realized, e.g., by the solution hstat(x,t) of the KPZ
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equation (1) with a unit two-sided Brownian initial condition
h(x,t = 0) = B0(x) [39] as

t−1/3hstat(x,t) � Astat(x̂) (14)

= max
ŷ

[A2(ŷ − x̂) − (ŷ − x̂)2 +
√

2B(ŷ)],

(15)

where here the last equality is only at fixed x̂ (not as a process).
Let us now define the two functions

Bw(v) = e(1/3)w3−vw −
∫ +∞

0
dy Ai(v + y)ewy,

Lx̂(σ ) = σ − 1 − x̂2 +
∫ +∞

σ

dv[1 − Bx̂(v)B−x̂(v)]. (16)

It is known that the one-point CDF of the Astat process is given
by the extended Baik-Rains distribution [20,25,40–45], which
has the following exact expression:

Prob [Astat(x̂) < σ ] =: F0(σ − x̂2,x̂) = ∂σ [F2(σ )Yx̂(σ )]

(17)

in terms of the auxiliary function

Yx̂(σ ) := 1 + Lx̂(σ ) − Tr
[
PσKAi(I − Pσ KAi)

−1PσB−x̂BT
x̂

]
,

(18)

where we denote ABT the projector ABT (u,v) = A(u)B(v).
For x̂ = 0, the function F0(σ,0) = F0(σ ) = ∂σ [F2(σ )Y0(σ )] is
the CDF of the standard Baik-Rains (BR) distribution F0.

The PDF of argmax. We now display our first result. Let
H (x̂) = Prob(ŷm > x̂) be the CDF of the position ŷm of the
maximum defined by (6). Our method, detailed below, gives

H (−x̂) =
∫

dσ F2(σ )
{
Yx̂(σ )Tr[(I − PσKAi)

−1

×Pσ (Ai′ + x̂Ai)AiT ]

+ (
Tr

[
(I − Pσ KAi)

−1Pσ AiBT
x̂

] − 1
)

× Tr
[
(I − PσKAi)

−1Pσ (Ai′ + x̂Ai)BT
−x̂

]}
, (19)

where Ai′ is the derivative of the Airy function. Interestingly, in
a recent work, Maes and Thiery [46] noted that the distribution
of argmax ŷm can be related, using the fluctuation-dissipation
theorems (FDT), to the variance of the height in stationary
KPZ, defined as

g(x̂) = 〈σ 2〉F0,x̂ − 〈σ 〉2
F0,x̂

, (20)

where 〈O(σ )〉F0,x̂ = ∫
dσ O(σ )∂σF0(σ − x̂2,x̂) denotes an

average over the extended Baik-Rains distribution, which is
an even function of x̂. Note that the second term is simply
−〈σ 〉2

F0,x̂
= −x̂4. As a consequence of [46], the scaled PDF of

the midpoint probability is predicted as

P(ŷ) = −H ′(ŷ) = fKPZ(ŷ), fKPZ(ŷ) := 1
4g′′(ŷ), (21)

where the notation fKPZ(ŷ) for the second derivative of g in
(20) was introduced in the context of the polynuclear growth
model and totally asymmetric exclusion process models [47].

It is thus important to check whether our result (19),
obtained through an independent and completely different

route, agrees with this prediction. Using the identities [48]

∂σYx̂(σ ) = (
Tr

[
(I − Pσ KAi)

−1Pσ AiBT
x̂

] − 1
)

× (
Tr

[
(I − PσKAi)

−1Pσ AiBT
−x̂

] − 1
)
,

∂σF2(σ ) = Tr[Pσ (I − PσKAi)
−1Pσ AiAiT ] (22)

a few algebraic manipulations [48] show that (19) can indeed
be rewritten as

H (x̂) = 1
2 − 1

4g′(x̂), (23)

where, we recall, g′(x̂) is odd, and g′(±∞) = ±2. Hence our
result (19) provides an equivalent, although different form for
the midpoint probability P(ŷ) = H (ŷ). This provides a test of
our method (the decoupling assumption; see below) and of the
FDT for the KPZ problem. Note that the result of [46] extends
to finite time, while our method deals with large times.

Joint PDF of Airy and Airy minus parabola plus Brownian
and persistent KPZ two-time correlations. We now give our
result for the JCDF (10). We find, for σ1 � σ2,

G(σ1,σ2) = F2(σ1)Y0(σ1)Tr
[(

I − Pσ1KAi
)−1

×Pσ1 Aiσ2−σ1 AiTσ2−σ1

]
+F2(σ1)

(
Tr

[
(I − Pσ1KAi)

−1Pσ1 Aiσ2−σ1BT
0

]
− 1

)2
, (24)

where Aiσ (u) = Ai(u + σ ) and G(σ1,σ2) = F0(σ2) for σ1 �
σ2. An extended result for x̂ 	= 0 is displayed in [48]. It is
easy to check [48] the continuity, G(σ,σ ) = F0(σ ) using the
identities (22). It is also easy to see that the marginal CDF of
σ1, G(σ1, + ∞) = F2(σ1), is the GUE-TW and the marginal
CDF of σ2, G(+∞,σ2) = F0(σ2), is the BR distribution.

We now apply this result to the large time separation limit of
the two-time correlation in the 1D KPZ class. Using integration
by parts one obtains [48]

〈(σ2 − σ1)2〉 = 2
∫ +∞

−∞
dσ2

∫ σ2

−∞
dσ1[F2(σ1) − G(σ1,σ2)],

(25)

where here and below 〈· · · 〉 denotes averages with respect
to p(σ1,σ2) = ∂σ1∂σ2G(σ1,σ2), the associated JPDF. This
allows us to compute the two-time persistent dimensionless
covariance ratio (13) as

C∞ = 〈σ2σ1〉c〈
σ 2

1

〉 = 〈σ2σ1〉
κGUE

2

=
〈
σ 2

1

〉 + 〈
σ 2

2

〉 − 〈(σ2 − σ1)2〉
2κGUE

2

= 1

2
+

(
κGUE

1

)2 + κBR
2

2κGUE
2

− 〈(σ2 − σ1)2〉
2κGUE

2

(26)

= 3.135 98 − 〈(σ2 − σ1)2〉
2κGUE

2

≈ 0.6225 ± 0.0015 (27)

using the known GUE-TW and BR cumulants, i.e., 〈σ2〉 =
κBR

1 = 0, κGUE
1 = −1.771 086 8, κGUE

2 = 0.813 19, and κBR
2 =

1.150 39, and evaluating (25) numerically (see Sec IV.6 in
[48]). Equation (27) compares quite well with recent numerical
simulations and experiments [49,50].

Let us recall our recent study [28,29] and reexamine the
observables defined there, using our new exact results. There
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we defined the variables h1 := h(0,t1)/t
1/3
1 and the scaled

height difference

h := [h(0,t2) − h(0,t1)]/(t2 − t1)1/3. (28)

Defining the (unknown) exact JPDF P	(σ1,σ ) :=
limt1,t2=t1(1+	)→+∞ δ(h1 − σ1)δ(h − σ ), we derived an
approximation of it, denoted P

(1)
	 (σ1,σ ), conjectured to be

exact to leading order in large positive σ1, for any fixed σ and
	. It was shown in [29] to be a good enough approximation
to fit experiments and numerics in a broad range of values
σ1 > 〈σ1〉 = κGUE

1 . It is thus of great importance to check
whether our present exact result, valid only for large 	, but
for any σ1,σ , confirms these predictions.

At large times, the height difference, from (11), takes the
form, up to O(	−2/3) terms,

h � Ã2(0) + 	−1/3(σ2 − σ1), (29)

where we denote (with a slight abuse of notations) the two
random variables

σ1 = A2(0), σ2 = max
ŷ∈R

[A2(ŷ) − ŷ2 +
√

2B(ŷ)] (30)

and we recall that Ã2(0) is a GUE-TW random variable
independent of the O(	−1/3) term. The first consequence,
averaging (29), is that

h = κGUE
1

(
1 − 1

	1/3

)
+ O(	−1) (31)

since 〈σ2〉 = κBR
1 = 0 and 〈σ1〉 = κGUE

1 , in agreement with the
general formula for h for any 	 [see (48) in [28]]. Important
quantities, introduced in [28,29], are the conditional averages
of h, either for a fixed value of h1 = σ1, hh1=σ1 , or, for a value
larger than some threshold h1 = σ1 > σ1c, hh1=σ1>σ1c

. From
the above, one predicts

hh1=σ1 � κGUE
1 + 1

	1/3
〈σ2 − σ1〉σ1 + o

(
1

	1/3

)
, (32)

where the conditional average with respect to p, denoted as

〈σ2 − σ1〉σ1 = 1

F ′
2(σ1)

∫ +∞

−∞
dσ2(σ2 − σ1)p(σ1,σ2) (33)

can be calculated from (24). For large positive σ1 one shows
from (24) that (see [48] where next order is also displayed)

p(σ1,σ2) � −2∂σ2KAi(σ1,σ2) − Ai(σ2)2 (34)

which leads to, for large positive σ1,

〈σ2 − σ1〉σ1 � R1/3(σ1), (35)

R1/3(σ1) :=
[ ∫ +∞

σ1
dy Ai(y)

]2 − ∫ +∞
σ1

dy KAi(y,y)

KAi(σ1,σ1)
(36)

which is precisely the prediction obtained in [28]. This is
encouraging evidence that the method of [28] is good enough
to capture, as claimed there, the tail of the two-time JPDF. We
can thus calculate the conditional averages beyond the large
positive σ1 regime. We show in Fig. 2 the leading order of

hh1>σ1c
= κGUE

1 + 	−1/3〈σ2 − σ1〉σ1>σ1c
+ O(	−2/3) (37)

�4 �2 0 2 4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

FIG. 2. Conditional average 〈σ2 − σ1〉σ1>σ1c
(y axis) as a function

of σ1c (x axis), which describes the averaged scaled KPZ height
difference h at large 	 = t2−t1

t1
[see (37)]. (i) Orange: exact result

obtained here. (ii) Blue: prediction obtained in [28,29], which
becomes exact for large positive σ1c [indistinguishable from (i) for
σ1c > 0]. The limit σ1c → −∞ (unconditioned mean), exact from
(31) and to which our result (i) converges, is the orange horizontal
line at −κGUE

1 = 1.771 09.

evaluated numerically [48] from (24), a quantity which can be
measured accurately in experiments and numerics.

Finally, the conditional covariance ratio was introduced and
measured in [28,29]

C	(σ1c) := h1h2
c

h1>σ1c

h2
1

c

h1>σ1c

. (38)

We obtain here its large 	 limit,

C∞(σ1c) = 〈σ2σ1〉cσ1>σ1c〈
σ 2

1

〉c
σ1>σ1c

(39)

a function of σ1c which interpolates between C∞(σ1c =
−∞) = C∞ the unconditioned two-time covariance ratio
obtained in (27) and C∞(σ1c = +∞) = 1. It is evaluated
numerically [48] from (24) and plotted in Fig. 3.

�2 �1 0 1 2 3 4 1c

0.6

0.7

0.8

0.9

1.0
C

FIG. 3. Conditional covariance ratio C∞(σ1c), Eq. (39). Orange:
asymptotic prediction for large positive σ1c from [28,29]. Blue: exact
result from (24), converging to (27) (orange horizontal line) for
σ1c = −∞.
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We also explored the case where the longer polymer in
Fig. 1 is constrained to pass to the right of 0, y > 0: we find
C∞ ≈ 0.6925, i.e., that the correlations are increased.

Stationary KPZ in presence of a step. Finally, the height
h(x,t) in the KPZ class with a step at x = 0 in the initial
condition, and independent Brownian initial condition on each
side, takes the scaling form at large t :

t−1/3h(x = 2t2/3x̂,t) ≈ ĥ(x̂)

:= max
ŷ

[A2(x̂ − ŷ) − (x̂ − ŷ)2

+
√

2B(y) − Ĥ sgn(ŷ)]. (40)

Defining GĤ (σL) = Prob [ĥ(x̂) − Ĥ + x̂2 < σL], we obtain

GĤ (σL) = F2(σL)

× (
Yx̂(σL)e2x̂Ĥ Tr

[(
I − PσL

KAi
)−1

PσL
Ai2Ĥ AiT

]
+ (

Tr
[(

I − PσL
KAi

)−1
PσL

AiBT
x̂

] − 1
)

× (
e2x̂Ĥ Tr

[(
I − PσL

KAi
)−1

Ai2ĤBT
−x̂

] − 1
))

. (41)

Method. The method is based on the replica Bethe ansatz,
which led to exact solutions for one-time observables for
various initial conditions [2,43,51–60]. Since it is an extension
of the calculation in [61] we only sketch the idea, with details
in Secs. II and III of [48]. We define, jointly in the same
noise realization, h1(x,t) = ln Z(x,t |0,0) and hL,R(x,t) the
solutions of the KPZ equation with ICs, respectively, droplet
(1), and Brownian on y < 0 (L) and on y > 0 (R). We define
the joint Laplace transform

ĝt (σ1,σL,σR; x̂) = e− ∑
b=1,L,R ubZb(x,t) (42)

with ub = e−t1/3(σb−x̂2). Its large time limit gives

ĝ∞(σ1,σL,σR; x̂) = Gx̂(σ1,σL,σR; x̂)

:= Prob [A2(−x̂) < σ1,ĥL(x̂)

+ x̂2 < σL,ĥR(x̂) + x̂2 < σR] (43)

with

ĥL,R(x̂) = max
ŷ<0,ŷ>0

[A2(ŷ − x̂) − (ŷ − x̂)2 +
√

2B(ŷ)] (44)

containing all desired information (and more). To compute ĝt

we expand the exponential in (42), and write the joint moments
as quantum-mechanical expectations

∏
b=1,L,R

Zb(x,t)nb = 〈x, . . . x|e−Hnt |nL,n1,nR〉, (45)

where

Hn = −
n∑

α=1

∂2

∂x2
α

− 2
∑

1�α<β�n

δ(xα − xβ) (46)

is the Hamiltonian of the attractive Lieb-Liniger δ-Bose
gas model [62], and |nL,n1,nR〉 is a state with n1 bosons
at y = 0, and nL,R in y < 0 and y > 0, respectively, with
n = n1 + nL + nR . One inserts in (45) the known Bethe ansatz
eigenstates, each consisting of 1 � ns � n strings (bound
states) of mj � 1 bosons with rapidities λj,a = kj − i

2 (mj +
1 − 2a), a = 1, . . . ,mj , and

∑ns

j=1 mj = n. For the Brownian
(and flat) IC the overlap of |nL,n1,nR〉 with any Bethe state
can be expressed explicitly, although as a complicated sum
over products of gamma functions, extending as in [61] the
combinatoric method introduced in [54]. It can be simplified
in the large t limit through the decoupling assumption (which
sets all interstring double products to unity) as done in
[2,54–60]. Summing over the eigenstates becomes possible
and leads to a Fredholm determinant formula for ĝ∞ given
in [48]. For regularization the calculation includes finite drifts
wL,R > 0 in the Brownian, and the (delicate) limit wL,R = 0+
converts the Fredholm determinant into a final expression for
Gx̂(σ1,σL,σR; x̂) given in [48]. Specializing to σL = σR = σ2

leads to the JCDF Gx̂(σ1,σ2) for general x̂, given in [48], which
reduces to (24) for G = G0 for x̂ = 0. Specializing instead to
σ1 = +∞, one obtains (i) the result (19) for the CDF of the
argmax of Airy minus parabola plus Brownian and (21) for the
limiting midpoint DP probability, from

H (−x̂) =
∫ +∞

−∞
dσR[∂σR

ĝ∞(+∞,σL,σR; x̂)]|σL=σ−
R

and (ii) the CDF of the KPZ height in the presence of
a step IC: setting σR = σL + Ĥ one obtains GĤ (σL) =
ĝ∞(+∞,σL,σR; x̂) leading to the result (41).

In conclusion, from a replica Bethe ansatz calculation, using
a decoupling assumption, we obtained several distributions in-
volving the maximum of the Airy process minus parabola plus
Brownian. This leads to exact universal results for two-time
KPZ in the large time separation limit 	 = t2−t1

t1
 1, which

correctly match, and nicely complement, our recent tail results
[28,29] for any 	, putting both methods on firmer ground.
Taken together they should also lead to further accurate
comparisons with experiments and numerics in the universal
large time limit, and allow one to test other observables, e.g.,
the effect of the end-point position x̂ 	= 0 as predicted here and
in [28].

We thank J. de Nardis, K. Takeuchi, and T. Thiery for
stimulating discussions and collaborations, and A. Borodin,
I. Corwin, T. Halpin-Healy, S. Majumdar, J. Quastel, and G.
Schehr for interesting remarks.
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fluctuations for the stationary KPZ equation, Math. Phys., Anal.
Geom. 18 (2015).

[45] P. L. Ferrari and H. Spohn, Scaling limit for the space-time
covariance of the stationary totally asymmetric simple exclusion
process, Commun. Math. Phys. 265, 1 (2006).

[46] C. Maes and T. Thiery, Midpoint distribution of directed
polymers in the stationary regime: Exact result through linear
response, J. Stat. Phys. 168, 937 (2017).

[47] M. Prahofer and H. Spohn, Exact scaling functions for one-
dimensional stationary KPZ growth, J. Stat. Phys. 115, 255
(2004).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.96.060101 for details of the derivations of
the main results of the paper.

[49] The estimate C∞ ≈ 0.6 was quoted in [29] as being consistent
with numerical data obtained there, with the theory of [29],
and with previous experimental data [K. A. Takeuchi (private
communication)].

[50] The estimate C∞ = 0.626 ± 0.003 was obtained early this year
by T. Halpin-Healy (private communication) simulating the Pt-
Pt 1+1 DPRM subject to exponential site disorder.

060101-6

https://doi.org/10.1103/PhysRevE.78.051102
https://doi.org/10.1103/PhysRevE.78.051102
https://doi.org/10.1103/PhysRevE.78.051102
https://doi.org/10.1103/PhysRevE.78.051102
https://doi.org/10.1016/j.nuclphysb.2010.11.013
https://doi.org/10.1016/j.nuclphysb.2010.11.013
https://doi.org/10.1016/j.nuclphysb.2010.11.013
https://doi.org/10.1016/j.nuclphysb.2010.11.013
https://doi.org/10.1007/s10955-012-0614-7
https://doi.org/10.1007/s10955-012-0614-7
https://doi.org/10.1007/s10955-012-0614-7
https://doi.org/10.1007/s10955-012-0614-7
https://doi.org/10.1007/s00222-013-0462-3
https://doi.org/10.1007/s00222-013-0462-3
https://doi.org/10.1007/s00222-013-0462-3
https://doi.org/10.1007/s00222-013-0462-3
https://doi.org/10.1214/009117904000000937
https://doi.org/10.1214/009117904000000937
https://doi.org/10.1214/009117904000000937
https://doi.org/10.1214/009117904000000937
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1103/PhysRevLett.110.060602
https://doi.org/10.1088/1742-5468/2016/05/053108
https://doi.org/10.1088/1742-5468/2016/05/053108
https://doi.org/10.1088/1742-5468/2016/05/053108
https://doi.org/10.1016/j.aop.2017.05.018
https://doi.org/10.1016/j.aop.2017.05.018
https://doi.org/10.1016/j.aop.2017.05.018
https://doi.org/10.1016/j.aop.2017.05.018
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1007/s00440-015-0651-7
https://doi.org/10.1007/s00440-015-0651-7
https://doi.org/10.1007/s00440-015-0651-7
https://doi.org/10.1007/s00440-015-0651-7
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1142/S2010326311300014
http://arxiv.org/abs/arXiv:1701.00018
https://doi.org/10.1007/BF02100489
https://doi.org/10.1007/BF02100489
https://doi.org/10.1007/BF02100489
https://doi.org/10.1007/BF02100489
https://doi.org/10.1214/15-AAP1139
https://doi.org/10.1214/15-AAP1139
https://doi.org/10.1214/15-AAP1139
https://doi.org/10.1214/15-AAP1139
http://arxiv.org/abs/arXiv:1606.09228
https://doi.org/10.1214/15-AOP1044
https://doi.org/10.1214/15-AOP1044
https://doi.org/10.1214/15-AOP1044
https://doi.org/10.1214/15-AOP1044
https://doi.org/10.1016/j.spa.2016.06.009
https://doi.org/10.1016/j.spa.2016.06.009
https://doi.org/10.1016/j.spa.2016.06.009
https://doi.org/10.1016/j.spa.2016.06.009
https://doi.org/10.1088/1742-5468/aa6bce
https://doi.org/10.1088/1742-5468/aa6bce
https://doi.org/10.1088/1742-5468/aa6bce
https://doi.org/10.1103/PhysRevLett.118.125701
https://doi.org/10.1103/PhysRevLett.118.125701
https://doi.org/10.1103/PhysRevLett.118.125701
https://doi.org/10.1103/PhysRevLett.118.125701
https://doi.org/10.1007/s10955-012-0503-0
https://doi.org/10.1007/s10955-012-0503-0
https://doi.org/10.1007/s10955-012-0503-0
https://doi.org/10.1007/s10955-012-0503-0
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.3842/SIGMA.2016.074
https://doi.org/10.3842/SIGMA.2016.074
https://doi.org/10.3842/SIGMA.2016.074
https://doi.org/10.3842/SIGMA.2016.074
https://doi.org/10.1088/1742-5468/2013/06/P06017
https://doi.org/10.1088/1742-5468/2013/06/P06017
https://doi.org/10.1088/1742-5468/2013/06/P06017
http://arxiv.org/abs/arXiv:1507.06135
https://doi.org/10.1088/1751-8113/49/27/27LT01
https://doi.org/10.1088/1751-8113/49/27/27LT01
https://doi.org/10.1088/1751-8113/49/27/27LT01
https://doi.org/10.1088/1751-8113/49/27/27LT01
https://doi.org/10.1007/s00220-016-2660-5
https://doi.org/10.1007/s00220-016-2660-5
https://doi.org/10.1007/s00220-016-2660-5
https://doi.org/10.1007/s00220-016-2660-5
https://doi.org/10.1214/07-AOP353
https://doi.org/10.1214/07-AOP353
https://doi.org/10.1214/07-AOP353
https://doi.org/10.1214/07-AOP353
https://doi.org/10.1023/A:1018615306992
https://doi.org/10.1023/A:1018615306992
https://doi.org/10.1023/A:1018615306992
https://doi.org/10.1023/A:1018615306992
https://doi.org/10.1002/cpa.20316
https://doi.org/10.1002/cpa.20316
https://doi.org/10.1002/cpa.20316
https://doi.org/10.1002/cpa.20316
https://doi.org/10.1214/ECP.v18-2952
https://doi.org/10.1214/ECP.v18-2952
https://doi.org/10.1214/ECP.v18-2952
https://doi.org/10.1214/ECP.v18-2952
https://doi.org/10.1103/PhysRevLett.108.190603
https://doi.org/10.1103/PhysRevLett.108.190603
https://doi.org/10.1103/PhysRevLett.108.190603
https://doi.org/10.1103/PhysRevLett.108.190603
https://doi.org/10.1007/s10955-013-0710-3
https://doi.org/10.1007/s10955-013-0710-3
https://doi.org/10.1007/s10955-013-0710-3
https://doi.org/10.1007/s10955-013-0710-3
https://doi.org/10.1007/s11040-015-9189-2
https://doi.org/10.1007/s11040-015-9189-2
https://doi.org/10.1007/s11040-015-9189-2
https://doi.org/10.1007/s00220-006-1549-0
https://doi.org/10.1007/s00220-006-1549-0
https://doi.org/10.1007/s00220-006-1549-0
https://doi.org/10.1007/s00220-006-1549-0
https://doi.org/10.1007/s10955-017-1839-2
https://doi.org/10.1007/s10955-017-1839-2
https://doi.org/10.1007/s10955-017-1839-2
https://doi.org/10.1007/s10955-017-1839-2
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
http://link.aps.org/supplemental/10.1103/PhysRevE.96.060101


RAPID COMMUNICATIONS

MAXIMUM OF AN AIRY PROCESS PLUS BROWNIAN . . . PHYSICAL REVIEW E 96, 060101(R) (2017)

[51] P. Calabrese, P. Le Doussal, and A. Rosso, Free-energy
distribution of the directed polymer at high temperature,
Europhys. Lett. 90, 20002 (2010).

[52] V. Dotsenko, Bethe ansatz derivation of the Tracy-Widom
distribution for one-dimensional directed polymers, Europhys.
Lett. 90, 20003 (2010); V. Dotsenko and B. Klumov, Bethe
ansatz solution for one-dimensional directed polymers in ran-
dom media, J. Stat. Mech. (2010) P03022.

[53] P. Calabrese and P. Le Doussal, Exact Solution for the Kardar-
Parisi-Zhang Equation with Flat Initial Conditions, Phys. Rev.
Lett. 106, 250603 (2011); P. Le Doussal and P. Calabrese, The
KPZ equation with flat initial condition and the directed polymer
with one free end, J. Stat. Mech. (2012) P06001.

[54] V. Dotsenko, Replica Bethe ansatz derivation of the GOE Tracy-
Widom distribution in one-dimensional directed polymers with
free boundary conditions, J. Stat. Mech. (2012) P11014.

[55] S. Prolhac and H. Spohn, Two-point generating function of
the free energy for a directed polymer in a random medium,
J. Stat. Mech. (2011) P01031.

[56] V. Dotsenko, Two-point free energy distribution function in
(1+1) directed polymers, J. Phys. A 46, 355001 (2013).

[57] T. Imamura, T. Sasamoto, and H. Spohn, On the equal time
two-point distribution of the one-dimensional KPZ equation by
replica, J. Phys. A: Math. Theor. 46, 355002 (2013).

[58] V. Dotsenko, Distribution function of the endpoint fluctuations
of one-dimensional directed polymers in a random potential,
J. Stat. Mech. (2013) P02012.

[59] P. Le Doussal, Crossover from droplet to flat initial conditions in
the KPZ equation from the replica Bethe ansatz, J. Stat. Mech.
(2014) P04018.

[60] I. Corwin, J. Quastel, and D. Remenik, Renormalization fixed
point of the KPZ universality class, J. Stat. Phys. 160, 815
(2015).

[61] P. Le Doussal, Crossover between various initial conditions in
KPZ growth: Flat to stationary, J. Stat. Mech. (2017) 053210.

[62] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose
gas. I. The general solution and the ground state, Phys. Rev. 130,
1605 (1963).

060101-7

https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1088/1742-5468/2010/03/P03022
https://doi.org/10.1088/1742-5468/2010/03/P03022
https://doi.org/10.1088/1742-5468/2010/03/P03022
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1088/1742-5468/2012/06/P06001
https://doi.org/10.1088/1742-5468/2012/06/P06001
https://doi.org/10.1088/1742-5468/2012/06/P06001
https://doi.org/10.1088/1742-5468/2012/11/P11014
https://doi.org/10.1088/1742-5468/2012/11/P11014
https://doi.org/10.1088/1742-5468/2012/11/P11014
https://doi.org/10.1088/1742-5468/2011/01/P01031
https://doi.org/10.1088/1742-5468/2011/01/P01031
https://doi.org/10.1088/1742-5468/2011/01/P01031
https://doi.org/10.1088/1751-8113/46/35/355001
https://doi.org/10.1088/1751-8113/46/35/355001
https://doi.org/10.1088/1751-8113/46/35/355001
https://doi.org/10.1088/1751-8113/46/35/355001
https://doi.org/10.1088/1751-8113/46/35/355002
https://doi.org/10.1088/1751-8113/46/35/355002
https://doi.org/10.1088/1751-8113/46/35/355002
https://doi.org/10.1088/1751-8113/46/35/355002
https://doi.org/10.1088/1742-5468/2013/02/P02012
https://doi.org/10.1088/1742-5468/2013/02/P02012
https://doi.org/10.1088/1742-5468/2013/02/P02012
https://doi.org/10.1088/1742-5468/2014/04/P04018
https://doi.org/10.1088/1742-5468/2014/04/P04018
https://doi.org/10.1088/1742-5468/2014/04/P04018
https://doi.org/10.1007/s10955-015-1243-8
https://doi.org/10.1007/s10955-015-1243-8
https://doi.org/10.1007/s10955-015-1243-8
https://doi.org/10.1007/s10955-015-1243-8
https://doi.org/10.1088/1742-5468/aa6f3e
https://doi.org/10.1088/1742-5468/aa6f3e
https://doi.org/10.1088/1742-5468/aa6f3e
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605



