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A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in
presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid
using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is
used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy
dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation
laws and stability properties of the formal scheme are identified by comparison with the scheme for zero
vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector
potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples
for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical
for topological insulator surfaces.
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I. INTRODUCTION

Recently a staggered space-time grid has been identified
which enables the formulation of single-cone finite-difference
schemes for the (d + 1)-dimensional Dirac equation [1].
Here (d + 1)-dimensional refers to d space and one time
dimension. Explicit second-order-accurate schemes have been
presented and characterized for d = 1,2,3 in the presence of
mass- and scalar potential terms [1,2]. This is remarkable
because traditional real-space lattice schemes used for Dirac
fermions, for example, in quantum chromo-dynamics simu-
lations on a lattice, in general display fermion doubling [3].
To our knowledge, in standard simulations based on finite
difference schemes, the unphysical doublers hitherto have
been projected out by a method suggested by Susskind and
Kogut, were pushed out of the energy range of interest by
a mass term, the chiral symmetry-breaking Wilson term, or
have been avoided at the expense of nonlocality [4–7].1 As
an alternative to finite-difference methods, other numerical
approaches for solving the time-dependent Dirac equation,
such as the operator-splitting and Lanczos method, have been
developed [8–10]. Within the former, fermion doubling can be
avoided by fast Fourier transformation between momentum
and position representation in the evaluation of the time
evolution operator. To our knowledge, scaling is N log N , as
compared to linear in the number of grid points N , for the
staggered finite-difference scheme. The Lanczos method ap-
parently can approach this efficiency, however, in a real-space
representation avoidance of fermion doubling remains to be an
issue.

Recent Dirac fermion realizations in condensed matter
systems, such as graphene and topological insulators (TIs),
have generated great interest in transport simulations based on
the (2+1)-dimensional Dirac equation [11–14]. In this context,
the Dirac equation describes (metallic) low-energy excitations
which have several remarkable properties. A magnetic field

1Here “unphysical” implies that these (counterpropagating) modes
are absent in the underlying continuum model.

perpendicular to the surface can be used to introduce a
space-time-dependent mass term. It has been used to en-
gineer and manipulate the surface states, as well as the
associated Dirac fermion dynamics [15–22]. The odd number
of cones and momentum-spin locking associated with TI
surface states point at inherent potential for spintronics
applications.

The development of single-cone lattice models is of
fundamental importance in physics. Additional motivation
for this work has been provided by the realization of Dirac
fermion states on TI surfaces. With the construction of
single-cone lattice models established in earlier work, in this
article we address several issues: the development of a finite-
difference scheme for the time-dependent (2+1)-dimensional
Dirac equation in the presence of general electromagnetic
texture, in particular, the presence of magnetic fields and
magnetization which (1) preserves the single-cone energy-
momentum dispersion and (2) is gauge-invariant, as well as
(3) the analysis of the stability properties of such a scheme.
It will be shown that, in analogy to the continuum case,
a Peierls-Schwinger substitution can be used to formally
introduce both vector potential and magnetization. Since this
substitution is a U (1) transformation, all stability properties of
the free-particle scheme are preserved. This formal scheme is
the basis for several physically motivated approximations on
the lattice. They facilitate space-time-resolved simulations of
spintronic effects associated with TI Dirac fermions near the
Dirac point.

In Sec. II we give a brief review of the (2+1)-dimensional
Dirac equation in the TI representation. In Sec. II B we
summarize the necessary ingredients for a single-cone finite-
difference scheme. In Sec. III we present the formal scheme
containing the full electromagnetic potential, identify a con-
served functional, and discuss stability properties and gauge
invariance of the scheme. Its explicit form including lattice
indices is given in the Appendix. Based on the formal scheme
several lattice schemes are derived in Sec. IV: (1) a scheme
for static planar magnetic texture, (2) a single-time-update
scheme, (3) a double-time-update scheme, and (4) a “slowly
varying-magnetic-field scheme” valid under slowly varying
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planar texture. In Sec. V we numerically test and compare
these schemes for a rotating uniform planar magnetization
which allows solution within the formal scheme. Finally,
we consider a static planar magnetic texture and compare
the static model (1) to the slowly varying-magnetic-field
model (4).

II. THEORETICAL BACKGROUND

A. The model Hamiltonian and its physical properties

The low-energy dynamics of Dirac fermions on a magnet-
ically textured surface of a topological insulator is captured
by an effective (2+1)-dimensional Dirac equation [13]. A
magnetization, which may arise from magnetic impurities near
the surface, is treated within a mean-field approximation. The
effective fermion Hamilton operator consists of a spin-orbit,
a Zeeman-Pauli, and a scalar potential term and has the
form [23]

H = c(σ × �) · ẑ + μBgF σB′(x,y,t) + V (x,y,t). (1)

Here c, σ , μB , gF , and V ∈ R, respectively, are the fermion
speed, the Pauli vector, the Bohr magneton, the fermion Landé
factor, and the potential energy. ẑ denotes the unit vector
normal to the TI surface which is assumed to be a plane.
In the spin-orbit term,

� = p − q

co

A (2)

denotes the fermion kinetic momentum operator. Here we
have charge q = −e for the Dirac electron. p, co, e, and
A, respectively, denote the canonical momentum operator,
the speed of light in vacuum, the elementary charge, and
the vector potential. The magnetic field B(x,y,t) = ∇ ×
A(x,y,z,t)|z=0 = Bo(x,y,t) + 4πM(x,y,t) results from the
external B-field Bo and the stray field from the impurities’
magnetization M(x,y,t).

The effective magnetic field in the Pauli term is given by

B′(x,y,t) = Bo(x,y,t) − 1

gF μB

∑
i

〈J ′
i Si〉σ , (3)

in which the second contribution is the effective exchange
field between fermion spin and the impurity spin Si with
exchange coupling J ′

i . In the presence of ferromagnetic order,
the dominant coupling to the effective magnetic field is due to
the Pauli term [23].

In Schrödinger form a generic version of the effective Dirac
equation reads

ih̄∂tψ(x,y,t) = [c(σx�y − σy�x) + σ · m(x,y,t)

+ 12V (x,y,t)]ψ(x,y,t). (4)

ψ(x,y,t) ≡ [u,v] ∈ C2 is a two-component spinor describing
the helical states associated with a single Dirac cone. The
two components correspond to spin = 1/2, whereby the
physical spin direction is S ∝ σ and, from Eq. (1), m(x,y,t) =
μBgF B′(x,y,t). Note that an in-plane magnetization coupling
to the fermion spin formally can be incorporated into the
vector potential term in the kinetic momentum and vice versa.
However, the sources for these two terms may have a different
physical origin and consequences.

In the TI basis the current density vector has the components

jx = −c(u∗,v∗)σy

(
u

v

)
= −2c Im{u∗v},

jy = c(u∗,v∗)σx

(
u

v

)
= 2c Re{u∗v}. (5)

Note that they do not contain an explicit contribution from the
magnetization or vector potential, but rather result from the
phase relation between the two spinor components. Likewise,
the expectation value for the particle spin, orthogonal to the
current density, is given by

Sx = h̄

2
(u∗,v∗)σx

(
u

v

)
= h̄ Re{u∗v},

Sy = (u∗,v∗)σy

(
u

v

)
= h̄ Im{u∗v}. (6)

One sees that spin and momentum are “locked to one another”
at a right angle. Therefore, changing the direction of particle
flow changes the direction of spin-polarization and vice versa.

B. Staggered grid for a single-cone finite-difference scheme

Here we give a brief review of the single-cone lattice repre-
sentation of the (2+1)-dimensional Dirac equation underlying
the present work. It is well known that a symmetric discretiza-
tion of first-order derivatives using twice the lattice constant
leads to an increase in the degrees of freedom as compared to
the continuum formulation. In the case of the Dirac equation
one speaks of fermion doubling [5,6]. Early attempts to work
around this problem have been the use of an artificial mass term
or projection techniques [4,5]. The Wilson mass term is a finite
difference approximation to a second-order derivative which
uses the single lattice constant, thereby lifting the degeneracy
between physical modes and doublers. In the Susskind and
Kogut method of staggered fermions, the effective lattice
constant is doubled leading to 2d+1 lattice sites within a
hypercube. Subsequently the extra lattice sites are used to
introduce additional flavors of fermions [24]. For example,
in d = 3 one has four spinor components per fermion and 24

lattice sites per space-time hypercube, leading to four flavors of
fermions on the lattice. One can then either use the extra lattice
sites to incorporate different physical flavors, e.g., quarks, or
consider the extra degrees of freedom as unphysical and project
them out.2

In contrast to the Susskind and Kogut staggered fermions,
in the present approach, the original lattice constants are
maintained and used to approximate all first-order derivatives.
In essence, the original rectangular grid is converted into a set
of a face-centered rectangular-grid double-layers (Fig. 1) [1].
This single-cone finite-difference scheme is a leap-frog
scheme based on a space-time staggered grid which allows all
first-order partial derivatives to be represented by symmetric
difference quotients using a single lattice spacing, making it
second-order accurate. Originally, it was developed for the

2We note that there is a lattice scheme in the literature which falsely
claims to be single cone [25].
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FIG. 1. Sketch of the staggered grid needed to propagate a two-
component spinor ψ ≡ [u,v] by one time step �t . Placing upper
and lower components onto the adjacent time sheets, respectively,
t jo− 1

2 and t jo allows the propagation to the next pair of time sheets
via spatial derivatives, represented by single lattice spacings (�x and
�y), in two steps: the upper spinor component u from subgrid jo − 1

2
to jo + 1

2 , followed by the lower spinor component v from subgrid jo

to jo + 1.

case of zero vector potential [1]. For the (2+1)-dimensional
case one may proceed as follows (for details we refer to the
original paper): the spinor u-component is defined for the
discrete time indices jo − 1

2 ∈ Z + 1
2 and lives on the discrete

lattice points (jx,jy) ∈ Z2 and (jx − 1
2 ,jy − 1

2 ) ∈ (Z + 1
2 )

2
,

forming a face-centered rectangular (fcr-u) grid for each
time sheet. The spinor v-component is defined for discrete
time jo ∈ Z and space indices (jx − 1

2 ,jy) ∈ (Z + 1
2 ) × Z

and (jx,jy − 1
2 ) ∈ Z × (Z + 1

2 ), again forming a face-centered
rectangular (fcr-v) grid. As sketched in Fig. 1 the time
progression by �o = c�t is executed in two steps: First, the
upper component u is propagated from time sheet jo − 1

2 to
jo + 1

2 (each consisting of a fcr-u grid) by forming symmetric
x- and y-derivatives of v using the fcr-v grid on intermediate
time sheet jo. In the second step, v on the fcr-v grid on time
sheet jo is propagated to the fcr-v grid on time sheet jo + 1
using symmetric x- and y-derivatives of u on the fcr-u grid

on time sheet jo + 1
2 . Altogether, one has to propagate u

jo− 1
2

jx ,jy
,

u
jo− 1

2

jx+ 1
2 ,jy+ 1

2
, v

jo

jx+ 1
2 ,jy

, and v
jo

jx ,jy+ 1
2

for jν ∈ Z. Here, and in the

generalization below, we use the following notation for any
quantity placed on the grid: the superscript contains the time
index, and the index pair in the subscript gives the lattice
site (spatial position) on the specified time sheet. For further
details, we refer to earlier work [1].

Note that on the grid a specific u-component, say, u
jo+1/2
jx ,jy

,
is not linked to a unique v component: there are four nearest
neighbor v-sites on each of the two adjacent v-time sheets
jo and jo + 1. This symmetry is taken into account when
computing local single-particle averages, such as particle, cur-
rent, and spin density. Note that this nonlocality in the lattice
(field-) theory is required to bypass the Nielssen-Ninomiya

theorem [26]. Furthermore, our scheme treats space and time
derivatives on equal footing, as suggested by covariance of the
Dirac equation, leading to the use of two time sheets to store the
spinor “at given time,” as shown in Fig. 1. Yet the propagation
scheme is explicit and allows local, grid-point-by-grid-point,
layer-by-layer execution.

The importance of a genuine single-cone scheme is not
merely founded on physical consistency with the continuum
model but also on technical aspects. Spurious modes (“dou-
blers”) can have counterpropagating group velocities, a fact
which complicates the construction of transparent or absorbing
boundary conditions in open-boundary transport simulations.
For the (1+1)-dimensional and (2+1)-dimensional case, re-
spectively, transparent and perfectly matched-layer boundary
conditions have already been constructed within this single-
cone scheme [2,27,28].

III. FORMAL SCHEME FOR THE (2+1)-DIMENSIONAL
DIRAC EQUATION

A. Definition

In this section we develop a finite-difference scheme for
(2+1)-dimensional Dirac fermions in general electromagnetic
texture. The (2+1)-dimensional scheme or Ref. [1] serves
for a skeleton which is dressed by a Peierls-Schwinger
substitution [24]. The procedure may be summarized as
follows: Apply a Schwinger-Peierls substitution to the Dirac
spinor, and insert the transformed spinor into the single-cone
staggered-grid lattice scheme of Ref. [1] for the free-particle
Hamiltonian. Express the scheme in terms of the original
spinor components eliminating the path-dependent Peierls-
Schwinger phase factor.

The gauge-invariant introduction of the electromagnetic
potential into the free-particle Hamiltonian is accomplished
by the Schwinger substitution [24]. The vector potential only
is introduced by the Peierls substitution [29]. Both represent
U (1) transformations in spinor space for which the local phase
is introduced by a line integral. Therefore, we use a unified
notation, whenever possible.

Definition 1: (Peierls and Schwinger substitution on the
grid). The Peierls and Schwinger substitution for a spinor
component ψ = [u,v] on the grid are defined as fol-
lows [2,24,27,29]:

ψ
tj
xj ,yj

→ ψ̂
tj
xj ,yj

= exp
{−ia

tj
xj ,yj

}
ψ

tj
xj ,yj

. (7)

(i) Peierls substitution: The real-valued phase a
tj
xj ,yj

is
defined as the line integral of the vector potential A along
s on time sheet tj , starting at an arbitrary, but fixed position
(xo,yo) and ending at the lattice point (xj ,yj ):

a
tj
xj ,yj

= q

h̄co

∫ (x,y)

(xo,yo)
ds · A(s,t)|x=xj ,y=yj ,t=tj . (8)

(ii) Schwinger substitution: The real-valued phase a
tj
xj ,yj

is
defined as the line integral of the four-vector potential (A,	)
along (s,so) in four-vector space, starting at an arbitrary, but
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fixed position (xo,yo,cto) and ending at (xj ,yj ,ctj ):

a
tj
xj ,yj

= q

h̄co

∫ (x,y,ct)

(xo,yo,cto)

[
ds · A(s,so/c)

− co

c
dso	(s,so/c)

]∣∣∣∣
x=xj ,y=yj ,t=tj

. (9)

Note that Eq. (7) per se does not provide a “definition”
of ψ̂ since the phase resulting from the contour integral
is path-dependent. This is not a problem in the continuum
limit, since only local phase variations enter into the Dirac
equation. The specific implementation of the integral on the
grid will be discussed below. Both transformations represent
a local phase-factor multiplication of the individual spinor
components. There is no mixing of u and v components.
The transformation is U (1) on the entire grid but not in 2d

spin space: there is no unique (local) pairing of u and v

components: u and v occupy different grid sites. Since the
basic scheme already accounts for the presence of a scalar
potential, either of the two substitutions may be used to
introduce the vector potential. However, there is a difference:
the Schwinger substitution can introduce all four components
of the electromagnetic potential in one sweep, while the Peierls
substitution introduces the vector potential only.

A single-cone gauge-invariant numerical scheme for the
dynamics of a Dirac fermion in general electromagnetic texture
[Eq. (4)] is obtained by application of the single-cone scheme
of Ref. [1] to the Peierls-Schwinger transformed spinor ψ̂ =
[û,v̂].

Definition 2: (Generalized single-cone finite difference
scheme). The time-dependent Dirac equation Eq. (4) is
approximated by the second-order accurate finite difference
scheme for the Peierls, respectively, Schwinger transformed
spinor ψ̂ = [û,v̂], Definition 1, for jν ∈ Z,ν = o,x,y:

û
jo+ 1

2
jx ,jy

− û
jo− 1

2
jx ,jy

�o

=
(

mz + V̂

ih̄c

)jo

jx ,jy

û
jo+ 1

2
jx ,jy

+ û
jo− 1

2
jx ,jy

2
−

(
v̂

jo

jx ,jy+ 1
2
− v̂

jo

jx ,jy− 1
2

)
�y

− i

(
v̂

jo

jx+ 1
2 ,jy

− v̂
jo

jx− 1
2 ,jy

)
�x

, (10)

û
jo+ 1

2

jx− 1
2 ,jy− 1

2
− û

jo− 1
2

jx− 1
2 ,jy− 1

2

�o

=
(

mz + V̂

ih̄c

)jo

jx− 1
2 ,jy− 1

2

û
jo+ 1

2

jx− 1
2 ,jy− 1

2
+ û

jo− 1
2

jx− 1
2 ,jy− 1

2

2
−

(
v̂

jo

jx− 1
2 ,jy

− v̂
jo

jx− 1
2 ,jy−1

)
�y

− i

(
v̂

jo

jx ,jy− 1
2
− v̂

jo

jx−1,jy− 1
2

)
�x

,

(11)

followed by

v̂
jo+1
jx− 1

2 ,jy
− v̂

jo

jx− 1
2 ,jy

�o

=
(

V̂ − mz

ih̄c

)jo+ 1
2

jx− 1
2 ,jy

v̂
jo+1
jx− 1

2 ,jy
+ v̂

jo

jx− 1
2 ,jy

2
−

(
û

jo+ 1
2

jx− 1
2 ,jy+ 1

2
− û

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
�y

+ i

(
û

jo+ 1
2

jx ,jy
− û

jo+ 1
2

jx−1,jy

)
�x

, (12)

and

v̂
jo+1
jx ,jy− 1

2
− v̂

jo

jx ,jy− 1
2

�o

=
(

V̂ − mz

ih̄c

)jo+ 1
2

jx ,jy− 1
2

v̂
jo+1
jx ,jy− 1

2
+ v̂

jo

jx ,jy− 1
2

2
−

(
û

jo+ 1
2

jx ,jy
− û

jo+ 1
2

jx ,jy−1

)
�y

+ i

(
û

jo+ 1
2

jx+ 1
2 ,jy− 1

2
− û

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
�x

. (13)

Admitting integer and half-integer values for n, j, and k, V̂ is
defined as follows:

(i) For the Peierls substitution, introducing vector potential
A and magnetization (mx,my,0) only, one has

V̂ n
j,k = V n

j,k + q

co

∫ r

ro

ds

· ∂tAeff(s,t)|x=xj =j�x,y=yj =k�y,t=tj =n�t
. (14)

Here

V n
j,k = q	n

j,k

and

Aeff =
(
Ax + co

cq
my

Ay − co

cq
mx

)
. (15)

(ii) For a Schwinger substitution, introducing the com-
plete electromagnetic potential (A,	) and magnetization
(mx,my,0), one has

V̂ n
j,k = 0. (16)

(iii) For a Schwinger substitution, introducing the electro-
magnetic potential (A,0) and magnetization (mx,my,0), one
has

V̂ n
j,k = V n

j,k = q	n
j,k. (17)

For the Peierls substitution (i) one starts from the skeleton
scheme with mass mz and scalar potential term V ; for a
Schwinger substitution one may start with or without the
presence of V = q	, respectively, (iii) and (ii). In all cases,
vector potential and in-plane magnetization can be introduced
in one sweep.

B. Properties

For a discussion of the properties of this scheme, we de-
fine spatial difference operators as (δxf

jo )jx ,jy
= f

jo

jx+1/2,jy
−

f
jo

jx−1/2,jy
and (δyf

jo )jx ,jy
= f

jo

jx ,jy+1/2 − f
jo

jx ,jy−1/2. Also,

we define the inner product (ujo ,vj ′
o )j ′ := ∑

j u
jo

j v
∗j ′

o

j+j ′ =∑
j u

jo

j−j ′v
∗j ′

o

j on l2(Z2;C) and use the notation ‖ujo‖2
:=

(ujo ,ujo ), with the sum over j running over all lattice points on
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time sheet jo. Periodic or zero boundary conditions are used
for the rectangular simulation domain. j ′ denotes a primitive
displacement vector connecting the spatial sublattice of u with
that of v.

Proposition 1. The properties of the scheme Eqs. (10)
to (13) under periodic or zero boundary conditions may be
summarized as follows:

(i) Let rx = �o

�x
, ry = �o

�y
. Then the functional

Ejo

rx ,ry
:= ‖ûjo+1/2‖2 + ‖v̂jo+1‖2

+ Re{[(ryδy − irxδx)ûjo+1/2,v̂jo+1]}
= const = E0

rx ,ry
(18)

is conserved under time propagation.
(ii) Let rx + ry < 1 (e.g., rx = ry < 1/2). Then the scheme

Definition 2 is stable and satisfies the estimate

‖ûjo+1/2‖2 + ‖v̂jo+1‖2 �
E0

rx ,ry

1 − rx − ry

for all time jo.
(iii) Let r = rx = ry = 1/

√
2 hold in the scheme Defini-

tion 2. Furthermore, define a (“primed”) norm

∥∥ûjo− 1
2
∥∥′2

:=
∑

(jx ,jy )

∣∣∣∣∣∣∣
û

jo− 1
2

jx+ 1
2 ,jy+ 1

2
− iû

jo− 1
2

jx+1,jy

2
√

2

+
û

jo− 1
2

jx+ 1
2 ,jy− 1

2
− iû

jo− 1
2

jx ,jy

2
√

2

∣∣∣∣∣∣∣
2

(19)

and

‖v̂jo‖′2 :=
∑

(jx ,jy )

∣∣∣∣∣∣
v̂

jo

jx ,jy+ 1
2
− iv̂

jo

jx+ 1
2 ,jy

2
√

2

+
v̂

jo

jx ,jy− 1
2
− iv̂

jo

jx− 1
2 ,jy

2
√

2

∣∣∣∣∣∣
2

, (20)

with jx,jy ∈ Z2 ∪ (Z + 1/2)2.
Then the scheme Definition 2 is stable and satisfies for all

time

‖û‖′2 + ‖v̂‖′2 � 2E0
1/

√
2,1/

√
2
.

Proof. The properties of scheme Definition 2 are a direct
consequence of the properties of the underlying (2+1)-
dimensional single-cone skeleton scheme of Ref. [1] and the
fact that the Peierls-Schwinger substitution is a U (1) symmetry
operation on the grid. Hence the conserved functional in
Eq. (18) for scheme Definition 2 is the Peierls-, respectively,
Schwinger-transformed of the one for A = 0. All stability
conditions for rx and ry are preserved by the Peierls-Schwinger
substitution. We note that the present formulation of the
scheme uses the “physical” (i.e., TI) representation of the Dirac
operator in Eq. (4). �

Furthermore, the present scheme inherits scaling proper-
ties and second-order accuracy from the skeleton scheme.

Higher-order accurate single-cone schemes can readily be
devised and formulated on the staggered grid (Fig. 1) [30].

Proposition 2. The scheme of Definition 2 preserves gauge
invariance on the lattice, i.e., gauge invariance for the con-
tinuum formulation is carried over to the lattice formulation
(Definition 2).

Proof. This property is a direct result of the construction
of the scheme which first applies the Peierls-Schwinger
substitution and then the discretization and placement on the
staggered grid. �

It is easy to verify that, within Schwinger and Peierls
substitution, version (i), (ii), and (iii) of Definition 2, the scalar
potential enters the scheme to within the same (second) order
of accuracy.

IV. NUMERICAL IMPLEMENTATION
AND APPROXIMATIONS

A. Formal scheme

The formal scheme Definition 2 [Eqs. (10) to (13)] under
zero and periodic boundary conditions allows the construction
of an exactly conserved functional leading to precise stability
criteria. For numerical applications, however, the scheme is
of limited direct use. In general the numerical value of the
Peierls-Schwinger phase factors depends on the integration
path. Moreover, in general, they are incompatible with periodic
boundary conditions. These issues pose no problem when
Eq. (7) is used in the evaluation of partial derivatives asso-
ciated with the Dirac equation (4) since they merely require
infinitesimal partial variations of the phase. On a grid, partial
variations are finite in size. In particular, “equal time,” u- and
v-components and their (finite-difference approximations to)
spatial derivatives live on adjacent time sheets.

Based on the formal scheme Definition 2, however, one
can develop numerically tractable (approximate) schemes.
Here we discuss four such schemes: (1) a scheme for
static planar magnetic texture which conserves functional
Eq. (18) exactly, (2) a single-update scheme, which conserves
functional Eq. (18) for individual time steps, (3) a double
update, and (4) a slowly varying-magnetic-field scheme. The
latter two do not strictly conserve Eq. (18), but render the
optimal time-resolution supported by the scheme. All four
schemes support full time dependence of the scalar potential
and mass (mz) term. Due to the high Fermi velocity of Dirac
fermions on TI surfaces, any physically relevant magnetic
texture, in fact, will warrant a quasistatic or static treatment.

Expressing Eqs. (10) to (13) in terms of the spinor ψ with
components u and v, one arrives at the formally exact imple-
mentation of the scheme arising from the Peierls-Schwinger
substitution fulfilling Proposition 1 and 2. The formal scheme
Definition 2 expressed in terms of the original spinor [u,v] is
lengthy and therefore is presented in the Appendix. However, it
may be given a rather compact form. Permitting jν,ν = 0,1,2
to take integer and half-integer values, we define on the entire
grid

(M±)jo

jx ,jy
=

(
V̂ ± mz

2ih̄c

)jo

jx ,jy

. (21)
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Denoting the central grid point by (jo = jx = jy = 0) and relative right or left shifts (by one half of the respective grid
spacing) by ±, one can solve for the final components + in terms of the previous components −:

u+
0,0 = 1

e−i(a+
0,0−a0

0,0)
(

1
�o

− M+
)0

0,0

[(
1

�o

+ M+

)0

0,0

e−i(a−
0,0−a0

0,0)u−
0,0

− e−i(a0
0,+−a0

0,0)v0
0,+ − e−i(a0

0,−−a0
0,0)v0

0,−
�y

− i
e−i(a0

+,0−a0
0,0)v0

+,0 − e−i(a0
−,0−a0

0,0)v0
−,0

�x

]
, (22)

followed by

v+
0,0 = 1

e−i(a+
0,0−a0

0,0)
(

1
�o

− M−
)0

0,0

[(
1

�o

+ M−

)0

0,0

e−i(a−
0,0−a0

0,0)v−
0,0

− e−i(a0
0,+−a0

0,0)u0
0,+ − e−i(a0

0,−−a0
0,0)u0

0,−
�y

+ i
e−i(a0

+,0−a0
0,0)u0

+,0 − e−i(a0
−,0−a0

0,0)u0
−,0

�x

]
. (23)

As in the continuum case, only phases relative to the reference
point enter. However, on the grid these variations are finite,
and the reference points for u and v differ in time by �t/2.
Since there are subtle differences between the use of the
Peierls and the Schwinger substitution we shall discuss them
separately.

B. Formal scheme based on the Peierls substitution

For a Peierls substitution, where time is a parameter, one is
led to two types of relative phase factors. Spatial derivatives
lead to a variation of the respective component of the endpoint
of the integration path:

e
−i(ajo

jx± 1
2 ,jy

−a
jo
jx ,jy

)
, e

−i(ajo

jx ,jy± 1
2
−a

jo
jx ,jy

)
(Type I). (24)

This type can be computed locally and hence becomes
independent from the integration path. The second type of
phase factor is of the form

e
−i(ajo

jx ,jy
−a

jo± 1
2

jx ,jy
) (Type II). (25)

This phase corresponds to the line integral of ∂tA, suitably
approximated on the grid, and as such remains path-dependent
in general.3 Such a contribution also enters in the correction
to the scalar potential term according to Eq. (14). For time-
independent vector potential, the Type II phase factor is 1, and
one ends up with nontrivial phase factors of Type I only, well
known from (time-independent) tight-binding and lattice QED
models [3,7,31].

C. Formal scheme based on the Schwinger substitution

The Schwinger substitution treats space and time variables
on equal footing. Partial variations of the phase Eq. (9) give

δat
x,y = q

coh̄
Ax(x,y,t)δx, + q

coh̄
Ax(x,y,t)δy

− q

h̄
	(x,y,t)δt . (26)

3Note that for this classification jo, jx , and jy may take integer and
half-integer values.

On the grid one may approximate as follows (V = q	):

e
−i(a

jo± 1
2

jx ,jy
−a

jo
jx ,jy

) ≈ e
±i

q�t
4h̄

((	)
jo± 1

2
jx ,jy

+(	)jojx ,jy
)
, (27)

e
−i(ajo

jx± 1
2 ,jy

−a
jo
jx ,jy

) ≈ e
∓i

q�x
4h̄co

((Ax )jo
jx± 1

2 ,jy
+(Ax )jojx ,jy

)
, (28)

e
−i(ajo

jx ,jy± 1
2
−a

jo
jx ,jy

) ≈ e
∓i

q�y

4h̄co
((Ay )jo

jx ,jy± 1
2
+(Ay )jojx ,jy

)
. (29)

Indeed, starting with mz and V in their desired final form,
a Schwinger substitution with 	 = 0 provides the simplest
method for implementation of the vector potential into the
kinetic momentum [Eq. (2)] for the scheme Eqs. (22) and (23).

D. Time-independent x- y magnetic textures: Static scheme

For the case of time-independent planar magnetic texture
there are no corrections to the scalar potential term from the
Peierls substitution. The Type II phase factors in Eqs. (22)
and (23) are equal to one. Schwinger and Peierls substitution
give identical results since Type I phase factors may be
approximated by Eqs. (28) and (29). The symmetric choice in
the lattice-discretization allows the use of periodic boundary
conditions and yields conservation of functional E

jo
rx ,ry

in
Eq. (18) within consistent discretization. It takes the form

Ejo

rx ,ry
:= ‖ujo+1/2‖2 + ‖vjo+1‖2

+ Re[((ryDy − irxDx)ujo+1/2,vjo+1)], (30)

where difference operators Dx and Dy are defined on the
barred grids and act on spinor components ψ according to

Dxψ
jo

jx ,jy
= e

−i
q�x
4h̄co

[
(Ax )jo

jx+ 1
2 ,jy

+(Ax )jojx ,jy

]
ψ

jo

jx+ 1
2 ,jy

− e
i

q�x
4h̄co

[
(Ax )jo

jx− 1
2 ,jy

+(Ax )jojx ,jy

]
ψ

jo

jx− 1
2 ,jy

, (31)

Dyψ
jo

jx ,jy
= e

−i
q�y

4h̄co

[
(Ay )jo

jx ,jy+ 1
2
+(Ay )jojx ,jy

]
ψ

jo

jx ,jy+ 1
2

− e
i

q�y

4h̄co

[
(Ay )jojx ,jy

+(Ay )jo
jx ,jy− 1

2

]
ψ

jo

jx ,jy− 1
2
. (32)

Propositions 1 and 2 apply.
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E. Time-dependent x- y magnetic textures

For the case of space- and time-dependent x-y magnetic
textures one best introduces the vector potential A(x,y,t) by
a Schwinger substitution with mz(x,y,t) and V (x,y,t) present
in the skeleton scheme, i.e., version (iii) of Definition 2. This
leaves one with Type I phase factors. From the explicit form
of the scheme, with u- and v-components located on different
time sheets, it is readily seen that a lattice implementation
of the Schwinger (Peierls) substitution based on relative
phases leads to approximations which will not support exact
conservation of functional Eq. (18). For example, in the
partial y-derivatives of Eq. (22) one has terms exp{−i(a0

0,± −
a0

0,0)} = exp{−i(ajo

jx ,jy± 1
2
− a

jo

jx ,jy
)}; however, exp{−i(a0

0,± −
a0

0,0)} = exp{−i(a
jo+ 1

2

jx+ 1
2 ,jy± 1

2
− a

jo+ 1
2

jx+ 1
2 ,jy

)} in Eq. (23). Within

approximations Eqs. (28) and (29) this time shift prohibits the
simple integration by parts rule which allows the elimination
of mixed-time terms leading to the conservation of functional
Eq. (18). This can be remedied by an average over time jo and
jo + 1

2 , leading to the single-update scheme below. Alterna-
tively, one can accept nonconservation of functional Eq. (18)
on the grid and use two sets of phase factors: one for the u

update from time jo − 1
2 to jo + 1

2 , and one set for the v update
from time jo to jo + 1. The natural choice for average time,
respectively, is jo and jo + 1

2 . This will be the double-update
scheme below. For slowly varying x-y magnetic textures, the
phase factors may be linearized in A(x,y,t). This leads to a
slowly varying-magnetic-field approximation of the scheme.

The computation of the conserved functional expressed in
terms of u and v too entails a numerical approximation of
relative phase factors in the inner product between u- and
v-components in the third term on the r.h.s. of Eq. (18). For the
summation-by-parts rule for the inner product between ûjo+ 1

2

and v̂jo to hold in a numerical implementation, in Eq. (18) one
needs to introduce time-averaged relative phase factors, such as

e
−i

(
a

jo+1

jx± 1
2 ,jy

−a
jo+ 1

2
jx ,jy

)

≈ e
∓i

q�x
8h̄co

[
(Ax )jo+1

jx± 1
2 ,jy

+(Ax )jo+1
jx ,jy

+(Ax )
jo+ 1

2
jx± 1

2 ,jy
+(Ax )

jo+ 1
2

jx ,jy

]
, (33)

e
−i

(
a

jo+1

jx ,jy± 1
2
−a

jo+ 1
2

jx ,jy

)

≈ e
∓i

q�y

8h̄co

[
(Ay )jo+1

jx ,jy± 1
2
+(Ay )jo+1

jx ,jy
+(Ay )

jo+ 1
2

jx ,jy± 1
2
+(Ay )

jo+ 1
2

jx ,jy

]
. (34)

F. Single-update scheme

Time-dependent x-y magnetic textures can be accounted
for by a slight modification of the static scheme in which the

x-y magnetic texture is kept time-independent during a single
u-v update under Eqs. (22) and (23) (spinor propagation by
one time step) and is updated prior to the next time step. Type
II phase factors then are equal to one, and the correction term
to the scalar potential Eq. (14) is zero for both Peierls and
Schwinger substitution. This scheme preserves the functional
Eq. (30) during a single execution of Eqs. (22) and (23), but
needs to be updated in preparation for the next iteration. In
summary, the scheme works as follows:

(1) Update the Type I relative phase factors according to
Eqs. (33) and (34), averaging over time jo and jo + 1

2 . Use
them to update functional Eq. (30).

(2) Execute scheme Eq. (22) followed by Eq. (23) (Type II
phase factors set equal to one), thereby conserving Eq. (30).

(3) Increase jo → jo + 1 and go back to step 1, or
terminate when final time is reached.

The change of functional Eq. (30) due to the update (−:
before update, +: after update at time jo + 1

2 ,jo + 1) of the
phase factor can readily be estimated to be

∣∣(Ejo

rx ,ry

)+ − (
Ejo

rx ,ry

)−∣∣ � 2(rx + ry)(‖ujo+1/2‖2 + ‖vjo+1‖2).

G. Double-update scheme

A better time resolution is achieved by a double-update of
the Type I phase factors (with Type II phase factors equal to
one) according to the following procedure:

(1) Update the Type I relative phase factors in Eqs. (28)
and (29) to the values at time jo.

(2) Execute Eq. (22) to propagate uj0−1/2 to uj0+1/2.
(3) Update the Type I relative phase factors in Eqs. (28)

and (29) to the values at time jo + 1/2.
(4) Execute Eq. (23) to propagate vj0 to vj0+1.
(5) Increase jo → jo + 1 and go back to step 1 or terminate

when final time is reached.
This scheme does not strictly conserve functional Eqs. (18)

or (30).

H. Slowly varying magnetic-field scheme

For smooth space-time variations of the in-plane texture, the
formal scheme Eqs. (A3) to (A6) may be simplified by using
the approximations Eqs. (A1) and (A2) given in the Appendix.
f− terms may be dropped, difference quotients of exponentials
may be approximated, and the remaining factors f+ all may be
set equal and canceled out of the respective equation. For the
Peierls substitution, one arrives at the greatly simplified form
(slowly varying-magnetic-field scheme)

(
u

jo+ 1
2

jx ,jy
− u

jo− 1
2

jx ,jy

)
�o

=
⎡
⎣(

mz + V̂

ih̄c

)jo

jx ,jy

+ i

(
a

jo+ 1
2

jx ,jy
− a

jo− 1
2

jx ,jy

)
�o

⎤
⎦

(
u

jo+ 1
2

jx ,jy
+ u

jo− 1
2

jx ,jy

)
2

−
⎡
⎣

(
v

jo

jx ,jy+ 1
2
− v

jo

jx ,jy− 1
2

)
�y

− i

(
a

jo

jx ,jy+ 1
2
− a

jo

jx ,jy− 1
2

)
�y

(
v

jo

jx ,jy+ 1
2
+ v

jo

jx ,jy− 1
2

)
2

⎤
⎦

−i

⎡
⎣

(
v

jo

jx+ 1
2 ,jy

− v
jo

jx− 1
2 ,jy

)
�x

− i

(
a

jo

jx+ 1
2 ,jy

− a
jo

jx− 1
2 ,jy

)
�x

(
v

jo

jx+ 1
2 ,jy

+ v
jo

jx− 1
2 ,jy

)
2

⎤
⎦, (35)
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(
u

jo+ 1
2

jx− 1
2 ,jy− 1

2
− u

jo− 1
2

jx− 1
2 ,jy− 1

2

)
�o

=

⎡
⎢⎣
(

mz + V̂

ih̄c

)jo

jx− 1
2 ,jy− 1

2

+ i

(
a

jo+ 1
2

jx− 1
2 ,jy− 1

2
− a

jo− 1
2

jx− 1
2 ,jy− 1

2

)
�o

⎤
⎥⎦

(
u

jo+ 1
2

jx− 1
2 ,jy− 1

2
+ u

jo− 1
2

jx− 1
2 ,jy− 1

2

)
2

−
⎡
⎣

(
v

jo

jx− 1
2 ,jy

− v
jo

jx− 1
2 ,jy−1

)
�y

− i

(
a

jo

jx− 1
2 ,jy

− a
jo

jx− 1
2 ,jy−1

)
�y

(
v

jo

jx− 1
2 ,jy

+ v
jo

jx− 1
2 ,jy−1

)
2

⎤
⎦

− i

⎡
⎣

(
v

jo

jx ,jy− 1
2
− v

jo

jx−1,jy− 1
2

)
�x

− i

(
a

jo

jx ,jy− 1
2
− a

jo

jx−1,jy− 1
2

)
�x

(
v

jo

jx ,jy− 1
2
+ v

jo

jx−1,jy− 1
2

)
2

⎤
⎦, (36)

followed by(
v

jo+1
jx− 1

2 ,jy
− v

jo

jx− 1
2 ,jy

)
�o

=
⎡
⎣(

V̂ − mz

ih̄c

)jo+ 1
2

jx− 1
2 ,jy

+ i

(
a

jo+1
jx− 1

2 ,jy
− a

jo

jx− 1
2 ,jy

)
�o

⎤
⎦

(
v

jo+1
jx− 1

2 ,jy
+ v

jo

jx− 1
2 ,jy

)
2

−

⎡
⎢⎣

(
u

jo+ 1
2

jx− 1
2 ,jy+ 1

2
− u

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
�y

− i

(
a

jo+ 1
2

jx− 1
2 ,jy+ 1

2
− a

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
�y

(
u

jo+ 1
2

jx− 1
2 ,jy+ 1

2
+ u

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
2

⎤
⎥⎦

+ i

⎡
⎣

(
u

jo+ 1
2

jx ,jy
− u

jo+ 1
2

jx−1,jy

)
�x

− i

(
a

jo+ 1
2

jx ,jy
− a

jo+ 1
2

jx−1,jy

)
�x

(
u

jo+ 1
2

jx ,jy
+ u

jo+ 1
2

jx−1,jy

)
2

⎤
⎦ (37)

and(
v

jo+1
jx ,jy− 1

2
− v

jo

jx ,jy− 1
2

)
�o

= +
⎡
⎣(

V̂ − mz

ih̄c

)jo+ 1
2

jx ,jy− 1
2

+ i

(
a

jo+1
jx ,jy− 1

2
− a

jo

jx ,jy− 1
2

)
�o

⎤
⎦

(
v

jo+1
jx ,jy− 1

2
+ v

jo

jx ,jy− 1
2

)
2

−
⎡
⎣

(
u

jo+ 1
2

jx ,jy
− u

jo+ 1
2

jx ,jy−1

)
�y

− i

(
a

jo+ 1
2

jx ,jy
− a

jo+ 1
2

jx ,jy−1

)
�y

(
u

jo+ 1
2

jx ,jy
+ u

jo+ 1
2

jx ,jy−1

)
2

⎤
⎦

+ i

⎡
⎢⎣

(
u

jo+ 1
2

jx+ 1
2 ,jy− 1

2
− u

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
�x

− i

(
a

jo+ 1
2

jx+ 1
2 ,jy− 1

2
− a

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
�x

(
u

jo+ 1
2

jx+ 1
2 ,jy− 1

2
+ u

jo+ 1
2

jx− 1
2 ,jy− 1

2

)
2

⎤
⎥⎦. (38)

These equations explicitly reveal the presence of the vector potential in the Dirac Hamiltonian in two positions. There is a
correction to the scalar potential from V̂

jo

jx ,jy
back to the physical scalar potential

V n
j,k = V̂ n

j,k − q

co

∫ (x,y)

(xo,yo)
ds ·

A(s,t)|t=�t (n+ 1
2 ) − A(s,t)|t=�t (n− 1

2 )

�t

∣∣∣∣
x=�xj,y=�yk

(39)

consistent with the electric field [32–34]. Note that V n
j,k = q	n

j,k .

Under the Peierls substitution, the spatial j -derivative term
transforms according to

ψj+ 1
2
− ψj− 1

2

�j

→
ψj+ 1

2
− ψj− 1

2

�j

− iq

h̄co

Aj

ψj+ 1
2
+ ψj− 1

2

2
,

j = x,y,

which represents the “minimal-gauge” introduction of the
vector potential into the kinetic momentum vector � [Eq. (2)]
consistent with the grid and the presence of a magnetic field
and/or magnetic texture [32,33]. The proper placement of
terms containing x and y components of the magnetization
follows from the placement of the vector potential y and x

components, respectively,

(mx)nj,k ∼ −h̄c
an

j,k+ 1
2
− an

j,k− 1
2

�y
≈ −qc

co

(Ay)nj,k, (40)

(my)nj,k ∼ h̄c
an

j+ 1
2 ,k

− an

j− 1
2 ,k

�x
≈ qc

co

(Ax)nj,k. (41)

Using centered derivatives over single lattice spacings only,
this approximate scheme still is based on a single Dirac cone
dispersion. It offers an intuitive finite-difference discretization
scheme for the underlying continuum equation Eq. (4) and
eliminates the need for a calculation of phase factors. However,
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FIG. 2. Dirac fermion propagation across a region of rotating uniform magnetization m0 = 0.02 eV, ω = 0.05 × 2π/�t = 5.5 × 1013 Hz:
(a) particle density of the initial Gaussian wave packet placed at the center of the simulation region; particle density after 180 time steps
(1 fs) within (b) the formal scheme (Peierls substitution), (c) the single-update scheme, and (d) the slowly varying-magnetic-field scheme
[Eqs. (35)–(38)]. Magnetic texture is indicated by arrows.

a conserved functional, such as Eqs. (18) or (30), has not been
identified.

V. NUMERICAL EXAMPLES

For basic numerical testing of stability and convergence
of the proposed numerical schemes we confine ourselves to
in-plane magnetization texture. Stability for the case of time-
dependent external scalar potential and mass-term (mz) has
been demonstrated [1,23]. For the numerical simulations we
choose a rectangular region of typically 1000 nm by 1000 nm
and at least 250×250 mesh points per time sheet pair. Periodic
boundary conditions are applied for the purpose of stability
testing. In transport simulations absorbing boundary layers
may be added upon demand. Parameters typical for TIs are
used; e.g., the Fermi velocity is set to c = 6.2×105 m/s and
the effective magnetization energy is of the order of several
tens of meV. The mass term mz is set equal to zero.

For starting a simulation the spinor at initial time to must be
placed onto two adjacent time sheets of the grid, e.g., jo − 1/2
and jo; see Fig. 1. One may proceed as follows: Put the v-
component onto the v-type fcc time sheet jo. Place the u-
component onto a u-type fcc time sheet and use v and the
fields at time jo to propagate u back in time by half a time
step onto time sheet jo − 1/2. Now start with the simulation
by propagating u from jo − 1/2 to jo + 1/2, followed by v

from jo to jo + 1, and so on.

A. Rotating in-plane magnetization

For a first example, we consider a time-dependent spatially
uniform magnetization rotating in the x-y plane

m(x,y,t) = (
m0

x cos(ωt + φ),m0
y sin(ωt + φ)

)
.

Since the associated Peierls phase is path-independent, this
system allows a numerical treatment within the formal scheme
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FIG. 3. Conserved functional (CF) [Eq. 18] (dashed line) and lattice trace (solid line) for the simulation of a Dirac fermion propagation across
a region of rotating uniform magnetization m0 = 0.02 eV, ω = 0.05×2π/�t = 5.5×1013 Hz: (a) formal scheme (Peierls transformation), (b)
single-update scheme, (c) double-update scheme, and (d) slowly varying-magnetic-field scheme Eqs. (35)–(38).

Definition 2 (i). Conservation of functional Eq. (18), evaluated
on the grid, must be fulfilled. This allows a direct comparison
with the approximate schemes. Still, the path integral over
the time derivative of the vector potential [Eq. (14)] does not
support periodic boundary conditions on physical grounds. For
testing purposes, however, they are enforced on the Peierls
transformed spinor.

The Peierls phase factor is computed as follows. The lower
left corner of the rectangular simulation region is the starting
point (jxo,jyo

) of the path which, in increments of �x/2,
first leads along the lower edge of the simulation region to
position (jx,jyo

), and then in increments of �y/2 vertically up
to position (jx,jy):

∫ (x,y)

(xo,yo)
ds · A(s,t)|x=xj ,y=yj ,t=tj

≈ 1

4

⎧⎨
⎩�x

2(jx−jx o)∑
n=1

[
(Ax)

tj

jx o+ n
2 ,jy o

+ (Ax)
tj

jx o+ n−1
2 ,jy o

]

+ �y

2(jy−jy o
)∑

n=1

[
(Ay)

tj

jx ,jy o
+ n

2
+ (Ay)

tj

jx ,jy o
+ n−1

2

]⎫⎬⎭. (42)

Other path choices for computation of the phase of the Type
II phase factors are permissible, as long as they are consistent

with the relative phase factors Type I and the implementation
of the correction term to the scalar potential.

A Gaussian wave packet with mz = 0, average kinetic
energy 10 meV, and initial central wave vector in the x

direction is released in the center of a 1 μm × 1 μm simulation
region. Here 400×400 mesh points are used for a pair
of u-v time sheets, which corresponds to � = �x = �y =
0.5×10−8 m. The simulation of a wave packet propagation
from the center of the simulation region towards the boundaries
of the simulation region is performed within each of the
time-dependent schemes. Each simulation consists of 250
iterations using the time step �t = �/(c

√
2) = 0.57×10−14 s.

The latter represents the maximum permissible time step to
ensure stability within the formal scheme Definition 2. The
effective magnetization vector of magnitude 20 meV rotates
with angular frequency ω = 0.05, in units of inverse �t ,
corresponding to 5.5×1014 Hz. An initial phase φ = π/3 is
used.4

Figure 2(a) gives a top view of the probability density of
the wave packet upon its release. The in-plane magnetization
direction is indicated by (blue) arrows. Figures 2(b)–2(d)
give the wave packet after approximately 180 iterations
(corresponding to a 150◦ rotation of the magnetization vector),

4Here parameters are chosen deliberately to provoke differences in
the results within different approximations.
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FIG. 4. Dirac fermion propagation across a region of constant magnetization mx = 0.02 eV,my = mz = 0: (a) three snap shots of the
particle density evolving from a Gaussian wave packet initially placed at the center of the simulation region; conserved functional Eq. (18)
(dashed line) and lattice norm (solid line) for the simulations: (b) within the formal scheme (Peierls substitution), (c) within the slowly
varying-magnetic-field scheme [Eqs. (35)–(38)].

respectively, within the formal, the single update, and the
slowly varying-magnetic-field scheme [Eqs. (35)–(38)]. Dif-
ferences in the numerical results within the three schemes are
evident, and they have several origins. The formal scheme
implements periodic boundary conditions. While allowing a
stability estimate for this scheme, they are not compatible with
a uniform rotating magnetization vector near the simulation
boundaries. Effects are apparent already after 180 time steps
due to the rapid propagation of the wave packet towards the
simulation boundaries. The formal, double update (results not
shown here), and the slowly varying-magnetic-field scheme
update the magnetic texture both for the u and v update and
hence have twice as fine a time resolution as the single-
update scheme. Note that here the goal is not to obtain an
accurate simulation of the time evolution but rather, using the
maximum permissible time step, to explore stability under
the different schemes.5 The double-update scheme is found to
give results which, at time step 180, are practically identical
to those within the slowly varying magnetization scheme
[Fig. 2(d)]. For longer simulation time one finds that the
formal scheme has essential spurious contributions from the

5Stability clearly is not the sole criterium for choosing the time step
when dealing with time-dependent textures.

(artificial) periodic boundary conditions. Moreover, the slowly
varying-magnetic-field scheme has less favorable stability
properties than the formal, single-, and double-update scheme,
as will be discussed below.

Figures 3(a)–3(d), respectively, give the (conserved) func-
tional Eq. (30) and the trace for the formal, single-update,
double-update, and slowly varying-magnetic-field scheme. All
four schemes remain stable throughout the 250 time steps of
the simulation. The trace, shown as a continuous blue line,
is defined as the lattice sum of diagonal elements of u-v
time sheet pairs. It is not conserved but is found to deviate
not too much from its initial value. This is typical under
stable behavior. Main differences occur in the evolution of the
“conserved functional” Eq. (18) [respectively Eq. (30)]. It can
be seen in Fig. 3(a) that conservation of Eq. (18) for the formal
scheme is confirmed. Figure 3(b) shows the result for the
single-update scheme. At the maximum time step compatible
with stability, the rapid rotation of the magnetization is
captured somewhat poorly. Functional Eq. (30) is found to rise
in an oscillatory fashion for the duration of the simulation.
During a single time-step iteration functional Eq. (30) is
conserved: The dashed-dotted line, showing the ratio of
Eq. (30) after and prior to the propagation by a single time
step, stays constant at value one. Note that functional Eq. (30)
is not equal to functional (18). Figure 3(c) gives the result
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FIG. 5. Dirac fermion scattering at a magnetization step mx = −0.02 eV, my = mz = 0 under normal incidence: (a) three snapshots of
the particle density evolving from a Gaussian wave packet initially placed at the center of the simulation region; conserved functional (30)
(dashed line) and trace (lattice norm) (solid line) for the simulations: (b) within the formal scheme (Peierls substitution), (c) within the slowly
varying-magnetic-field scheme [Eqs. (35)–(38)].

for the double-update scheme, in which the Type I phase
factors are updated after every u- and v-propagation. This
scheme clearly gives a better time resolution than the adiabatic
scheme but does not leave invariant functional Eq. (30)
[or (18)] during a single-time-step u-v progression. Long-term
variation of functional Eq. (30), however, is smaller than for
the single-update scheme. As for the probability density above,
results compare very well with the ones obtained within the
scheme for slowly varying in-plane texture, shown in Fig. 3(d):
oscillatory behavior is found for the functional Eq. (30).
However, as will be shown for examples below, long-term
stability of the latter scheme is not ensured.

B. Static in-plane magnetization

Static in-plane magnetization, in conjunction with general
time-dependent scalar potential and mass terms, allows a
numerical implementation of the scheme Definition 2 which
leads to conservation of functional Eq. (30), derived from (18).
Propositions 1 and 2 hold. We start with a constant magneti-
zation m(x,y) = mo(cos(φ), sin(φ)), mo = 0.02 eV, and peri-
odic boundary conditions. A Gaussian wave packet (ch̄kx =
0.02 eV,ky = 0) is placed at the center of the simulation region,
and its time evolution is monitored as a function of time. We

have investigated the particle, spin, and current density. Note
that the current density is perpendicular to the spin density.
Here we will just show results for the particle density and plot
functional (18) together with the norm of ψ . Figure 4 shows
the evolution of the wave packet as it propagates towards and
across the boundaries of the simulation region. The simulation
was performed on the Peierls transformed spinor exposed
to the free-particle Dirac Hamiltonian. This corresponds to
an exact implementation of the scheme. Due to the time
independence of the magnetization only a single calculation
of the phase factor is required, making this method very
efficient. From Eq. (4) it is evident that in-plane magnetization
can be absorbed into the vector potential contribution of
the kinetic momentum [Eq. (2)] accounting for the change
in propagation direction from horizontal to diagonal. The
associated stability properties are shown in Fig. 5(a) where
the conserved functional Eq. (18) and the lattice norm (trace)
are plotted. Numerical values are normalized to the initial
value. While the norm deviates slightly from its initial value
conservation of the expression (18) is verified for the formal
scheme. In contrast, the slowly varying-magnetic-field scheme
diverges beyond time step 200, at a time when the wave packet
has left the simulation region for the first time. The use of
absorbing boundary conditions and/or a shorter time step will
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FIG. 6. Dirac fermion scattering at a magnetization step mx = −0.02 eV, my = mz = 0 under normal incidence, current density y

component jy(x) versus x: (a) shortly after impinging on the magnetic domain boundary; (b) inside the magnetic domain [center of Fig. 5(a)].

suffice to suppress divergence for the duration of the physically
relevant simulation (until the wave packet leaves the simulation
region).

Finally, we simulate scattering of a Gaussian wave packet at
a magnetization step m(x,y) = mo
(x − xo)(cos(φ), sin(φ)),
mo = 0.02 eV, xo ≈ 200 nm. The mean energy of the wave
packet is 0.02 eV. We set φ = π . 600×600 grid points are
chosen for a u-v time sheet pair. Again, the maximum
permissible time step for stable evolution under the formal
scheme is used. For this texture, the phase factor is path
dependent and the static scheme is used for an implementation
of Definition 2 on the grid. A comparison is made to the
slowly varying-magnetic-field scheme. Figure 5 gives snap
shots of the scattering process under the formal (static)
scheme, as well as the data for trace and functional (30)
from the static and slowly varying-magnetic-field scheme.
Early time evolution is captured in good agreement be-
tween both methods, however, beyond time step 350 the
slowly varying-magnetic-field simulation becomes unstable,
while the static scheme preserves stability, as predicted
theoretically.

Making closer contact with physical effects, we show the
current density versus time in Fig. 6 from this simulation.
Specifically, we display its y-component (transverse compo-
nent) versus x shortly before the wave packet has entered
the magnetization domain in Fig. 6(a). Figure 6(b) gives
the transverse (y)-component of the current density versus
x, shortly after the wave packet has impinged upon the
magnetization step. Here one observes an effect typical for the
Dirac equation [35,36]: In case of two counter-propagating
wave contributions along x, there is an interference term
which leads to a transverse current contribution along y,
oscillating in position x. This is related to the Rashba effect
associated with the spin-orbit interaction in the nonrelativistic
limit [37].

VI. SUMMARY AND OUTLOOK

In summary, we have developed a single-cone finite-
difference scheme for the (2+1)-dimensional time-dependent
Dirac equation in the presence of general electromagnetic

texture. The formal scheme is based on a Peierls-Schwinger
substitution on a single-cone skeleton scheme. Under periodic
or zero boundary conditions it allows a rigorous stability
analysis based on an exactly conserved functional. In its
original form it is applicable to static in-plane (x − y) magnetic
texture and general time-dependent scalar potential and mass
terms. For time-dependent in-plane magnetic texture, three
approximate schemes have been developed and compared
with one another for selected basic numerical examples.
Approximations are associated with the path dependence of
line integrals in the Peierls-Schwinger phase factors. All of
them share the properties of the skeleton scheme [1]: They are
direct schemes, support a single (bounded) Dirac cone, and
scale linearly in the number of grid points N . Among them,
the double-update scheme is the most accurate regarding time
resolution and stability.

This work lays the foundation for the time-dependent
simulation of pure-state single-particle dynamics of Dirac
fermions on TI surfaces. This method is readily extended
to (3+1) dimensions, for application to problems in
relativistic quantum mechanics, as well as to mixed-state
transport simulations, and higher-order accurate schemes
[30,38].

APPENDIX: DIFFERENCE SCHEME FOR THE
(2+1)-DIMENSIONAL DIRAC EQUATION

Let ψ denote spinor component u or v, and the subscript
j = 1,2 specify the grid point. Then one has the following
relations for operations on the grid [1,27]:

(1) The effect of a substitution in difference quotients
(derivative terms),

ψ1 − ψ2

�
→ e−ia1ψ1 − e−ia2ψ2

�
,

can be expressed via the product rule for “differentiation on
the lattice”

e−ia1ψ1 − e−ia2ψ2

�

= f+(a1,a2)
ψ1 − ψ2

�
+ e−ia1 − e−ia2

�

ψ1 + ψ2

2
,
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with the definition f±(a1,a2) := (e−ia1 ± e−ia2 )/2. For the case of slow variation of the phase aj on the grid, the difference
quotient for the exponential may be approximated by a “chain rule” for the derivative on the grid

e−ia1 − e−ia2

�
= f+(a1,a2)

i(a2 − a1)

�
+ 1

�
O[(a1 − a2)3]. (A1)

(2) Symmetric averages of the form

ψ1 + ψ2

2
→ e−ia1ψ1 + e−ia2ψ2

2
may be recast into

e−ia1ψ1 + e−ia2ψ2

2
= f+(a1,a2)

ψ1 + ψ2

2
+ f−(a1,a2)

ψ1 − ψ2

2
≈ f+(a1,a2)

ψ1 + ψ2

2
. (A2)

The f− term may be neglected for sufficiently smooth phase ai .
With the vector potential (and in-plane magnetization terms) introduced by the Peierls substitution, the scheme of Definition 2

expressed in terms of the original spinor components u and v is

f+
(
a

jo+ 1
2
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jo− 1
2
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