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Orbitals for classical arbitrary anisotropic colloidal potentials
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Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective
interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their
complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around
the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical
simulations using Fourier-based methods. We validate the field formulation and characterize its computational
efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase
behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid
size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending
on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very
short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for
longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended
to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles
and magnetic colloids.
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I. INTRODUCTION

Efforts to synthesize and assemble anisotropic particles
such as Janus particles [1–5], patchy colloids [6,7], polyhedral
particles [8], and functionalized polyhedral nanoparticles [9]
have led to materials with diverse structures and function-
alities. Systems described by and modeled on anisotropic
interactions also include proteins [10–13] and polyhedral
colloids [14–17]. The anisotropy of the interaction field is akin
to that of the electron orbitals of individual atoms or molecules
and could enhance control of structural properties such as that
of the crystal lattices formed [9,13].

Simulations can guide experimental attempts to self-
assemble systems with anisotropic interactions. While state-
of-the-art simulations are often effective at both the micro
(particle-based description) and macro (continuum) scales,
they frequently fail at the mesoscopic scale, where macro-
scopic equations become invalid and the number of particles
is too large for efficient computation. Coarse-graining cir-
cumvents this problem by reducing the number of degrees
of freedom. For instance, the interactions of spherical colloids
are generally rewritten as a function of the distance between the
spheres only, discarding fine details such as surface roughness
and the explicit nature of grafted chemical components. For
nonspherical colloids of arbitrary nature, one must take into
account the relative orientation of the colloids. The single
degree of freedom for two spherically symmetric colloids then
becomes six degrees of freedom.

All-atom molecular force fields encounter similar problems
for rigid molecules, where fast calculation of interaction poten-
tials is sought [18]. An expansion into spherical harmonics for
potentials of the form r−a was explored, which yields products
of spherical harmonics and hypergeometric functions. Sack
attacked the problem of arbitrary interactions between sites
[19] but could not obtain any explicit form. Ruedenberg used
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properties of Fourier transforms to reformulate the problem
as an integral representation [20]; however, in numerical
implementations, calculating hypergeometric functions is pro-
hibitively expensive. A few other approaches that do not
involve spherical harmonics have been attempted, such as
expressing excluded-volume interactions in liquid crystals
using the Gay-Berne potential and subsequent refinements
[21,22] and using potential decomposition for lock-and-key
systems [23]. However, a general description of arbitrary
potentials remains elusive. The common solution is to use
brute-force calculation, where the surface is tessellated with
particles and some not necessarily physical interaction is used
between surface particles.

Here, we revisit this problem for the general case of
arbitrary bodies. We expand interactions into orbital-like
interactions which are efficiently evaluated by Fourier trans-
forms in the spirit of Ruedenberg [20]. Previous approaches
aimed at obtaining analytical formulations require solving an
integral and evaluating computationally expensive functions.
We avoid explicitly computing these integrals by relying
on tabulations of Fourier integrals and their full derivatives.
Our approach is equivalent to ab initio molecular dynamics
(AIMD), where the amplitudes are replaced by densities
[24]. The numerical implementation avoids the Pulay forces
which plague traditional AIMD. This orbital expansion is
truncated at some appropriate level, which effectively smooths
the particle description and produces expressions closely
related to classical multipole expansions. We implement this
potential in the LAMMPS software package [25] and provide a
simple implementation for the uniaxial case (see Supplemental
Material [26] for implementation details).

The method requires two conditions: (1) that the orbital
expansion of a particle is time invariant (that is, the particle
shape does not change over time), which is a reasonable
approximation for colloids grafted with a very dense brush
and for rigid bodies with charges on the surface, and (2) that
the interaction potential possesses a Fourier transform. A large
set of potentials satisfy this second requirement, including
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Coulomb, Yukawa, and Gaussian potentials; whereas the well-
known Lennard-Jones potential does not, due to its rapidly
divergent excluded volume term at r = 0. Excluded volume
interactions can be resolved, for example, by using a Gaussian
force, a technique used in mean-field theories [27–29].

We first introduce the method and a numerical implemen-
tation (Sec. II). We derive the field representation for a system
of colloids interacting through a Gaussian surface charge
distribution and for a system of charged Janus particles in a
screened environment. For the Gaussian charged particles, for
which the multipole expansion terminates, we show that this
method is exact and thus has improved accuracy compared
with a naive tessellation of the surface (Sec. III A). For the
charged Janus particles (Sec. III B), which was previously
examined using a Kern-Frenkel potential valid only at very
short screening lengths [30], we extend the calculation to
higher screening lengths, which is a regime typically difficult
to access numerically. The limitations of the method are also
discussed (Sec. III C).

II. FIELD REPRESENTATION OF PAIRWISE POTENTIALS

A. Motivating example

Consider a system of charged particles interacting through
a screened Yukawa potential. We assume that particle i is
located at �ri with orientation R̂i . Let ρ(�r,R̂) be the distribution
of interacting particles and χ (r) their interaction potential.
χ (r) must possess a Fourier transform; otherwise, it has no
restriction. In the case of charged particles interacting through
a Yukawa potential, ρi(�r − �ri,R̂i) is the charge distribution
and χes(r) = r−1 exp(−κr). The interaction is given by the
integral:

U es
ij (�ri,R̂i ,�rj ,R̂j )

=
∫

V

ρi(�r,R̂i)d�r
∫

V ′
χes(|(�r − �r ′ − �rij |)ρj (�r ′,R̂j )d�r ′, (1)

where �rij = �rj − �ri and the coordinates are centered around
the two colloids i and j . The second integral in Eq. (1) is a
convolution of ρj with χes, which we introduce as the auxiliary
field �ρ ,

�ρj
(�r,R̂j ) =

∫
V ′

χes(|�r − �r ′|)ρj (�r ′,R̂j )d�r ′

= ρj (�r,R̂j ) ∗ χes(r), (2)

where ∗ denotes the convolution operation. The electrostatic
potential energy between the colloids is then rewritten as
the overlap integral of the auxiliary field with the density
field as:

U es
ij (�ri,R̂i ,�rj ,R̂j ) =

∫
V

ρi(�r − �ri,R̂i)�ρj
(�r − �rj ,R̂j )d�r, (3)

where we expanded the auxiliary field around the center of the
colloid j for symmetry considerations that will become clear
later. While the density ρ(�r,R̂) and interaction χ (r) fields are
scalar, generalization to tensor fields is straightforward, as
shown for the vector case in Appendix C.

B. Field equations

We now derive the general formalism for forces
based on overlaps of fields. We consider two arbitrary
fields �i(�r − �ri,R̂i) located near colloid i and �j (�r −
�rj ,R̂j ) located near colloid j as we did in the pre-
vious section. In the case of electrostatic interactions,
�i(�r − �ri,R̂i) = ρi(�r − �ri,R̂i) and �j (�r − �rj ,R̂j ) = �ρj

(�r −
�rj ,R̂j ) = [ρj (�r − �rj ,R̂j ) ∗ χes(r)]. The overlap integral in
which we are interested is given by

Uij (�ri,R̂i ,�rj ,R̂j ) =
∫

V

�i(�r − �ri,R̂i)�j (�r − �rj ,R̂j )d�r. (4)

We first rewrite the left-hand side of Eq. (4). Without
making any assumptions on the particular shape of each
particle or field, we have six degrees of freedom, three for the
relative position of the second particle with respect to the first
one and three for the rotation of the second particle. To obtain
completely symmetric forms suitable for molecular dynamics
(MD), we treat the potential energy as having nine degrees of
freedom, three for the center to center vector �r , three for the
rotation of the first particle, and three for the rotation of the
second particle.

Without loss of generality, we can assume that the particle
i is located at the origin. We note that Eq. (4) is very similar
to the convolution integral treated by Fourier transforms [31].
Denoting the difference in colloid position by �rij = �rj − �ri and
geometrical inversion of f (�r) by f (�r) such that �j (�r − �r ′) =
�j (�r ′ − �r), we cast Eq. (4) as the convolution of �i and the
inversion of �j :

Uij (�rij ,R̂i ,R̂j ) =
∫

V

�(�r)�j (�rij − �r)d�r

= �i(�r) ∗ �j (�r)|�r=�rij
. (5)

Within the spherical harmonics transform framework [31],
this operation is straightforward in reciprocal space, where
�r → �ρ, �(r,θ,φ) → �̃(ρ,θw,φw) is the Fourier transform op-
eration and Ũij ( �ρ,R̂i,R̂j ) = �̃i( �ρ,R̂i)�̃j ( �ρ,R̂j ). We introduce
the Wigner functions Dl

m,μ(R̂) to treat the rotation of spherical
harmonics, resulting in the full expressions for �̃i and �̃j

given by

�̃i( �ρ) =
∑

li ,mi ,μi

Dli
mi ,μi

(R̂i)Y
mi

li
(θw,φw)Fmi

li
(ρ), (6)

�̃j ( �ρ) =
∑

lj ,mj ,μj

Dlj
mj ,μj

(R̂j )(−1)lj Y
mj

lj
(θw,φw)F

mj

lj
(ρ). (7)

The usual spherical harmonics Ym
l (θ,φ) are defined by

Ym
l (θ,φ) =

√
(l − m)!

(l + m)!
P m

l (cos θ ) exp(imφ),

where P m
l (x) is the associated Legendre polynomial of degree l

and order m, such that
∫
�

Ym
l (θ,φ)Ym′

l′ (θ,φ)d� = δl,l′δm,m′ . A
useful representation of the Wigner Dl

m,μ function is based
on quaternion representation of rotations as developed in

053309-2



ORBITALS FOR CLASSICAL ARBITRARY ANISOTROPIC . . . PHYSICAL REVIEW E 96, 053309 (2017)

Ref. [32]:

Dl
m,μ =

√
(l + m)!(l − m)!

(l + μ)!(l − μ)!
|Ra|2l−2mRm+μ

a R
m−μ

b

×
∑

ρ

(
l + μ

ρ

)(
l − μ

l − ρ − m

)(
−|Rb|2

|Ra|2
)ρ

, (8)

where Ra = qw + iqz and Rb = qy + iqx and q = (qw,�q) is a
normalized quaternion describing the orientation. The quanti-
ties Fm

l are the lth-order spherical Fourier-Bessel transforms
of �(�r) given by:

F
mi

li
= 4π (−i)li

∫
�i(�r)Ymi

li
(θ,φ)jli (ρr)r2dr, (9)

where jl(z) is the lth-order spherical Bessel function of the
first kind. Multiplying Eqs. (6) and (7) and inverting back the
transform yields the potential:

Uij (�rij ,R̂i ,R̂j ) =
∑

li ,mi ,μi

lj ,mj ,μj ,L

8(−i)LY
mi+mj

L (θij ,φij )Dli
mi ,μi

(R̂i)

×Dlj
mj ,μj

(R̂j )Fmi,mj

L,li ,lj
(rij )Cmi,mj

L,li ,lj
, (10)

where

Fmi,mj

L,li ,lj
(rij ) =

[
ili+lj

(4π )2

∫ ∞

0
F

mi

li
(ρ)F

mj

lj
(ρ)jL(ρr)ρ2dρ

]
r=rij

,

(11)

Cmi,mj

L,li ,lj
=

√
(2li + 1)(2lj + 1)

4π (2L + 1)
〈li ,0,lj ,0,L,0〉

× 〈li ,mi,lj ,mj ,L,mi + mj 〉 (12)

and 〈li ,mi,lj ,mj ,L,M〉 is a Clebsh-Gordan coefficient. This
definition of Cmi,mj

L,li ,lj
is equivalent to the Slater coefficients of

Ref. [31]. In the general case, there is no known analytical
representation of F(r), and it must be tabulated.

C. Numerical implementation

The coefficients Fmi,mj

L,li ,lj
(rij ) are precomputed and compiled

into tables. This can be done using known software packages
(see provided files) or by fast Fourier-based methods [33].
For Monte Carlo simulations, potential energy given by
Eq. (10) is sufficient for sampling. In order to time evolve
the system in MD simulations, we must compute forces and
torques. In Eq. (10), the position and rotation components
are fully decoupled. Forces are given by spatial derivatives,
while torques are given by angular derivatives of the Wigner
functions. We tabulate the derivative of F using

∂Fmi,mj

L,li ,lj

∂r
= ili+lj

(4π2)

{∫ ∞

0
F

mi

li
(ρ)F

mj

lj
(ρ)

×
[
LjL(rρ)

r
− ρj1+L(rρ)

]
ρ2dρ

}
r=rij

. (13)

Additional forces arise from the derivatives of the spherical
harmonics. Their projection along direction k is calculated by

using partial derivatives,

Fk ∼ ∂YM
L (θ,φ)

∂θ

∂θ

∂k
+ ∂YM

L (θ,φ)

∂φ

∂φ

∂k
. (14)

Partial derivatives of the spherical harmonics are obtained
by either multipling by iM or taking the derivative of the
associated Legendre polynomial. In practice, since spherical
harmonics are polynomials of cos(θ ), we simply calculate

Fk ∼
√

(l − m)!

(l + m)!
exp(iMφ)

∂P m
l (cos θ )

∂ cos θ

∂ cos θ

∂k

+ iMYM
L (θ,φ)

∂φ

∂k
. (15)

The force can then be computed by addition of all individual
contributions. For instance, the x̂ component is given by

Fx =
∂Fmi,mj

L,li ,lj

∂r

x

r
+ ∂U

∂ cos θ

−2xz

r3
+ ∂U

∂φ

−y

x2 + y2
. (16)

In order to compute torques, we must take derivatives with
respect to infinitesimal rotations along some set of axes. The
composition of two rotations, R̂1 and R̂2, with corresponding
quaternions q1 and q2, is given by the quaternion product q2q1.
This relation is used to obtain the variation of the quaternion
of a particle with respect to a rotation axis. For instance, a
rotation along the x̂ axis of the referential frame, ux , will
cause a variation in quaternion given by

∂q

∂ux

= 1

2
(0,1,0,0) · (qw,qx,qy,qz). (17)

The result is multiplied by the partial derivatives of
Dlj

mj ,μj
(R̂j ) in order to obtain the full derivative. For instance,

the derivative of Dlj
mj ,μj

(R̂j ) against a rotation along the axis
x̂ is given by

∂Dl
m,μ

∂ux

=
∑

k

∂Dl
m,μ

∂qk

∂qk

∂ux

= −qx

∂Dl
m,μ

∂qw

+ qw

∂Dl
m,μ

∂qx

− qz

∂Dl
m,μ

∂qy

+ qy

∂Dl
m,μ

∂qz

. (18)

The Wigner coefficients Dlj
mj ,μj

(R̂j ) are calculated directly
from quaternions [see Eq. (8)], providing straightforward
implementations in MD packages. Since these coefficients
and their derivatives are only dependent on individual particle
orientations, they are updated once per time step and not
for each pair interaction. In principle, one can invert the
multiplication order to obtain the torques in the body frame.
This removes the μi index from the summation in Eq. (10)
but requires calculating the Wigner functions once per pair
interaction, instead of once per particle. It is not done in
the supplied code as it would complicate the LAMMPS
implementation without any obvious benefit in computational
performance.

D. Gaussian patchy particles

To test the method’s accuracy, we consider a case where the
series in Eq. (10) terminates and does not require truncation,
resulting in a spherical harmonic representation that is exact.
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FIG. 1. Representation of the surface function ρ(S) for two
interacting particles of arbitrary orientations, where black indicates
ρ = 0 and white indicates ρ = 1.

In particular, we examine colloids with surfaces interacting
through a Gaussian potential χG(r) = a exp(−br2), where a

and b are parameters of the potential. In order for the series to
terminate, we use a surface density ρS(�r) = δ(|�r| − 1)(1 +
cos θ ), that is, a distribution located on the surface of a
particle with radius R = 1. The interaction energy between
two colloids is written as

U
sph
ij = a

∫
ρi(Si)ρj (Sj ) exp

(−br2
Si ,Sj

)
dSidSj , (19)

where Si is the surface of particle i and ρSi
is a continuous

function on the surface of particle i.
We compare the cases where this integral is evaluated using

a numerical quadrature with the case where the exact field
method is used. Using a numerical quadrature, the integrand
is evaluated at N points on each surface, yielding

U
sph
ij = a(4π )2N−2

N∑
i

N∑
j

ρ(�ri)ρ(�rj )

× exp(−b|(�ri − �rj )|2) + O(N−2). (20)

Equation (20) can be directly evaluated in standard MD
packages by tessellating the surface of a sphere and assigning
charges to each point proportional to q = (1 + cos θ )/N ,
where N is the number of points per sphere, as sketched by
Fig. 1. The points are chosen according to a Fibonacci mapping
in order to obtain an approximately equal area for each point
[34]. The interaction between points of the tessellation is taken
as U tess

ij = aqiqj exp(−br2).
For the field representation, the integral in Eq. (4) can

be written using the product of two equal fields due to
special properties of Gaussian functions (see Appendix B).
These two fields are given by �i(�r) = �G ∗ ρi , where
�G = a1/223/2π−3/4b3/4 exp(−2br2), obtained by inverting
the square root of the Fourier transform of χG(r). The overall
field for this case is then given by

�i( �ρ) = �G ∗ ρi = 8a1/2π7/4 exp
(− ρ2

8b

)
b3/4

×
[√

πY 0
0 (θ,φ)j0(ρ) +

√
π

3
Y 0

1 (θ,φ)j1(ρ)

]
. (21)

E. Screened Janus particles

Using this method, we can now extend our recent study of
charged Janus particles immersed in an ionic solution [30] to
the cases where the screening length is on the order of the
particle radius. Janus particles possess two sides with equal

but opposite charge density. The cap angle, θm, dictates the
fraction of the surface covered by each charge. This system was
previously simulated using a Kern-Frenkel potential, which is
valid for very small Debye lengths, that is, λ � R, where λ is
the Debye length and R is the particle radius.

In electrostatically screened environments, the coupling
is nontrivial. For instance, dipole-dipole and charge-charge
interactions generate terms with the same distance dependence
[35]. These effects are included in our method.

To calculate interactions between colloids when λ ∼ R, we
use Eq. (3). The charge density is given by the following series:

q̃( �ρ) = −8π3/2R2

[
cos θmj0(ρR)Y 0

0 (θ,φ)

+
∞∑
l=1

√
1 + 2l

P 1
l (cos θm) sin θm

l(l + 1)
jl(ρR)Y 0

l (θ,φ)

]
.

(22)

In reciprocal space, the potential χes(r) is convolved with the
charge density by a multiplication using χ̃es(ρ) = 8π3/2(λ−2 +
ρ2)−1. The series is truncated at lmax = 3 in order to be eval-
uated numerically and a purely repulsive truncated Lennard-
Jones potential (i.e., the Weeks-Chandler-Anderson potential)
is added to represent the solid cores of the colloids.

One quickly notices the similarity between Eq. (22) and the
usual multipole expansion for charges. A proof of equivalence
for λ → ∞ is found in Appendix A. Using tabulated integrals
over traditional multipoles presents a major advantage since
the integral is well-defined in the overlapping regime when
|�rij | < Ri + Rj .

III. RESULTS AND DISCUSSION

A. Accuracy and computational performance

We first characterize the computational efficiency and
accuracy of the field respresentation for the Gaussian charged
particles. We implement the field representation and the
Gaussian charge potential as new force fields in LAMMPS.
The benchmark runs are performed with equilibrated systems
at similar thermodynamic state points, i.e., number of particles,
temperature, and density. LAMMPS is built with the stable
31Mar17 release.

Both the coarse-grained (Gaussian charge) and the spherical
harmonic (field) representations achieve strong scaling perfor-
mance for our numerical implementations, as seen in Fig. 2.
The spherical harmonic representation is generally faster than
the surface bead representation by a factor of 2.0–3.5, depend-
ing on the resolution of the latter. Finer resolution of the surface
bead representation increases the computational overhead as
N2, where N is the number of beads discretizing the surface.
Furthermore, the spherical harmonic representation exhibits a
parallel efficiency as high as 55% at 125 particles per Message
Passing Interface (MPI) process. The particularly high parallel
efficiency at low particle counts per MPI process, compared to
other conventional pairwise potentials (such as Lennard-Jones
and Yukawa potentials), implies that the field representation
is computationally intensive and thus should further benefit
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FIG. 2. Strong scaling performance on the Titan XK7 supercom-
puter. The number of particles in each run is 32 000. There are
16 MPI processes launched on each node.

from finer-grained parallelisms including GPU acceleration,
as observed with Gay-Berne potentials [36].

For Gaussian patchy particles, the spherical harmonic
representation is exact. Figure 3 compares the average energies
of the coarse-grained and field calculations as a function of the
number of quadrature points N for a particle with radius R = 1
and volume fraction v ≈ 0.077 using four sets of the potential
parameters a,b. The slopes are approximately −2, indicating
that the error of the coarse-grained simulation scales as 1/N2,
consistent with Eq. (20).

Since the calculation speed of the coarse-grained simula-
tions also scales as N2, accuracy and computational efficiency
must be balanced. For this specific system, very few points on
the surface are required for accurate simulations. An accuracy
of 1% of the mean energy of the system requires approximately
20 beads per surface. Even for this level of precision, however,
the spherical harmonic potential method is faster than the
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FIG. 3. Relative error of the average energy of the system as a
function of the number of tessellation points of the coarse-grained
representation. Curves are plotted for a = (0.15,0.20) and b = (1,2).
The system is in a liquid state with these parameters. An additional
curve proportional to 1/N 2 is drawn for comparison.

coarse-grained representation. The calculation speeds become
comparable only when N ≈ 6–8. Finally, for the a = 0.2, b =
2, N = 37 case, coarse-grained models achieve a calculation
speed around 33 time steps per second, compared to 652 time
steps per second for the spherical harmonic representation.

B. Janus particles morphologies

To characterize the phase behavior of Janus particles, we
simulated particles with two opening angles (θm = π/2 and
θm = 1.40) previously calculated using a Kern-Frenkel poten-
tial [30]. The simulations were run with 4000 colloids of radius
R = 1 and a constant volume fraction of v = 0.10. The Debye
length is varied over the range 0.16 � λ � 0.32. The reduced
temperature T ∗ = πεkBT R/2q2 is varied independently
within 1.0 � T ∗ � 2.0, where ε is the permittivity and q is the
charge on one of the hemispheres of the balanced θm = π/2
Janus particle. The system is equilibrated over 3 × 106 time
steps. The observed morphologies are summarized in Fig. 4.

For the symmetric Janus particles (θm = π/2), we observe
four morphologies shown in Fig. 5. At very high temperatures,
the system is in a vapor phase, labeled V . The system also
exhibits a liquid state, labeled L, which seems to correspond to
what we previously called a wormlike glass state in Ref. [30].
This liquid phase forms either very small droplets near the V

/ L boundary or elongated structures. This behavior is similar
to that of hard dipole dumbbell systems [37], where it was
observed that, while dumbbells with explicit charge or point
dipoles exhibit a vapor-liquid transition, point dipole spheres
do not [38]. Our simulations suggest that explicit charge rep-
resentations of spheres also exhibit a vapor-liquid transition.

One should be careful making comparisons between Kern-
Frenkel and the present orbital potentials. While they are
both approximating the Yukawa potential, it is not the same
approximation. Kern-Frenkel assumes that the charge density
is locally constant (in a region which size depends on λ). The
present orbital representation approximates it using a series.
At the opening angle, Kern-Frenkel approximates the mean
charge density as either +1 or −1 while the orbital gives a
sine polynomial dependance. This has strong consequences
for crystalline phases, which are very sensitive to the type
of interaction used. For instance, crystal formed by colloids
interacting through repulsive inverse power laws (1/rn) will
exhibit an face-centered cubic (FCC) - body-centered cubic
(BCC) transition around an exponent of n ≈ 6 [39]. Due to
these differences, we do not find that the crystal lattice match
the previous calculations based on Kern-Frenkel. Neverthe-
less, the melting temperature of the crystal phase for θm =
π/2, λ = 0.16R, is around T ∗ ≈ 0.8, which is similar to the
critical temperature found in the work using the Kern-Frenkel
approximation [30], where T ∗ = 0.75.

Interestingly, in the θm = π/2 case, the liquid morphology
only emerges for sufficiently large Debye lengths (λ � 0.20)
and sufficiently high temperatures. This phase was absent in
our Kern-Frenkel simulations conducted at λ = 0.16. For very
small Debye lengths or very low temperatures, it is replaced
by a crystalline morphology. In all observed cases, the system
first condenses to the L phase and then crystallizes. Conse-
quently, multiple crystalline domains form on the elongated L

structures, instead of single crystals. At large Debye lengths
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FIG. 4. Regions of observed morphologies in simulations of charged Janus colloids for opening angles of (a) θm = 1.40 and (b) θm = π/2.
The different morphologies indicate the main morphology observed. The phase is deemed as vapor by a clustering analysis if more than half
the colloids are in clusters of size less than 50. Other morphologies are determined by visual inspection of the trajectories. A morphology is
deemed crystalline if it forms at least one crystalline domain. Morphologies are determined for five values of λ and six (θm = 1.40) or nine
(θm = π/2) values of temperature, totaling 30 simulated state points for θm = 1.40 and 45 for θm = π/2. Boundaries are obtained by drawing
splines in between grid points of different morphologies and should be treated as a guide for the eyes. Coexistence of morphologies is often
found along the boundaries.

and low temperatures, the systems starts supporting thinner
lines of colloids and the system forms a branched structure,
eventually coalescing into a gel-like structure. Whether such
a phase is thermodynamically stable or the result of kinetic
traps is unknown. However, when θm = 1.40 [Fig. 4(a)], the
system is liquid near the L/G boundary, which suggests a stable
phase. We have performed additional simulations runs at this
state point to confirm this hypothesis. More information on the
liquid-gel morphology transition can be found in Appendix E.

C. Limitations of the method

As mentioned earlier, the current method has two limita-
tions. First, the interaction potentials χ must possess a Fourier
transform. A common source of soft potentials is excluded
volumes, which diverge when the volumes overlap. While
this is clear from the mathematical equations, the underlying
physical reason lies with the fact that series truncation
produces a spatial averaging of the densities. This averaging is
inconsistent with systems that respond to infinite frequencies.
To overcome this limitation, one may be able to represent
excluded volumes by expanding Eq. (3) into a summation of
integrals of powers of ρ(�r,R̂) or by regularizing the potential
function (see Appendix D for further details and derivations).

The second limitation is that density fields must be static in
time, which makes the description unsuitable for system with
strong deformations. Typical cases include colloids grafted
with a low amount of flexible polymers. In such systems, when
colloids come close to each other, the polymer coating may
deform. In systems of DNA-coated polyhedra, this has been
shown to strongly affect broken symmetry regimes, driving
transitions between different crystal lattices [9]. These defor-

mations have been the starting point of the orbital topological
model, which for polymer coated spheres predicts different
equilibrium structures than a regular nondeformable potential
[40]. In order to model such a system with our description, one
would have to use a time-dependent density field and advance
the field over time. We are currently working on such a model,
which will be the subject of a future publication.

IV. CONCLUSION

We have developed a field representation for describing
the anisotropic interactions between colloids at mesoscopic
scales based on an orbital-like decomposition. Using the field
representation, several use cases are derived, including patchy
particles and charged Janus particles. With this approach,
we demonstrate that charge-neutral Janus particles show
qualitative agreement with studies of dipolar hard dumbbell
systems. Interestingly, the vapor-liquid transition is supplanted
by the liquid-crystal transition for very short screening lengths,
yielding similar results from the Kern-Frenkel potentials.
The liquid phase has previously been shown to be absent
for point dipole spheres [38], which raises the question of
whether it arises from inclusion of higher-order hexapole terms
or disapears at large Debye lengths. Addition of isotropic
dispersion forces to systems of point dipole spheres has been
shown to cause the liquid phase to appear, provided the
dispersion force is sufficiently strong [41]. In our system, the
additional hexapole force is entirely determined by the shape of
the charges at the surface of the Janus particle. These particles
are usually thought of as dipoles and whether the phase
diagram can actually be controlled by the surface charge
distribution remains an interesting question.
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FIG. 5. Snapshots of the simulations in different morphologies observed for symmetric (θm = π/2) Janus particles: (a) Vapor V state at
T ∗ = 1.81, λ = 0.24; (b) liquid L state at T ∗ = 1.50, λ = 0.24; (c) crystalline C state at T ∗ = 1.20, λ = 0.24; and (d) gel state at T ∗ = 1.0,
λ = 0.32. Arrows indicate north pole of the Janus particles.

This technique enables simulations in solutions with screen-
ing lengths comparable to the size of the colloids without
resorting to expensive and often inaccessible explicit ions
simulations. The modest requirements for the type of potentials
that can be used make this field coarse-graining approach
applicable to many types of interactions. With this flexibility,
the technique could potentially be employed to calculate
interactions between globular proteins of various shapes and
surface compositions stemming from a combination of elec-
trostatics and hydrophobicity. Indeed, our approach has the in-
herent capability of including position-orientation coupling of
particles. It can in principle describe any anisotropic potential,
as long as the potential has proper behavior in reciprocal space,
and, in the present form, as long as the particles shape and
surface composition remain constant as the particles interact.

In order to relax the assumptions made in the present
study, namely that the density representing particle shapes
is constant and that the surface composition does not change
as the particles interact, the field coarse-graining approach

has to be extended to directional and time-dependent force
fields. While the complexity of the derived field depends on
the original interactions and increases with the target accuracy,
the performance gain due to finer-grained parallelization can
be significant and will be the focus of future studies. A
major refinement is to include dynamic densities, which is
necessary to efficiently simulate very soft colloids such as
polymer-coated particles where the shape of the particle
changes when two colloids interact [40]. This refinement is
necessary also to make comparison between our approach and
results of conventional approaches that include grafted chains
such as DNA to nanoparticles explicitly [9].
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APPENDIX A: EQUIVALENCE BETWEEN
MULTIPOLE EXPANSIONS

Equation (22) expands the charge into spherical harmonics.
Arbitrary rotations of this multipole are treated by Wigner D
functions:

q̃i(ρ) = −8π3/2R2
i

[
cos θmj0(ρRi)Y

0
0 (θ,φ) +

∑
l=1,m

Dm,0
l (R̂i)

× √
1 + 2l

P 1
l (cos θm) sin θm

l(l + 1)
jl(ρRi)Y

0
l (θ,φ)

]
.

(A1)

When convolved with other charge distributions and the
interaction potential, we get

Uij =
∑
L,M

8iL−li−lj YM
L (θ,φ)

∑
li ,mi ,lj ,mj

Dmi

li
(R̂i)Dmj

lj
(R̂j )

× Cmi,mi ,0
li ,li ,0

Cmi,mj

L,li ,lj
8π3/2cli cljIL,li ,lj , (A2)

where I is an integral defined by

IL,li ,lj =
∫ ∞

0
jlj (ρRj )jli (ρRi)

ρ2

ρ2 + λ−2
jL(ρr)dρ. (A3)

To the best of our knowledge, this integral only has a known
solution for r > Ri + Rj and λ = ∞. Physically, this is two
finite-size multipoles without any overlap between their charge
distributions for unscreened electrostatic interactions. In this
specific case, the integral can be written as [42]

IL,li ,lj = π3/2

23

Rli+lj r−1−li−lj �
( 1+li+lj +L

2

)
�(li + 3/2)�(lj + 3/2)�

(
1 + L−li−lj

2

)F4

(
li + lj − L

2
,
1 + li + lj + L

2
; li + 3

2
,lj + 3

2
;
R2

i

r2
,
R2

j

r2

)
, (A4)

where F4 is the Appell hypergeometric function of the fourth
kind. Due to �[1 + (L − li − lj )/2] in the denominator and
the Clebsch-Gordan coefficient of (A2), it is only evaluated
when L = li + lj .

To see this, consider that maxL = li + lj , for which
the Clebsch-Gordan coefficient is nonzero and the integral
coefficient is nonzero. For L = li + lj − (2n + 1), n ∈ N,
the symmetries are incompatible and the Clebsch-Gordan
coefficient is zero. For L = li + lj − (2n), n ∈ N, the Gamma
function evaluates to a negative integer, which is a pole of the
function.

Since the first coefficient of the function is zero, it is
trivial F4(0,β; γ,γ ′; x,y) = 1, yielding the usual powers of
r for multipole expensions. For instance, the L = li = lj = 0
contribution, which is the monopole-monopole term, yields
the usual

U
L=li=lj =0
ij = QiQj

r
, (A5)

where Qi = −4πR2
i cos θm. Note that we defined the energy

between charges to be qiqj /r in χes(r), so this result is
consistent with the unit system used 4πε = 1.

APPENDIX B: FIELD EQUATIONS FROM STRETCHED
EXPONENTIAL FUNCTIONS

In Eq. (3), we have defined the auxiliary field as an
convolution between the pairwise interaction χ (r) and the
density field ρj (�r). In Eq. (5), we relate the total energy to
the convolution of the auxiliary field with the density field
ρi(�r), which is written as

Uij (�rij ,R̂i ,R̂j ) = ρi(�r,R̂i) ∗ χ (r) ∗ ρj (�r,R̂j ). (B1)

This triple convolution is then related to products in
reciprocal space,

Ũij ( �ρ,R̂i,R̂j ) = ρ̃i( �ρ,R̂i)χ̃(ρ)ρ̃j ( �ρ,R̂j )

= (ρ̃i( �ρ,R̂i)χ̃(ρ)1/2)(χ̃(ρ)1/2ρ̃j ( �ρ,R̂j )). (B2)

If there exists a well-defined inverse transform of χ̃1/2(ρ)
and assuming that ρi(�r) = ρj (�r), then we can define an new
auxiliary field such that �̃ρiχ ( �ρ,R̂i) = ρ̃i( �ρ,R̂i)χ̃(ρ)1/2. The
energy is then defined as a self-convolution,

Uij = �ρiχ (�ri,R̂i) ∗ �ρiχ (�rj ,R̂j ). (B3)

The well-definedness of inverting χ̃(ρ)1/2 is quite limiting
as we have only found that stretched exponentials χ (r) =
exp(−rq) with 1/2 � q � 2 fit this criteria.

APPENDIX C: VECTOR FIELDS

In Sec. II we describe directional interactions under the
assumption that energy can be expressed as an overlap of scalar
fields. However, the approach is generalizable to tensor fields.
For simplicity, let us look at an interaction that stems from the
inner product of the vector field of two distinct particles �i

and �j ,

Uij =
∫

V

��i · ��jdV. (C1)

This type of interaction can be used to describe electrostatic
interactions through electric fields,

UE
ij = 1

2

∫
V

ε|E|2dV = 1

2

∫
V

ε(|Ei |2 + |Ej |2 + 2 �Ei · �Ej )dV,

(C2)

where the first two terms are constants and the last term is
in the same form as Eq. (C1). In order to evaluate (C1), we
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separate the field into multiple components such that

��i = �xx̂ + �yŷ + �zẑ. (C3)

in the reference frame of the particle. The additional difficulty
stems from the fact that once the particle is rotated, �z may
now point in the x̂ direction. This is resolved by considering
the overlap of nine fields, by taking rotation of unit vectors

Uij =
∑
k,k′

∫
V

�k
i �

k′
j R̂i k̂ · R̂j k̂′dV, (C4)

where k,k′ = x,y,z and R̂i is the rotation operator of the ith
particle. Unlike the expansion done for interacting charges in
Eq. (22), direct use of an electric field permits the use of charge
distributions interacting in nonisotropic media, that is, ε only
has the restriction that it needs to be constant throughout the
volume. This could be used, for instance, to calculate charge
interactions of colloids suspended in liquid crystal media,
where ε is a tensor.

APPENDIX D: EXCLUDED VOLUMES AND VAN DER
WAALS GAS

In coarse-grained models, one generally uses Lennard-
Jones forces to model interactions. This includes a short-
ranged repulsive part which shows a r−12 dependence. This
would suggest use of χ (r) ∼ (σ/r)12 − (σ/r)6. However, the
Fourier transform of such a function does not exist. One
could regularize it by changing r to r + δ or adding other
short-ranged potentials to remove the divergence, but this
hides a major problem in that we truncate the Fourier series
or, equivalently, use spatial filtering. While Eq. (3) is strictly
physical and exact, after truncation it is akin to

Uij =
∫

V

〈ρi(�r)〉〈�ρj
(�r)〉, (D1)

where 〈〉 is some kind of spatial average consistent with the
Fourier series truncation. If one plots the pair distribution
function for a Lennard-Jones system, then it becomes trivial
to see that no overlap is present for small values of r [or large
χ (r)]. In order to evaluate the excluded volumes, we will need

FIG. 6. Snapshots of the simulations of charged Janus particles (θm = 1.40) for different temperatures: (a) T = 1.62, (b) T = 1.42, (c)
T = 1.20, (d) T = 1.0. Arrows indicate the north pole of the Janus particles.
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FIG. 7. Pair correlation functions for different temperatures for
the asymmetric (θm = 1.40) Janus particles for λ = 0.32.

to use some spatial average of the Lennard-Jones interactions.
As an approximation, one can still use regularization, but it
has to be done carefully as it may impact the system behavior.

Instead of using a soft repulsive term, one can start with
the Van der Walls equation of state, which writes the average
enthalpy per particle of a gas of hard spheres of volume b as

HVdW/N = kBT

(
1

1 − ρb
+ 3

2

)
. (D2)

Here we assume that we can treat all excluded volume
interactions as Van der Waals gas and write the overall energy
as the integral of the spatially filtered enthalpy. We also assume
that local density can be written as pairwise densities, such that

ρ = ρi + ρj in the local enthalpy. Disregarding the constant
3/2 term, this leads to a local enthalpy defined by

H local
VdW = kBT

1

1 − (ρi + ρj )b
. (D3)

In the present formalism, we cannot treat arbitrary potential
in ρ. However, we can expand in power series,

H local
VdW ≈ kBT [1 + b(ρi + ρj ) + b2(ρi + ρj )2

+ b3(ρi + ρj )3 + · · · ]. (D4)

Given that powers of strictly ρi and ρj are not part of
pairwise potentials of colloid, we do not have to deal with
them. We are then left with the following interaction:

βHVdW = 2b2
∫

V

ρi(�r − �ri,R̂i)ρj (�r − �rj ,R̂j )

+ 3b3
∫

V

ρ2
i (�r − �ri,R̂i)ρj (�r − �rj ,R̂j )

+ ρi(�r − �ri,R̂i)ρ
2
j (�r − �rj ,R̂j ) + · · · (D5)

One can then produce fields for ρ(�r,R̂), ρ2(�r,R̂), . . . , for
all colloids and truncate the series at some power of ρ.

APPENDIX E: SUPPLEMENTARY DATA FOR THE
LIQUID-GEL TRANSITION

The liquid-gel morphology transition of asymmetric
charged Janus particles is in appearance a continuous transition
where the branches of the gel are thick near the liquid phase.
This can be seen in Fig. 6. The transition is characterized by
gradual changes of the pair correlation function, as shown in
Fig. 7.
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