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Multichannel scattering problem with a nonseparable angular part as a boundary-value problem
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We have developed an efficient computational method for solving the quantum multichannel scattering problem
with a nonseparable angular part. The use of the nondirect product discrete-variable representation, suggested and
developed by V. Melezhik, gives us an accurate approximation for the angular part of the desired wave function
and, eventually, for the scattering parameters. Subsequent reduction of the problem to the boundary-value problem
with well-defined block-band matrix of equation coefficients permits us to use efficient standard algorithms for
its solution. We demonstrate the numerical efficiency, flexibility, and good convergence of the computational
scheme in a quantitative description of the Feshbach resonances in pair collisions occurring in atomic traps and
the scattering in strongly anisotropic traps. The method can also be used for the investigation of further actual
problems in quantum physics. A natural extension is a description of spin-orbit coupling, intensively investigated
in ultracold gases, and dipolar confinement-induced resonances.
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I. INTRODUCTION

Multichannel scattering arises in the description of different
quantum processes in atomic and molecular physics, quantum
chemistry, and nuclear physics. In recent years, multichannel
scattering is of particular interest in the context of the accurate
description of Feshbach resonances in ultracold gases [1,2].
The initial step of the conventional analysis of the scattering
is to separate the angular part with the aid of expansion
over spherical harmonics. However, in the case of strong
coupling between the different partial waves, it can become
questionable. Especially, the drawback of the partial-wave
analysis is developed if the coupling remains non-negligible
in the asymptotic region due to the long-range character of
the interparticle interaction. Thus, in dipole-dipole scattering,
occurring for example in atomic scattering in external laser
field, the long-range term ∼1/r3 describing interatomic
interaction leads to nonseparability of the partial scattering
amplitudes even in the zero-energy limit [3]. In this case
it is necessary to provide a special procedure for extracting
the desired partial amplitudes [4]. An alternative approach
without usual partial-wave analysis for treating scattering
with a nonseparable angular part in the asymptotic region
was suggested in the works of Melezhik [5] and Melezhik
and Chi-Yu Hu [3]. Then, it was extended for multichannel
scattering of cold atoms in quasi-one-dimensional harmonic
traps [6] and successfully applied for a number of resonant
processes in confined geometry of atomic traps [7–11]. The
key element of the approach is to use, instead of the partial
analysis, the nondirect product discrete-variable representation
(npDVR) suggested and developed by Melezhik in a number
of works [12–16].

In the present paper we describe the computational scheme,
based on the npDVR, which we develop for multichannel
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confined scattering with a nonseparable angular part. We refor-
mulate the scattering problem as a boundary-value problem for
a system of algebraic equations with block-band structure of
the well-defined matrix of coefficients which arises in npDVR
after high-order finite-difference approximation of the radial
part of the kinetic energy operator on a quasiuniform grid. Such
reduction permits us to use efficient computational algorithms
for solving the special system of algebraic equations. We
demonstrate the efficiency and flexibility of the computational
scheme by two examples. It is three-dimensional (3D) atomic
scattering confined in a strongly anisotropic waveguidelike
trap and the system of four strongly coupled 2D Schrödinger-
like equations describing the atomic collisions confined in a
quasi-1D harmonic trap in the vicinity of magnetic Feshbach
resonances. An example was also analyzed earlier with an
alternative approach based on the expansion of the desired
wave function over the harmonic oscillator basis [17]. We
give a comparison with the alternative approach [17] to
demonstrate advantages of our computational scheme. The
developed computational method can be extended to other
multichannel scattering problems with nonseparable angular
part. Such problems arise in the description of atomic and
molecular collisions in confined geometry of optical and
electromagnetic traps of different configuration. The method
permits us to treat the effects of spin and spin-orbit couplings as
well as the effects of anisotropy in the interparticle interactions
and in the interaction with the traps.

II. DESCRIPTION OF COMPUTATIONAL METHOD

A. Formulation of the problem: Scattering in confined
geometry of atomic traps

The problem of multichannel scattering with a nonseparable
angular part arises in ultracold atomic collisions confined by a
harmonic waveguidelike trap [6]. Particularly, a challenging
computational problem is to describe the scattering in the
vicinity of Feshbach resonances [7,8]. In a general case,
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including the resonant scattering, the problem is to integrate
the system of 3D Schrödinger-like equations,([

− h̄2

2μ
�r + 1

2
μ

(
ω2

xx
2 + ω2

yy
2)]Î + V̂ (r)

)
|ψ(r)〉

= E|ψ(r)〉, (1)

strongly coupled by the matrix of effective interatomic
potential V̂ (r) (Î is the unit matrix here) and to find the wave
function,

|ψ(r)〉 =
∑

α

ψα(r)|α〉, α = {e,c = 1 . . .},

satisfying the scattering asymptotic,

ψe(r) = (eik0z + fee
ik0|z|)�0(x,y), ψc(r) → 0, (2)

at |z| → +∞ for the fixed collision energy E, where r =
(x,y,z) = (ρ cos φ,ρ sin φ,z) = (r sin θ cos φ,r sin θ sin φ,

r cos θ ) is the relative variable between the colliding atoms.
Here, fe(E) is the desired scattering amplitude, �0(x,y) is the
wave function of the ground state of the 2D harmonic oscillator
1
2μ(ω2

xx
2 + ω2

yy
2) describing interaction of the atoms with the

confining trap, and k0 = √
2μ(E − h̄ω⊥)/h̄ = √

2μE‖/h̄ is
the relative momentum of two atoms in the open channel “e,”
where ω⊥ = (ωx + ωy)/2 and μ is the reduced mass of two
colliding atoms.

Here, we consider two models for interatomic interaction.
It is a scalar Gaussian potential,

V (r) = −V0 exp

{
−

( r

a

)2
}
, (3)

permitting analytic calculation of the matrix elements∫ ∫
�nx

(x)�ny
(y)V (x,y,z)�n′

x
(x)�n′

y
(y)dxdy in the “oscil-

lator representation” being used in [17] for the desired wave
function in (1) and (2),

ψ(r) =
Nx∑

nx=1

Ny∑
ny=1

χnxny
(z)�2nx−2(x)�2ny−2(y), (4)

which is represented in the form of expansion over the product
states �ni

of the 1D harmonic oscillator. The summation over
α is eliminated here (α = e).

A four-channel tensorial potential V̂ (r) is being used in [7]
to describe three lowest magnetic Feshbach resonances in Cs
[18]. Some of these resonances have been used in experimental
investigation of the Cs confinement-induced resonances in
anisotropic waveguidelike traps [19]. Following [7,18], we
define V̂ (r) as

V̂ (r) =

⎛⎜⎝−Ve h̄
̄1 h̄
̄2 h̄
̄3

h̄
̄1 −V1(B) 0 0
h̄
̄2 0 −V2(B) 0
h̄
̄3 0 0 −V3(B)

⎞⎟⎠ r < a

=

⎛⎜⎝0 0 0 0
0 ∞ 0 0
0 0 ∞ 0
0 0 0 ∞

⎞⎟⎠ r > a, (5)

where ā = 4π�(1/4)−2RvdW , RvdW is the van der Waals tail
of the interatomic interaction, Vc(B) = Vc + δμ(B − Bc), and

the off-diagonal terms h̄
̄c are defined by the formula(
�c

Vc

)1/2

= 2h̄
̄c

Ve − Vc

,

where �c is the Feshbach coupling strength of the channel
“c” [18]. This matrix describes the interatomic interaction of
colliding atoms in the open channel (“entrance channel”) |e〉
and the weakly bound molecules in the closed channels |c〉 near
Feshbach resonances. For r < a, the attractive potentials Ve

and Vc in the square-well form can support multiple molecular
states and the parameters h̄
̄c induce Feshbach couplings
between the channels [18]. The range a of the potential
action is chosen according to the range of the interatomic
interaction determined by the van der Waals tail between
atoms. For r > a, entrance- and closed- channel thresholds
are set to be E = 0 and E = +∞, respectively (see Fig. 1
in Ref. [18]). In the diagonal element Vcc the shift of the
channel threshold δμc(B − Bc) is defined by interaction with
the external magnetic field B. The relative magnetic moment
δμc and Bc define the magnetic Feshbach resonances in the
closed channels [18].

Note that, in the presence of an anisotropic harmonic trap
(ωx �= ωy), the problem (1) and (2) becomes nonseparable
in 3D space {ρ,z,φ}. To resolve the problem we have to
integrate the 3D Schrödinger-like equation (1) [for the scalar
potential (3)], or the system of equations [for the tensorial
potential (5)]. In an isotropic trap (ωx = ωy) the problem
admits separation of the angle φ and reduction to the 2D case.
In free space (ωx = ωy = 0) the angular part separates and the
problem reduces to one [in the case of scalar potential (3)]
or four [in the case of tensorial potential (5)] coupled radial
equations. The last case was considered in [18]. The choice
of the potential V̂ (r) in the form (5) permitted the authors of
the work [18] to construct an analytic model for describing
Feshbach resonances in free space (ωx = ωy = 0). However,
to develop an efficient computational scheme for integration of
the problem (1) and (2) in a confining trap (ωx �= 0,ωy �= 0) is
a challenging task due to sharp jumps at r = a in the diagonal
terms Vαα(r) chosen in the form of a square-well potential.

B. Nondirect product DVR over angular variables

First, we discretize the problem (1) and (2) over angular
variables θ and φ by applying the npDVR [12–16]. In this
approach the desired wave function |ψ(r,θ,φ)〉 is expanded in
the basis

fj (
) =
N∑

ν=1

Ȳν(
)[Y−1]νj , (6)

which is orthogonal and complete on the 2D angular grid

j = (θjθ

,φjφ
), so that

|ψ(r,θ,φ)〉 = 1

r

∑
α

N∑
j=1

fj (
)uα
j (r)|α〉. (7)

Here Nθ and Nφ are the number of grid points θjθ
and φjφ

over the θ and φ variables respectively: jθ = 1,2, . . . Nθ and
jφ = 1,2, . . . Nφ . They define the total number N = Nθ × Nφ

of grid points in the 2D angular subspace 
 = (θ,φ) and the
number of basis functions (6) being used. The index j = Nφ ×
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TABLE I. The selected orthogonal basis Ȳlm for Nθ = 9 and
Nφ = 5.

m

−−−→
−N�−1

2
N�−1

2

l = Nθ − 1 + Nφ−1
2 Ȳ10,−2 Ȳ10,+2

Ȳ9,−2 Ȳ9,−1 Ȳ9,+1 Ȳ9,+2

l = Nθ − 1 Ȳ8,−2 Ȳ8,−1 Ȳ8,0 Ȳ8,+1 Ȳ8,+2

Ȳ7,−2 Ȳ7,−1 Ȳ7,0 Ȳ7,+1 Ȳ7,+2

Ȳ6,−2 Ȳ6,−1 Ȳ6,0 Ȳ6,+1 Ȳ6,+2

Ȳ5,−2 Ȳ5,−1 Ȳ5,0 Ȳ5,+1 Ȳ5,+2

Ȳ4,−2 Ȳ4,−1 Ȳ4,0 Ȳ4,+1 Ȳ4,+2 ↑ l

Ȳ3,−2 Ȳ3,−1 Ȳ3,0 Ȳ3,+1 Ȳ3,+2

Ȳ2,−2 Ȳ2,−1 Ȳ2,0 Ȳ2,+1 Ȳ2,+2

Ȳ1,−1 Ȳ1,0 Ȳ1,+1

l = 0 Ȳ0,0

(jθ − 1) + jφ represents here the twofold index j = (jθ ,jφ)
and the summation over j is

N∑
j=1

=
Nθ∑

jθ=1

Nφ∑
jφ=1

. (8)

The N × N matrix Ŷ−1 is the inverse of the matrix Ŷ defined
as Yjν = √

λj Ȳν(
j ), with λj = (2πλ′
jθ

)/Nφ and λ′
jθ

being
the weights of the Gaussian quadrature over θ . The angular
grid points θjθ

and φjφ
are defined as the zeros of the Legendre

polynomial PNθ
(cos θ ) and φjφ

= 2πjφ/Nφ , respectively. The
symbol ν represents the twofold index ν = (l,m) and the
summation over ν is equivalent to (see Table I)

N∑
ν=1

=
(Nφ−1)/2∑

m=−(Nφ−1)/2

|m|+Nθ−1∑
l=|m|

. (9)

The polynomials Ȳν(
) are chosen as

Ȳν(
) = Ȳlm(
) = eimφ
∑

l′
dl′

l P m
l′ (θ ), (10)

where dl′
l = δll′ holds, thus Ȳν(
) coincide with the usual

spherical harmonics Yν(
), except for l � Nθ , so that the
orthogonality relation remains

〈Ȳν |Ȳν ′ 〉 =
∫

Ȳν
∗(
)Ȳν ′(
)d


≈
N∑

j=1

λjY
∗
ν (
j )Yν ′(
j ) = δνν ′ . (11)

However, for l � Nθ (see Table I), Yν(
) have to be orthogo-
nalized. We denote the set of orthogonal bases as Ȳlm(
). First,
for l = Nθ we make a polynomial orthogonal to the ones of
lower l value,

Ỹlm(
) = Ylm(
) −
l−1∑

l′=|m|
〈Ylm |Ȳl′m 〉Ȳl′m(
), (12)

and, we make it normalized,

Ȳlm(
) = Ỹlm(
)

〈Ỹlm |Ỹlm 〉 . (13)

Then, we perform the above procedure iteratively in order
to obtain Ȳlm(
) for the next values of l. In this way, the
above orthogonalization Gramm-Schmidt procedure leads to
the basis (6) which is orthonormal and complete on the grid

j for any chosen N .

By substituting expansion (7) into Eq. (1) and performing
the scale transformation r → r/ā, E → E/E0, V → V/E0,
and ω → ω/ω0 with E0 = h̄2/μā2 and ω0 = E0/h̄, we reach
a system of rescaled Schrödinger-like coupled equations with
respect to the unknown vector u(r) = {√λju

α
j (r)},

(T̂ (r) + Ŵ (r) + V̂ (r))u(r) = Eu(r), (14)

where

T αα′
jj ′ = −1

2

[
δjj ′

d2

dr2
− 1

r2

N∑
ν=1

Yjνl(l + 1)[Y−1]νj ′

]
δαα′ ,

(15)

Wαα′
jj ′ = 1

2

(
ω2

xx
2
j + ω2

yy
2
j

)
δjj ′δαα′ , (16)

V αα′
jj ′ = Vαα′ (r)δjj ′ . (17)

Here xj = r sin θj cos φj , yj = r sin θj sin φj and the ele-
ments uα

j (r) of the vector u(r) coincide with the val-
ues rψα(r,
j ) of the desired wave function on the grid
points 
j , j = 1, . . . ,N , α = e for (3) and α = {e,c}
for (5).

Thus, by using the npDVR we transform the initial scatter-
ing problem (1) and (2) to the system of the Schrödinger-like
coupled equations (14) with the following asymptotic:

ue
j (r) = r(eik0zj + fee

ik0|zj |)�0(xj ,yj ), uc
j (r) = 0 (18)

at |zj | = |r cos θj | → +∞ and

uα
j (r) = 0, (19)

at r = 0 , which follows from the finiteness of the desired wave
function ψα(r) (α = {e,c}) at r → 0.

C. Boundary conditions: Reduction of scattering problem
to a boundary-value problem

The problem (14)–(19) is defined on the semiaxis r ∈
[0,+ ∞) which we replace by the interval [0,rm]. The right
edge of the interval rm and any neighbor point rm−1 to the
left of the edge must be chosen in such a way that some
of the points zm

j = rm cos θj and zm−1
j = rm−1 cos θj (say, for

jθ � jm and for jθ � Nθ − jm + 1, where jm is a constant) fall
into the asymptotic region |zm

j | = |rm cos θj | → +∞ where
the wave function ue

j (r) satisfies the asymptotic formulas (18)
(see Fig. 1).
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FIG. 1. The schematic figure of the grid points in x-z plane. The
up horizontal axis shows the corresponding values of ζ .

By using two Eqs. (18) at the points rm and rm−1 we
eliminate the unknown amplitude fe and construct the two-
point boundary condition at the right edge of the interval
[0,rm],

ue
j (rm) − ue

j (rm−1)eik0(|zm
j |−|zm−1

j |) rm�0
(
xm

j ,ym
j

)
rm−1�0

(
xm−1

j ,ym−1
j

)
= rm{eik0z

m
j − eik0(zm−1

j −|zm−1
j |+|zm

j |)}�0
(
xm

j ,ym
j

)
(if jθ � jm or jθ � Nθ − jm + 1 ),

ue
j (rm) = 0(if jm < jθ < Nθ − jm + 1 ), uc

j (rm) = 0,

(20)

where xm
j = rm sin θj cos φj and ym

j = rm sin θj sin φj .
Thus, the initial scattering problem (1) and (2) is reduced

to the boundary-value problem for the system of ordinary
differential equations of second order (14) with the boundary
conditions (19) and (20) which do not contain the unknown
scattering amplitude fe. After integration of the problem
(14), (19), and (20) one can find the scattering amplitude
fe by mapping the calculated wave function ψα(r,
j ) at
the points |zm

j | = |rm cos θj | → +∞ with the asymptotic
boundary condition (18).

To integrate the boundary-value problem (14), (19), and
(20) one can apply efficient algorithms. By using the high-
order (sixth-order) finite-difference approximation for the
radial derivatives on a quasiuniform grid we arrive at a
system of algebraic equations with block-band structure which
can be solved by the LU decomposition [20] or the sweep
(also known as the Thomas algorithm [21]) method [22],
which are very efficient in terms of speed and memory
requirements.

D. High-order finite-difference approximation
over radial variable

We solve the system of Eqs. (14) on a quasiuniform radial
grid [13]

rn = rm

eγ ζn − 1

eγ − 1
, n = 1,2, . . . ,Nr (21)

of Nr grid points {rn} defined by mapping rn ∈ [0,rm](rm →
+∞) onto the uniform grid ζn ∈ [0,1] with the equidistant
distribution ζn − ζn−1 = 1/Nr . One can achieve a suitable
distribution of the grid points for a specific interatomic
and confining potential by varying Nr and the parameter
γ > 0. After the seven-point finite-difference approximation
(sixth-order approximation) of the derivatives in the system
of ordinary differential equations (14), the boundary-value
problem (14), (19), and (20) is reduced to the system of Nr

matrix equations,
3∑

p=1

Rn−pÎun−p + (Ân + Ŵn + V̂n − EÎ )un

+
3∑

p=1

Rn+pÎun+p = 0,(n = 1,2, . . . ,Nr − 3),

× un + B̂nun−1 = gn (n = Nr − 2,Nr − 1,Nr ). (22)

Here, the matrix of coefficients of the system of algebraic
equations (22) has a block-band structure with the width
of the band equal to 7 × N [for scalar potential (3)] or
7 × 4 × N [for tensorial potential (5)]. The definition of
the 4N × 4N matrices V αα′

jj ′ (rn) = V αα′
j (rn)δjj ′ , Wαα′

jj ′ (rn) =
Wα

j (rn)δjj ′δαα′ , and the angular part Aαα′
jj, (rn) = Aα

jj ′δαα′ of

the matrix of the kinetic energy operator T̂ (r) are given by
Eqs. (15)–(17). The coefficients Rn arise due to sixth-order
finite-difference approximation of the radial part of the kinetic
energy operator T̂ (r) (15). The unknown vector un in (22)
defines the desired wave function ψα(rn,
j ) = uα

j (rn)/rn on
the 3D grid {rn,
j }, where n = 1,2, . . . ,Nr ; j = 1,2, . . . ,N

and α = e [for (3)] or α = {e,c} [for (5)]. In the first three
equations of the system (22), the functions u−3, u−2, u−1,

TABLE II. The run time τ of our code for calculation of T (N,Nr )
for N = 30 (a) and Nr = 1.0 × 105 (b). The code has been run on a
3.4-GHz CPU.

Nr/105 τ (s) N τ (s)
(a) (b)

0.2 3.5 × 103 2 4.8 × 100

0.4 4.8 × 103 3 1.4 × 101

0.6 9.1 × 103 4 2.9 × 101

0.8 9.7 × 103 5 8.9 × 101

1.0 1.5 × 104 6 1.1 × 102

1.5 2.6 × 104 8 3.0 × 102

2.0 2.9 × 104 10 5.5 × 102

3.0 5.2 × 104 12 8.6 × 102

4.0 6.9 × 104 15 2.6 × 103

5.0 8.7 × 104 20 5.9 × 103

7.5 1.3 × 105 25 9.9 × 103

10.0 1.7 × 105 30 1.5 × 104
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TABLE III. The convergence of the expansion (7) with respect to N=Nθ , Nr , and rm for fixed Nφ=1, where �T (N ) = T (N + 2) − T (N ).
Calculations were performed for the scattering on the scalar potential (3) in isotropic trap with ωx = ωy = 0.02.

rm = 60 rm = 65 rm = 70
Nr = 130 Nr = 200 Nr = 400 Nr = 400 Nr = 400

N = Nθ T �T (N ) T T T T

13 0.044 495 0.569 612
15 0.614 207 0.173 223
17 0.440 984 0.026 273
19 0.414 711 0.005 976
21 0.408 735 0.001 311 0.409 657 0.410 674 0.412 752 0.413 557
23 0.407 424 0.000 157 0.407 665 0.407 947 0.408 539 0.408 740
25 0.407 267 0.000 153 0.407 272 0.407 334 0.407 468 0.407 527
27 0.407 114 0.000 013 0.407 158 0.407 189 0.407 222 0.407 245

and u0 are omitted by using the left-side boundary condition
(19): u0 = 0 and u−n = −un. The last three equations with
n = Nr − 2, Nr − 1, and Nr in the system represent the
boundary condition (20), where the matrix Bα

j (rn)δjj ′δαα′ and
the vector gn = {gα

j (rn)} are given by Eq. (20).
We solve this boundary-value problem by using the fast

implicit matrix algorithm [6] (see Appendix B therein)
which is based on the LU decomposition approach [20] or
the sweep method [22,23] and takes into consideration the
block-band structure of matrix of coefficients of the system
(22). It leads to high efficiency of the algorithm in speed
and memory: exclusion of the calculation of zero elements,
which make up the bulk of the matrix of coefficients in
(22), dramatically decreases the required computer memory
and leads to proportionality of the computational time to the
number of radial grid points Nr . Table II shows the run time
τ of our code for several values of Nr and N . The linear
dependence of τ on Nr is clear. At that, τ is proportional to
N3 according to the theory of the matrix sweeping method
(the block-elimination method) [23]. Therefore, application of
the matrix sweeping method is particularly efficient if it is
possible to keep N � Nr during computations. This is a case
considered in Sec. IV B.

III. NUMERICAL EXAMPLES

To demonstrate the computational efficiency of the method
we consider here two numerical examples with the scalar
potential (3), leading to 3D scattering in an anisotropic atomic
waveguide, and tensorial interatomic interaction (5), which
models four-channel 2D scattering confined in an isotropic
atomic waveguide in the vicinity of a Feshbach resonance in
Cs [7].

A. Scalar interatomic interaction (3)

With the interaction potential (3) we have investigated the
convergence of our computational scheme with respect to
N,Nr → +∞ and rm → +∞ by using as an example calcu-
lation of a measurable scattering parameter the transmission
T = |1 + fe|2. Investigation is carried out in two stages. First,
we analyze the convergence of the method for the isotropic
waveguidelike trap with ωx = ωy = 0.02, E‖ = 5 × 10−5, and
V0 = 0.495. At that, the system has cylindrical symmetry

which leads to separation of the φ variable. The problem
becomes a 2D one and N = Nθ . The results of calculation
of the transmission T (N,Nr,rm) are given in Table III. This
investigation demonstrates good convergence of the npDVR
here: to get the accuracy of the order ∼10−4 it needs to keep
N ∼ 23–25 in the expansion (7). To keep the same order of
accuracy due to radial grid approximation it is enough to fix
Nr = 130 and rm = 60 at N � 25.

Next, we apply the method to the 3D case with an
anisotropic trap (ωx/ωy �= 1) leading to strong nonseparability
of the angular part. In Table IV the results of calculation of
the transmission T (Nφ) are given for ωx/ωy = 4/3, 1.5, and
2 with Nθ , Nr , and rm fixed in the previous stage performed
for the isotropic case. This investigation demonstrates rather
fast convergence of the method even for strong anisotropy
of the trap: at Nφ = 9 the reached accuracy varies from
2 × 10−5 to 10−3 with increasing the anisotropy of the trap
from ωx/ωy = 4/3 up to 2.

We have also calculated the transmission T (N ) for the
above-considered anisotropic cases with the expansion (4)
over the product states �ni

of the 1D harmonic oscillator. This
alternative approach was used in [17]. It gives diagonal rep-
resentation for atom-trap interaction Wjj ′ = 1/2(ωx + ωy)δjj ′

but the atom-atom interaction (3) is off diagonal in contrast
to npDVR. However, the chosen Gaussian model (3) for
atom-atom interaction permits the analytic computation of
the corresponding matrix elements. This advantage is lost
for other forms of the interaction. The convergence of this

TABLE IV. The convergence of the expansion (7) with respect
to Nφ for fixed Nθ = 25, where �T (Nφ) = T (Nφ + 2) − T (Nφ).
Calculations were performed for the scattering on the scalar potential
(3) in anisotropic trap with ωx = 0.02 on the radial grid with
Nr = 130 and rm = 60.

ωx

ωy
= 4

3
ωx

ωy
= 1.5 ωx

ωy
= 2

Nφ T � T (Nφ) T � T (Nφ) T � T (Nφ)

1 0.141 75 0.174 46 0.1549 0.1253 0.1721 0.0864
3 0.316 21 0.152 75 0.2802 0.2057 0.2585 0.2398
5 0.468 96 0.004 43 0.4859 0.0117 0.4983 0.0413
7 0.473 39 0.000 92 0.4976 0.0037 0.5396 0.0336
9 0.474 31 0.000 02 0.5013 0.0001 0.5732 0.0024
11 0.474 33 0.5014 0.5756
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TABLE V. The convergence of the expansion (4) with respect
to N = Nx × Ny , where �T (N ) = T (Nx × Ny) − T [(Nx + 1) ×
(Ny + 1)]. Calculations were performed for scattering on the scalar
potential (3) in anisotropic trap with ωx = 0.02 on the radial grid with
Nr = 130 and rm = 60.

ωx

ωy
= 4

3
ωx

ωy
= 1.5 ωx

ωy
= 2

N T �T (N ) T �T (N ) T �T (N )

4 0.5460 0.0098 0.5734 0.0094 0.6425 0.0086
9 0.5362 0.0073 0.5640 0.0071 0.6339 0.0064
16 0.5289 0.0057 0.5569 0.0056 0.6275 0.0052
25 0.5232 0.0048 0.5513 0.0047 0.6223 0.0044
36 0.5184 0.0040 0.5466 0.0040 0.6179 0.0037
49 0.5144 0.0035 0.5426 0.0035 0.6142 0.0033
64 0.5109 0.0030 0.5391 0.0030 0.6109 0.0028
81 0.5079 0.0027 0.5361 0.0027 0.6081 0.0026
100 0.5052 0.0024 0.5334 0.0024 0.6055 0.0024
121 0.5028 0.0022 0.5310 0.0022 0.6031 0.0021
144 0.5006 0.0019 0.5288 0.0019 0.6010 0.0019
169 0.4987 0.0017 0.5269 0.0019 0.5991 0.0018
196 0.4970 0.5251 0.5973

alternative approach is demonstrated in Table V. It is shown
that already the first four terms in (4) give a rather accurate
approximation of the transmission T (with the error of the
order ∼0.07). However, further increase of the number N

of the basis function in the expansion (4) gives very slow
convergence: at maximal N = 196 the accuracy of the order
∼(2–3) × 10−2 is only achieved even for weak trap anisotropy
(ωx/ωy = 4/3) in contrast to our approach. Note the specific
peculiarity of the expansion (4): the convergence over N has
weak dependence on the trap anisotropy.

B. Tensorial resonant interatomic interaction (5)

We have also applied the method to integration of the
problem (1) and (2) with the tensorial potential (5). This
potential was suggested in [18] for analytical description of
Feshbach resonances in Cs gas in free space where the angular
part was separated and the problem permitted an analytical
solution. However, including into consideration the atom-trap
interaction makes the problem (1) and (2) computationally
extremely challenging even for an isotropic confining trap with
ωx/ωy = 1. Actually, it demands simultaneous treatment of
the sharp jumps of the diagonal terms Vαα(r) (17) in the edge
a of the action of the potential, numerous oscillations of the
wave function at r � a caused by the molecular states in the
region of interatomic interaction, and strong resonant coupling
of open entrance channel ‘‘e” with closed channels “c.”

The parameters of the confining trap ωx = ωy = ω⊥ were
chosen in a range of variation of ω⊥ close to the experimental
values of the trap frequencies ω⊥ ∼ 2π × 14.5 kHz [19] and
the parameters of the interaction potential (5) were fixed in
our work [7] to reproduce the positions and widths of the s, d,
and f resonances for Cs in free space. In the case of isotropic
waveguide trap ωx = ωy , the problem (1) is reduced to the
system of four coupled 2D Schrödinger-like equations: the φ

variable is separated and the 2D polynomials (10) degenerate
to the usual Legendre polynomials Pl(θ ).

TABLE VI. The obtained values of the fitting parameters Vα in
units of 10−3E0 and δμc in units of the Bohr magneton μB for N = 20,
Nr = 1.0 × 106, and rm = 100ā.

α Vα δμc

1 7.565 843 2.2455
2 7.519 637 1.1520
3 7.519 637 1.5100
e 7.770 325

We have integrated Eq. (1) for varying B and fixed longi-
tudinal colliding energy E|| = E − h̄ω⊥ = 1.0 × 10−6E0 =
2.45 × 10−14 eV → 0 with �1/h̄ = 11.63 MHz, �2/h̄ =
0.065 MHz, �3/h̄ = 0.0042 MHz, B1 = 19.7 G, B2 = 48.0 G,
and B3 = 53.5 G [18]. The parameters Vα and δμc in Table VI
are obtained by fitting the calculated scattering length as(B)
(which can be extracted from the scattering amplitude fe) in
free space with the experimental data [18].

In Fig. 2 we present the calculated probability density
distribution |ψe(x,z)|2 in the vicinity of a d-wave Feshbach
resonance (occurring at B0,d = 47.8 G [18]) for B = 47.9 G.
This resonance is developed as a peak at r � a in the plot of
the probability density distribution with numerous oscillations
over r (which is not clear in the figure), due to occurrence of
quasimolecular states. In the asymptotic region |z| → +∞ we
observe one oscillation of the entrance channel wave function
ψe(x,z) (2) with the period 2π/k0 → ∞ defined by very small
colliding energy k0 = √

2μE‖/h̄ → 0.
Figure 3 illustrates the convergence of the method with

respect to the number of grid points N over the angular variable
on a typical example of calculating the T coefficient near
s-wave Feshbach resonance (which occurs at B0,s = −11.16 G
[18]) for B = 14.14 G. It demonstrates rather fast convergence
of the npDVR in the problem over the angular grid points

-100

-50

0 50
100

-100

-50

0

50

100

Z(a)

1.0×10-4

0.5×10-4

X(a)

FIG. 2. The calculated probability density distribution |ψe(x,z)|2
in the entrance channel “e” of the scattering problem (1) and (2) with
the tensorial potential (5) for B = 47.9 G.
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FIG. 3. The dependence of the transmission T (N ) and absolute
error �T (N ) = |T (N ) − T (N = 40)| due to npDVR (7) on the
number of angular grid points N . Calculations were performed
for scattering on the tensorial potential (5) for B = 14.14 G, Nr =
1.0 × 106, and rm = 100ā.

despite the strong coupling over the angular variable provided
by the atom-trap interaction potential 1/2μω2

⊥r2 sin2 θ in the
wide area of variation of the interatomic distance r . It is shown
that for getting absolute accuracy on the level 10−3 it is enough
to keep about N = 10 of terms in the expansion (7). Further
computations with increasing N demonstrate monotonic con-
vergence to a more accurate T coefficient. To reach the level
of accuracy �10−4 it needs to be increased up to N � 30.

Figure 4 illustrates the scheme of convergence for Nr →
∞. To keep absolute accuracy in the level �10−4 we need to
choose the rather big Nr � 106 (see Fig. 4), corresponding to

0.0 5.0x105 1.0x106 1.5x106 2.0x106
10-5

10-4

10-3

10-2

10-1

T(Nr)

ΔT

ΔT

Nr

T(Nr)

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. The dependence of the transmission coefficient T (Nr )
and absolute error �T (Nr ) = |T (Nr ) − T (Nr = 2.0 × 106)| due to
finite-difference approximation of radial derivatives in (14) on the
number of grid points Nr over radial variable r . Calculations were
performed for scattering on the tensorial potential (5) for Nθ = 20,
rm = 100ā, and B = 14.14 G.

the step 1/Nr = 10−6 of the equidistant grid over ζ in (21).
So small a step is demanded for a good approximation of the
oscillating behavior of the desired wave function in the region
r � ā (see Fig. 2) and the sharp jump of the potentials Vαα(r)
near the border ā (see Table VI).

The rather routine procedure of choosing the range of
integration rm over r shows that to keep the accuracy at
the same level �10−4 we need to choose rm rather large,
rm � 100ā. This is a consequence of the long-range asymptot-
ical behavior of the scattering wave function (2) with respect
to k0rm cos θj → +∞ in the zero-energy limit, k0 → 0, which
is under consideration here.

IV. CONCLUSION

We have developed an efficient computational method
based on the npDVR for multichannel scattering with a
nonseparable angular part, confined in atomic traps. We refor-
mulate the scattering problem for coupled 3D Schrödinger-like
equations as a boundary-value problem for a system of
algebraic equations with block-band structure of the well-
defined matrix of coefficients which arises in npDVR after
high-order finite-difference approximation of the radial part
of the kinetic energy operator. Such a reduction permits us
to apply here the computational algorithms efficient for speed
and memory requirements. We demonstrate the efficiency and
good convergence of the method for the 3D scattering confined
in strongly anisotropic traps and the system of four coupled
2D Schrödinger-like equations which describes the atomic
collisions confined in a waveguidelike isotropic harmonic trap
in the vicinity of magnetic Feshbach resonances in Cs [18].

With this method the shifts and widths of the Cs and K
Feshbach resonances in isotropic harmonic waveguides were
calculated in our works [7,8] for the first time. The calculated
shifts of the Cs Feshbach resonances (confinement-induced
resonances) show excellent agreement with the experimental
data [19] and with the simple estimate obtained in the
pseudopotential approach for the positions of the confinement-
induced resonances [24]. In the present work we give a detailed
description of the method and its extension to the case of
an anisotropic waveguidelike confining trap, i.e., to the case
of multichannel scattering for coupled 3D Schrödinger-like
equations. The formulas obtained here permit us to consider the
effects of anisotropy in the interparticle interactions and in the
interaction with the traps as well as the effects of spin and spin-
orbit coupling. Such problems arise at a description of atomic
and molecular collisions in confined geometry of optical and
electromagnetic traps of different configurations. Application
of the method to this kind of problem and to other actual
multichannel scattering problems with nonseparable angular
part looks very promising thanks to the fast convergence and
the flexibility: there is no need for laborious calculations of the
matrix elements with a change of the form of the interactions
because any local interaction is diagonal in the npDVR.
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