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Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail,
but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin
dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D
liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration
of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the
shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its
viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that
these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the
shear stress under external magnetic fields.
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I. INTRODUCTION

Strongly coupled plasma refers to a collection of charged
particles where the potential energy between nearest neighbors
is higher than the averaged kinetic energy [1]. Due to the strong
coupling between charged particles, they cannot move past one
another easily, so the strongly coupled plasma has correlations
similar to those of liquids or solids [2–5]. In experiments,
dusty plasmas are strongly coupled due to the extremely low
charge-to-mass ratio of dust particles [6]; pure ion plasmas
[7] and ultracold plasmas [8] are strongly coupled due to the
extremely low temperature of ions. In astrophysical settings,
strongly coupled plasmas also exist, such as in white dwarfs
[9] and neutron stars [10], due to the extreme high density of
particles.

Most plasmas exist in complicated magnetic fields, such
as various fusion plasmas of magnetic confinement tokamaks
[11] and stellarators [12], inertial confinement fusion devices
(e.g., Omega and NIF facilities [13]), and pinches [14].
One type of star, the magnetar, has extremely powerful
magnetic fields [15]. Under these external magnetic fields, the
collective behaviors of plasmas are expected to be modified
fundamentally [16,17]. Due to their imaging diagnostics and
simple simulation methods, dusty plasmas provide an excellent
experimental and theoretical platform to study the dynamics
of strongly coupled plasmas under magnetic fields.

In the laboratory, dusty plasma can be easily obtained
by introducing micron-sized dust particles of solid matter
into an ionized gas [2–5,18,19]. In the plasma environment,
these dust particles would be charged to a steady state
within microseconds, with a typical charge of −103e to
−105e. In experiments, these charged dust particles can be
levitated and confined by the electric field in the plasma
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sheath, so that they can self-organize into a single layer, i.e.,
forming a two-dimensional (2D) suspension, with negligible
out-of-plane motion [20]. Within this single layer, due to the
shielding effects of free electrons and ions, the interaction
between dust particles can be accurately modeled as the
Yukawa, or Debye-Hückel, potential [21,22], with the form
φ(r) = Q2exp(−r/λD)/4πε0r , where Q is the dust charge and
λD is the Debye screening length. Due to the strong coupling
of these dust particles, the collection of dust particles exhibits
behaviors of liquids [23,24] and solids [18,25]. Molecular
dynamics (MD) simulations of 2D Yukawa liquids and solids
have been widely used to study behaviors of 2D dusty plasmas
[16,17,26–37].

As an important transport coefficient arising from the
interparticle interactions [20], the shear viscosity of 2D dusty
plasmas has been studied intensively for more than a decade
[29,31,38]. In dusty plasma studies, the viscosity has been
quantified using two methods, with and without a macroscopic
shear flow. For the first method, in dusty plasma experiments,
laser beams can be used to drive macroscopic shear flows
in a dusty plasma crystal, resulting in a flow pattern with
temperature nonuniformities and strong shear [38–40]. Then
the viscosity can be obtained either by fitting the flow profile
to the hydrodynamical Navier-Stokes equation [38,39] or from
the viscosity constitutive relation (ratio of the internal shear
stress and shear rate), which we later call the hydrodynamic
method [40]. In dusty plasma simulations with a sustained
macroscopic shear, its viscosity has also been obtained using
the constitutive relation [31,32]. For the second method, in
the equilibrium simulation of dusty plasmas, i.e., without
any macroscopic gradients such as shear, the viscosity has
been calculated using the Green-Kubo relation [29]. Later, the
Green-Kubo relation was also used with the experimental data,
as in [20], to estimate the viscosity value. It was thought that
the viscosity results obtained from these two methods do not
show substantial variation. In [41] and [42], a more elaborate
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laser-manipulation experiment was performed with separate
laser beams for heating and shear, and this was again used
with the hydrodynamic method to calculate the viscosity. The
new result in [42] suggests that the viscosity obtained from the
Green-Kubo relation with the dusty plasma experimental data
can be 60% higher than the viscosity from the hydrodynamic
method. This result of a systematic quantitative difference has
not yet been confirmed by other experimenters, but for our
purposes it does not matter much, as we are more interested
here in trends in the viscosity as the magnetic field is varied
than in the exact numerical value of the viscosity.

Recently, magnetized dusty plasmas have attracted a lot
of attention, both in experiments and in theory. For 2D dusty
plasma systems under magnetic fields, the particle transport
of diffusion [16,17] and heat transport [36,37] have already
been studied theoretically. However, study of the momentum
transport of the shear viscosity for 2D dusty plasmas under
external magnetic fields is still lacking, from our literature
search.

Here, we study the viscosity of a 2D layer of dust in a plasma
with its motion modified by a perpendicular magnetic field.
We use Langevin MD simulation data. With the perpendicular
magnetic field, the thermal motion of dust particles should be
coupled with the gyro motion [17], so that momentum transport
behavior is fundamentally modified. The Green-Kubo relation
is employed here to estimate the shear viscosity of 2D dusty
plasmas from the motion of individual dust particles. We
show that, for 2D dusty plasma liquids, the variation of the
viscosity as a function of the magnetic field is different: at
low temperatures the viscosity rises with the magnetic field,
however, at high temperatures the viscosity diminishes with the
magnetic field. The underlying interpretations of the different
trends are discussed.

II. METHODS

A. Simulation methods

To mimic 2D dusty plasmas, we perform Langevin MD
simulations, where the binary interparticle interaction is
chosen to be the Yukawa potential. All simulated 1024 particles
are constrained within a single 2D plane with the periodic
boundary conditions. The equation of motion for each particle
is mr̈i = Qṙi × B − ∇�φi,j − νmṙi + ζi(t), where Qṙi × B
is the Lorentz force due to the perpendicular magnetic field,
and −∇�φi,j represents the interparticle interaction. For the
latter terms, −νmṙi is the frictional gas drag acting on moving
dust particles, while ζi(t) is the random kick due to thermal
fluctuations of the plasma particles [18]. Note that when a
strong magnetic field is applied, the behaviors of free electrons
and ions in plasmas accounting for the spherical shielding
effects would be modified, and as a result, the interparticle
interaction of 2D magnetized dusty plasmas could be much
more complicated than the Yukawa interaction. Anyway, here
we assume that the interparticle interaction is still the Yukawa
interaction, as a rough approximation, as in [17].

Yukawa systems are typically characterized by the values
of the coupling parameter 
 and the screening parameter κ ,
where


 = Q2/(4πε0akBT )

and

κ ≡ a/λD,

respectively. Here, a = (πn)−
1
2 is the Wigner-Seitz radius [28]

and n is the areal number density of particles. In our simulation,
we specify the values of κ and 
 as the inputs in simulations.
We choose κ = 2.0. For this value, the melting point of an
unmagnetized 2D Yukawa crystal would be 
 = 396, based
on the simulation results in [30].

The perpendicular magnetic field is characterized using the
dimensionless parameter β = ωc/ωpd as in [16] and [17],
where ωc is the cyclotron frequency of the dust particle,
and ωpd = (Q2/2πε0ma3)1/2 is the nominal dusty plasma
frequency [28]. We set the values of β varying from 0 to 1
with a step of 0.1, ranging from 0 to an extremely strong
magnetic field as explained in [17]. The frictional gas drag
coefficient ν is chosen as ν = 0.027ωpd, at a level comparable
to that in experiments [24]. The simulation box is chosen to
be 61.1a × 52.9a, and we truncate the Yukawa potential at
distances beyond a cutoff radius of 24.8a, as in [17].

The integration time step for the equation of motion is
chosen from the range between 0.0093ω−1

pd and 0.037ω−1
pd ,

depending on the 
 value [43], as justified in [29]. For all
simulation runs, we start from a random configuration of
dust particles and use a thermostat in the initial frictionless
MD simulation to reach the desired temperature, i.e., the 


value. Then the Langevin MD simulation is performed in the
next 107 steps, and the generated data are used for our data
analysis reported here. Other simulation details can be found
in [17]. Note that, besides the simulation results reported
here, we have also performed a few test runs with different
initial configurations of particles, and with different numbers
of particles from 4096 to 16 384, and our viscosity results were
not affected.

B. Green-Kubo relation

In statistical mechanics, there are several Green-Kubo
relations to calculate transport coefficients including diffusion,
viscosity, and thermal conductivity [44] based on the random
thermal motion of particles at equilibrium. The Green-Kubo
relation is generally used to calculate the shear viscosity η of
frictionless equilibrium systems [29,44], as well as Langevin
systems with a modest level of friction as in dusty plasma
experiments [45]. Furthermore, the Green-Kubo relation has
also been used with experimental data to estimate the viscosity,
as in [20] and [42].

In the Green-Kubo relation, the shear viscosity η can be
calculated in three steps. First, the off-diagonal element of the
shear stress tensor Pxy(t) is calculated as

Pxy =
N∑

i=1

⎡
⎣mvixviy − 1

2

N∑
j �=i

xij yij

rij

∂φ(rij )

∂rij

⎤
⎦, (1)

where N is the total number of particles, m is the mass of one
dust particle, and φ(rij ) and rij = |ri − rj | are the potential
energy and the distance between particle i and particle j ,
respectively. Then the shear stress autocorrelation function

053208-2



VISCOSITY OF TWO-DIMENSIONAL STRONGLY COUPLED . . . PHYSICAL REVIEW E 96, 053208 (2017)

(SACF) is calculated as

Cs(t) = 〈Pxy(t)Pxy(0)〉. (2)

Finally, the shear viscosity η can be obtained by integrating
the SACF over time using

η = 1

V kT

∫ ∞

0
Cη(t)dt. (3)

Here, V is the simulation volume, which should be replaced
with the area of the simulation box for 2D systems as reported
here. The shear stress, Eq. (1), scales as the system size, while
η is independent of the system size.

Although the units for mass density and viscosity are
different in two and three dimensions, the units are the same
for the kinematic viscosity, which is defined as the ratio of
the viscosity to the mass density η/ρ [20,35,38]. For our 2D
dusty plasma simulations, the kinematic viscosity can be easily
derived as

η/ρ = 1

NmkBT

∫ ∞

0
Cη(t)dt. (4)

For the calculation method of the shear viscosity above,
the required inputs are just the time series of positions, the
velocities, and the potential energy φ of each particle, which
are all available in our Langevin MD simulations.

For two reasons, we describe the result of our Green-Kubo
calculations as an estimate of the viscosity, rather than as
a precise determination. First, in the experiment in [42],
Haralson and Goree found a difference as large as 60% in the
values of the viscosity coefficients obtained by the Green-Kubo
method compared to the hydrodynamic method. Second,
it is still an open question whether transport coefficients
for 2D systems really exist, and there have been quite a
few discussions about the validity of transport coefficients
[20,29,44,46–49]. Some theoretical investigations [46,47]
suggest that, for 2D hard disk systems, the autocorrelation
function in the Green-Kubo relation decays as slowly as 1/t ,
which is called the long-time tail, so that the time integral
does not converge. If the transport coefficient does not exist
in the Green-Kubo relation, in practice, it means that the
measured value of the transport coefficient using another
method, like the constitutive equation, would typically depend
on the system size, and not be a constant. However, for
other 2D systems with different interparticle interactions, some
theoretical investigations [20,29,44] have found faster decays
in the autocorrelation functions, suggesting that probably
transport coefficients are still meaningful for these systems
under these conditions. For all data presented below, we have
checked that the long-time tail decays more rapidly than 1/t ,
over the finite time range available in our simulations.

III. RESULTS

A. Viscosity trend in the cold liquid state

Our results obtained for the SACF and their integrals for
the cold 2D liquid dusty plasma (
 = 200 and κ = 2.0) are
shown in Fig. 1. In Fig. 1(a), as the external magnetic field
increases, the decay of the SACF becomes slower. As a result,
the integral of the SACF, as shown in Fig. 1(b), reaches higher
levels for larger values of β. As in [20], the upper limit of the
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FIG. 1. (a) The shear stress autocorrelation function (SACF) and
(b) its time integral for cold 2D liquid dusty plasma with the condition

 = 200 and κ = 2 under different perpendicular magnetic fields.
With a higher magnetic field (higher β), the decay of SACF is slower,
so that its time integral is larger. From the Green-Kubo relation, the
viscosity is obtained as the time integral of the SACF, while the upper
limit of the integral is chosen as the first zero point of the SACF [20],
labeled tI . The resulting value of the viscosity is the first maximum
of the time integral of the SACF in (b), where three viscosity values
are shown by arrows.

integral in Eq. (4) is typically replaced by the time at which
Cs first crosses 0 tI , so that the first maximum point on the
integration curve is the obtained viscosity value, as the arrows
show in Fig. 1(b). In Fig. 1(b), as the magnetic field increases,
the first maximum point gradually increases.

In Fig. 1(a), there are ripples in the SACF when β is not
0. These ripples would become stronger when β is larger,
suggesting that the ripples are caused by the cyclotron motion
due to the external magnetic field. As discovered in [5] and
[17], under perpendicular magnetic fields, the thermal motion
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FIG. 2. The shear viscosity of cold 2D liquid dusty plasma
with the condition 
 = 200 and κ = 2 under different perpendicular
magnetic fields. The viscosity of cold 2D liquid dusty plasma, from
simulation data using the Green-Kubo method, increases with the
magnetic field. For each β value, there are four independent data
points obtained from four independent runs, and the scatter of these
data would correspond to the error bar.

of 2D dusty plasma has been coupled with the cyclotron
motion. In Sec. III C, we investigate the ripples in detail.

In Fig. 2, we present our obtained viscosity values for cold
2D dusty plasma under different magnetic fields using the
method above. For each value of β, there are four data points,
calculated from four independent simulation runs. We find that,
under the dusty plasma condition 
 = 200 and κ = 2.0, the
shear viscosity generally increases with the external magnetic
field. The only exception is at β = 0.1, where the viscosity is
a bit lower than the viscosity at β = 0 for some data points.
From these results, we conclude that, for cold liquid 2D dusty
plasmas, the shear viscosity generally increases as the external
perpendicular magnetic field increases.

B. Viscosity trends in hot and intermediate liquid states

To test whether the trend observed in Sec. III A is generally
valid for other conditions, we simulate hot and intermediate
liquid states.

Figure 3 presents the SACF and their integrals for hot liquid
dusty plasma under different magnetic fields. For hot liquid
dusty plasma, as the magnetic field increases, the SACF decays
much more rapidly, as shown in Fig. 3(a), which is completely
different from the cold case. In Fig. 3(b), as the magnetic field
increases, the final integral of the obtained SACF decreases
monotonically. Thus, we can draw the conclusion that, for hot
liquid 2D dusty plasmas, the shear viscosity decreases as the
magnetic field increases.

The ripples in the SACF are much more severe in Fig. 3 for
the hot liquid state than those in Fig. 1 for the cold liquid state.
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FIG. 3. (a) The SACF and (b) its time integral for hot 2D liquid
dusty plasma with the condition 
 = 8 and κ = 2 under different
perpendicular magnetic fields. With a higher magnetic field or β

value, the decay of the SACF is quicker, so that its time integral
(viscosity) is smaller.

For the cold liquid state in Fig. 1, although there are small
ripples, they do not much affect the general decaying trend of
the SACF. We are still able to obtain the value of the kinematic
viscosity, as in Fig. 2. However, for the hot liquid state, the
ripples have such a high amplitude that the general decaying
trend of the SACF has been completely modified. The previous
choice of the upper limit of the integral in Eq. (4), the time when
Cs first crosses 0 tI , is drastically affected by the individual
cyclotron motion. As a result, it is questionable whether tI can
really reflect the decay of the collective behavior of the shear
stress. It is ambiguous to determine which maximum point
on the integral curve of the SACF would really be related to
the viscosity. To avoid this confusion, henceforth, we directly
present the SACF integral curve to let readers determine the
level of the viscosity and its uncertainty to a degree that is
sufficient to assess the trends as the magnetic field is varied.

Figure 4 presents the integrations of the SACF for two
intermediate liquid dusty plasmas under various perpendicular
magnetic fields. For both conditions in Fig. 4, as the magnetic
field increases, the variational trend of the viscosity, or the
SACF integration, is no longer monotonic. It seems that, as
the dimensionless magnetic field parameter β increases from
0 to 1, the integral of the SACF for long times first decays and
then increases gradually after roughly β � 0.5.
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FIG. 4. The SACF and its time integral for 2D liquid dusty plasma at intermediate temperatures, with κ = 2 while (a, c) 
 = 20 and (b, d)

 = 30, respectively. In (c) and (d), as β increases from 0, the time integral of the SACF decreases substantially at first, and then for β greater
than about 0.5, the integral of the SACF increases gradually.

C. Behaviors of various contributions to the viscosity

In our simulation results, we have found opposite trends: for
cold 2D liquid dusty plasma, the viscosity increases with the
external perpendicular magnetic field, while for hot 2D liquid
dusty plasma, it diminishes. In the intermediate temperature
range, as the magnetic field increases from 0, its viscosity
first diminishes, then increases gradually. To better understand
these trends, we split the terms of the shear stress in Eq. (1).

From Eq. (1), the shear stress is composed of two parts:
the kinetic part P kin

xy (t) = ∑N
i=1 mvixviy and the potential part

P
pot
xy (t) = −(1/2)

∑N
i=1

∑N
j �=i(xij yij /rij )(∂φ(rij )/∂rij ). As a

result, the SACF can be expressed as the summation of three
terms:

Cs(t) = 〈
P kin

xy (t)P kin
xy (0)

〉 + 〈
P pot

xy (t)P pot
xy (0)

〉
+ 2

〈
P kin

xy (t)P pot
xy (0)

〉
= CKK

s (t) + CPP
s (t) + 2CKP

s (t). (5)

The first term CKK
s (t) and the second term CPP

s (t) are the
self-correlation functions of the kinetic and potential parts
of the shear stress, respectively. The last term CKP

s (t) is the
cross-correlation function between the kinetic and the potential
parts.

The three correlation functions of 2D liquid dusty plasmas
at different temperatures are presented in Fig. 5. For the cold
liquid state, in Figs. 5(j)–5(l), the self-correlation function
of the potential part CPP

s is dominant as expected, since the
potential part is much larger than the kinetic part in cold liquid
states. The situation for the hot liquid state is completely
different. As shown in Figs. 5(a)–5(c), the self-correlation
function of the kinetic part CKK

s is the largest, since the kinetic
part is much larger than that in the cold liquid state. In the
intermediate temperature range, CKK

s and CPP
s are roughly

comparable, as in Figs. 5(d)–5(i). For all temperature ranges,
the cross correlation CKP

s is always the smallest contribution,
which is not surprising because the two parts P kin

xy (t) and

P
pot
xy (t) are two time series of different physical quantities,

which are not much related.
The cyclotron motion of individual particles due to the

external magnetic fields can be reflected in ripples of the SACF,
Cs(t). Investigating the three contributions of the SACF would
lead to more physical insights into these ripples.

For the self-correlation function of the kinetic part CKK
s ,

there are always obvious ripples at different temperatures when
β �= 0. From Eq. (1), the kinetic part of the shear stress is
proportional to the summation of the product of vix and viy

for all particles. When β �= 0, the cyclotron motion causes
both vix and viy to oscillate, and as a result, the first term
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FIG. 5. Three components of the SACF [CKK
s (t), CPP

s (t), CKP
s (t)] for 2D liquid dusty plasma at various temperatures, with κ = 2 while

(a–c) 
 = 8, (d–f) 
 = 20, (g–i) 
 = 30, and (j–l) 
 = 200, respectively. In the hot 2D liquid dusty plasma, the self-correlation function of the
kinetic part CKK

s (a) is dominant in the three components, while in the cold 2D liquid dusty plasma, the self-correlation function of the potential
part CPP

s (k) plays a leading role. In the intermediate temperature range, CKK
s and CPP

s have comparable magnitude levels. The cross-correlation
CKP

s is always the smallest, for all temperature ranges. Here, the legend for the curves is the same as in Figs. 3 and 4.

in Eq. (1), the product of vix and viy , also oscillates, even
more quickly. In Fig. 5, the relative magnitude of ripples in
CKK

s at low temperatures is smaller than that of ripples at high
temperatures. However, in cold liquid states, the decay of CKK

s

is slower, and as a result, the ripples’ magnitude also appears
to be substantial. For hot liquid states, the CKK

s curve decays
so quickly that only a few ripples survive.

Compared with CKK
s , the self-correlation function of the

potential part of CPP
s shows completely different behavior. For

all simulated temperatures, only in the cold liquid state does
the CPP

s show clear ripples. In principle, we would expect the
lattice of colder liquids to have a longer relaxation time or
memory time, and the cyclotron motion would be expected
to extend this relaxation (memory) time further. As shown
in Fig. 5(k), the decay of the potential part of the shear
stress with a larger β is slower, and the ripples caused by
the cyclotron motion can be clearly observed. However, at hot
and intermediate temperatures, CPP

s decays very quickly, as in
Figs. 5(b), 5(e) and (h). When the peak rippling takes place,
CPP

s has already decayed to a very low level, and as a result,
ripples cannot be easily observed.

D. Conceptual discussion of viscosity variational trends

From the behaviors of the three contributions to Cs studied
above, for 2D liquid dusty plasmas, the different variational
trends of the viscosity as a function of the external magnetic
field can be investigated further. In Fig. 5, with a higher
magnetic field, ripples in CKK

s will clearly reduce its integral
over time, or the CKK

s contribution to the viscosity. When the

magnetic field is smaller, the CKK
s contribution to the viscosity

is larger. However, the behavior of CPP
s is completely different.

In hot liquid states, the difference in CPP
s is nearly negligible,

so that the difference in its contribution to the viscosity is also
negligible. In cold liquid states, when the magnetic field is
higher, the CPP

s curve decays much more slowly; as a result, its
time integration increases dramatically or the CPP

s contribution
to the viscosity is larger.

Thus, we can better understand the different variational
trends in the viscosity with the external magnetic fields. For
the cold liquid state, the viscosity is mainly contributed by
the self-correlation of the potential part of the shear stress
CPP

s . With external magnetic fields, the decay time of CPP
s

increases dramatically, and as a result, its time integral is larger
or its viscosity is higher. However, for the hot liquid state, the
viscosity is largely dominated by the self-correlation of the
kinetic part of the shear stress CKK

s . Under external magnetic
fields, the ripples CKK

s would greatly suppress its integral, thus
the viscosity is lower with higher magnetic fields. For the
intermediate state, these two mechanisms are comparable and
competing, so that the variational trend is no longer monotonic.

It is interesting to compare the trends observed above to the
conclusion estimated from the Braginskii equations [50]. As
series of fluid equations for the electrons and ions in plasmas,
the Braginskii equations are more suitable for prediction of the
transport behaviors of low-density, high-temperature plasmas
[50]. Using the Braginskii equations, the shear viscosity can
be estimated, η ∝ νc/B

2, where νc is the collision frequency,
suggesting that the viscosity diminishes with the magnetic
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FIG. 6. Frequencies of the ripples in CKK
s and CPP

s for the
conditions of (a) 
 = 8 and (b) 
 = 200, while κ = 2. These
frequencies are obtained from the times when the first ripple peak
occurs in the curves for either CKK

s or CPP
s . From data fitting, we obtain

the analytical expressions for these frequencies, which are ωKK
peak

2 =
0.13ω2

c + 0.00088ω2
pd and ωPP

peak
2 = 0.02ω2

c + 0.0077ω2
pd for 
 = 8

and ωKK
peak

2 = 0.1ω2
c + 0.023ω2

pd and ωPP
peak

2 = 0.039ω2
c + 0.005ω2

pd

for 
 = 200. Insets: Illustrations that the ratios of these two
frequencies are both close to 2.

field. This predicted trend using the Braginskii equations is
exactly the same as our observed trend for high-temperature
dusty plasmas, which is more suitable for the Braginskii
equations. When the temperature is low, the Braginskii
equations are no longer accurate [51,52]; the results from our

simulations show an inverse trend of the viscosity increasing
with the magnetic field.

E. Time scales of correlation functions

The cyclotron motion caused by the perpendicular magnetic
field results in ripples in the SACF, as shown in Figs. 2–4.
When the magnetic field is stronger, i.e., the β value is higher,
the ripples’ amplitude is higher. At all four temperatures stud-
ied here, the first ripple peak of the SACF happens at the first
ripple peak of CKK

s , and the second ripple peak of the SACF
happens at the first ripple peak of CPP

s . The ripples of CKK
s and

CPP
s at the four temperatures studied here can be seen in Fig. 5.

We have also quantified the time scales of these ripples
for the hot and cold conditions, as shown in Fig. 6. The
frequencies of ωKK

peak or ωPP
peak plotted here are obtained from

the times when the first ripple peak occurs in the curves of
either CKK

s or CPP
s . For both conditions, as the magnetic field

is stronger, their ripple frequencies increase monotonically.
We have also obtained analytical expressions using data fitting
for these ripple frequencies, as shown in Fig. 6.

One interesting point is that, for all four temperatures
studied here, the ripple frequency for CKK

s is always roughly
twice the ripple frequency for CPP

s , as shown in the two insets
in Fig. 6. We speculate that maybe this roughly doubled
frequency for CKK

s is caused by the product of vx and vy ,
which both roughly oscillate with the cyclotron frequency, as
demonstrated in Fig. 5(b) in [17].

Note that, in preparing Fig. 6, for some conditions, the
first ripple of CKK

s or CPP
s cannot be easily identified if the

magnetic field is not large enough; we ignore this data point
completely. Also, due to the finite temporal resolution in our
MD simulation, the exact time at which the first peak occurs
may contain some uncertainties.

IV. SUMMARY

In summary, we have studied the shear viscosity of 2D
liquid dusty plasmas under perpendicular magnetic fields using
Langevin dynamics simulations. Using the Green-Kubo rela-
tion, we have estimated the viscosity, which has been modified
substantially with the applied perpendicular magnetic field.
We have found that, when the magnetic field is magnified,
its viscosity increases at low temperatures, while at high
temperatures, its viscosity diminishes. We found that these
different variational trends of η are caused by the different
behaviors of the kinetic and potential parts of the shear stress
under external magnetic fields.
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