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We study the conductivities σ of (i) the equilibrium isochoric state σis, (ii) the equilibrium isobaric state σib, and
also the (iii) nonequilibrium ultrafast matter state σuf with the ion temperature Ti less than the electron temperature
Te. Aluminum, lithium, and carbon are considered, being increasingly complex warm dense matter systems, with
carbon having transient covalent bonds. First-principles calculations, i.e., neutral-pseudoatom (NPA) calculations
and density-functional theory (DFT) with molecular-dynamics (MD) simulations, are compared where possible
with experimental data to characterize σic, σib, and σuf . The NPA σib is closest to the available experimental
data when compared to results from DFT with MD simulations, where simulations of about 64–125 atoms are
typically used. The published conductivities for Li are reviewed and the value at a temperature of 4.5 eV is
examined using supporting x-ray Thomson-scattering calculations. A physical picture of the variations of σ with
temperature and density applicable to these materials is given. The insensitivity of σ to Te below 10 eV for
carbon, compared to Al and Li, is clarified.
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I. INTRODUCTION

Short-pulsed lasers as well as shock-wave techniques can
probe matter in hitherto experimentally inaccessible regimes
of great interest. These provide information needed for
understanding normal matter and unusual states of matter,
in equilibrium or in transient conditions [1,2]. Similar hot-
carrier processes occur in semiconductor nanostructures [3,4].
Such warm dense matter (WDM) systems include not only
equilibrium systems where the ion temperature Ti and the
electron temperature Te are equal, but also systems where
Ti �= Te, or highly nonequilibrium systems where the notion
of temperature is inapplicable [5]. While the prediction
of a quasi-equation-of-state (quasi-EOS) and related static
properties for two-temperature (2T ) systems [6] is satisfactory,
the conductivity calculations using standard codes, even
for sodium at the melting point, require massive quantum
simulations with as many as ∼1500 atoms and over 56 k

points (according to Ref. [7]), whereas even theories of the
1980s evaluated the sodium conductivities successfully via a
momentum-relaxation-time (τmr) approach [8]. This τmr is also
used in Drude fits to the Kubo-Greenwood (KG) formula used
with density-functional theory (DFT) and molecular dynamics
(MD) methods. The KG formula and its scope are discussed
further in the Appendix.

The static electrical conductivities of WDM equilibrium
systems (i.e., Ti = Te), as well as 2T quasiequilibrium
systems, are the object of the present study. We distinguish
the isobaric equilibrium conductivity σib and the isochoric
equilibrium conductivity σic from the ultrafast matter (UFM)
quasiequilibrium (isochoric) conductivity σuf . The 2T WDM
states exist only for times shorter than the electron-ion
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equilibration time τei and may be accessed using femtosecond
probes.

We consider three systems of increasing complexity above
the melting point: (a) a simple system, viz., WDM aluminum
at density ρ = 2.7g/cm3; (b) WDM lithium at 0.542 g/cm3;
and (c) WDM carbon (2.0–3.7 g/cm3) including the low-T
covalent-bonding regime. As experimental data are available
for the isobaric evolution of Al and Li starting from their
nominal normal densities and down to lower densities of the
expanded fluid, we calculate σib for Al and Li. The ultrafast
conductivity σuf is calculated for all three materials, as σuf is
conveniently accessible via ultrafast laser experiments, though
with low accuracy.

The electrons in WDM Li are known to be nonlocal with
complex interaction effects. For instance, clustering effects
may appear [9] as the density is increased. Warm dense
matter carbon is a complex liquid with transient covalent
bonding where the C-C bond energy ECC may reach ∼8 eV
in dilute gases (see Sec. IV). The three conductivities σic,
σib, and σuf for Al, Li and C, are calculated via two so-
called first-principles methods where, however, both finally
use a mean-free-path model to estimate the conductivity.
The appellation “first principles” is used in the sense that
the use of an exchange-correlation functional based on a
well-established model (e.g., the uniform electron gas at
finite T ) is admitted under such an appellation. Controlled
mathematical or physical approximations to handling the
Hamiltonian are also allowed. The two methods used are (i) the
neutral pseudoatom (NPA) method as formulated by Perrot and
Dharma-wardana [6,10–12] together with the Ziman formula
and (ii) the DFT-MD and KG approach as available in codes
such as VASP [13] and ABINIT [14], enabling us to assess the
extent of the agreement among these theoretical methods and
the available experiments. The liquid-metal experimental data
are still the most accurate data on WDM systems available;
they are used where possible to compare with our calculations.
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Accurate experimental data for the isobaric liquid state of
Al [15,16] and Li [17] are available and provide a test of the
theory. No reliable isobaric carbon data are available; carbon
at 3.7–3.9 g/cm3 and 100–175 GPa was studied recently by
x-ray Thomson scattering (XRTS) [18]. Hence we evaluate
only σic and σib in this case, for ρ in the range of XRTS
experiments and related simulations [19]. The conductivity
across a recently proposed phase transition [20] in low-density
carbon (∼1.0 g/cm3) near T � 7 eV is not addressed here.

Density-functional theory with MD methods treat hot
plasmas as a thermally evolved sequence of frozen solids
with a periodic unit cell of N atoms, typically N ∼ 100,
although order-of-magnitude larger systems may be needed
[7] for reliable transport calculations. The static conductivity
σ is evaluated from the ω → 0 limit of the KG σ (ω) using
a phenomenological model [e.g., the Drude σ (ω) [7,21] or
modified Drude forms [22]]. More discussion of these issues
is given in the Appendix. The N -ion DFT-MD model does not
allow an easy estimate of single-ion properties, e.g., the mean
number of free electrons per ion (Z̄) or ion-ion pair potentials.
In the DFT-MD model an approximation to the latter can be
obtained by inverting the MD g(r) using MHNC inversion
methods [23,24] or using reverse Monte Carlo approaches
[19,25]. Reverse Monte Carlo methods as currently used
are unable to capture long-range Friedel oscillations in pair
potentials. In contrast, the NPA yields the pseudopotentials
and pair potentials as a matter of course.

The NPA methods, e.g., that of Perrot and Dharma-wardana,
reduce the many-electron, many-ion problem to an effective
one-electron, one-ion problem using DFT [10,11,26]. A Kohn-
Sham (KS) calculation for a nucleus immersed in the plasma
medium provides the bound and free KS states. While bound
states remain localized within the Wigner-Seitz sphere of the
ion for the regime studied here, the free-electron distribution
nf (r) of each ion resides in a large correlation sphere such that
all gij (r) → 1 as r → Rc. We typically use an Rc of ten times
the Wigner-Seitz (WS) radius; thus Rc = 10rWS, i.e., a volume
of some 1000 atoms. Several average-atom models [27,28]
have similarities and significant differences among them and
with the NPA method. These are reviewed in the Appendix and
in Ref. [20]. The NPA method applies for low-T systems even
with transient covalent bonding. Hence, we differ from Blenski
et al. [28], who hold that “. . . all quantum models seem to give
unrealistic description of atoms in plasma at low T and high
plasma densities.” However, in reality, the earliest successful
applications of the NPA were for solids at T = 0. Here we
treat very-low-T WDMs, e.g., Al, with ρ = 2.7 g/cm3 and
T/EF < 0.01, using the NPA, EF being the Fermi energy,
and obtain very good agreement for EOS data [6] and for
transport properties, e.g., the electrical conductivity, as shown
in detail in this study and in previous studies [29].

The NPA static conductivity is evaluated from the Ziman
formula using the NPA pseudopotential Uei(k) and the ion
structure factor S(k) [11] generated from the NPA pair
potential Vii(r). The latter is used in the hypernetted-chain
(HNC) equation or its modified (MHNC) form inclusive of
bridge functions, assuming spherical symmetry appropriate
to fluids. Hypernetted-chain methods are accurate, fast, and
much cheaper than MD methods, which fail to provide small-k
information, i.e., less than ∼1/Lbx, where Lbx is the linear
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FIG. 1. Static conductivities for Al from experiment and from
DFT-MD and NPA calculations. The isobaric conductivity σib is
at densities 2.37 � ρ � 1.65 g/cm3 [cf. triangular region (a)]. The
isochoric [σic, region (c)] and UFM [σuf , region (b)] conductivities
are for a density of 2.7 g/cm3. Enlarged views of regions (a) and
(c) are given in the Appendix. The blue closed diamond gives the
conductivity of normal aluminum at its melting point (0.082 eV and
2.375 g/cm3), viz., σ = 4.16×106 S/m from experiment (quoted in
Ref. [34]) and σ = 4.09×106 S/m from the NPA calculation.

dimension of the simulation box. The Ziman formula can
be derived from the Kubo formula using the force-force
correlation function or with the Fermi golden rule [30] and
assuming a momentum-relaxation time τmr. Zubarev’s method
can also be used [31] to derive the Ziman formula. Details
regarding the conductance formulas and their limitations are
given in the Appendix.

II. CONDUCTIVITIES OF WDM ALUMINUM

Surprisingly low static conductivities for UFM aluminum
at 2.7 g/cm3, extracted from x-ray-scattering data from the
Linac Coherent Light Source (LCLS), have been reported by
Sperling et al. [32]. Calculations of σic using an orbital-free
(OF) form of DFT and MD revealed sharp disagreement with
the LCLS data [33]. Sperling et al. [32] found the conductivity
data of Gathers [15] to differs strikingly from the LCLS data
and the OF results. In Fig. 4 of Ref. [32], they attempt to present
a theoretical σic at 2.7 g/cm3 that agrees approximately with
the Gathers’ data and to some extent with the LCLS data. The
Gathers data are reviewed in the Appendix.

However, in our view, the LCLS, OF, and Gathers σ

should indeed differ, both in the physics involved and in the
actual values, because (i) the Gathers data are for the isobaric
conductivity σib of liquid aluminum from ρ = 1.7 to 2.4 g/cm3

[cf. region (a) in Fig. 1], (ii) the orbital-free simulation [33]
and the DFT with MD simulations of Vlček et al. [35] are for
the isochoric equilibrium (Te = Ti) σic of Al at ρ = 2.7 g/cm3

[region (c) in Fig. 1], and (iii) the LCLS data apply to UFM
aluminum σuf , Ti �= Te, with the ions frozen at Ti � T0, as
proposed in Ref. [36]. The UFM conductivity is shown as
region (b) in Fig. 1. The ultrafast conductivity σuf is essentially
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FIG. 2. Isobaric conductivity of aluminum from near its melting
point to about 0.4 eV, expanded from Fig. 1 and with linear scales.
We compare the NPA calculation, Gathers’ experiment, and our DFT
with MD results. The experimental σib of Al at its melting point
(blue closed diamond) [34] ρ = 2.375 g/cm3 is displayed and aligns
with the NPA calculations for the Gathers data showing agreement
between the NPA calculation and two independent experiments.

isochoric, with Ti � T0 at the density ρ0. The time scales in
UFM experiments are too short for (ρ,Ti) to differ significantly
from (ρ0,T0). The evaluation of the ultrafast conductivity σuf

was discussed in detail in Ref. [36] and here we extend our
study of UFM conductivities.

A. Isobaric conductivity

In Fig. 1 we globally compare our NPA-Ziman isobaric
conductivities for aluminum with the isochoric and UFM
conductivities, shown in regions (b) and (c). The three
conductivities evolve in characteristic ways as a function of
temperature.

The experimental data of Gathers for σib are compared
with our results in more detail in Fig. 2 and we find
excellent agreement with our NPA calculation. The DFT-MD
calculations using a 108-atom simulation cell are shown in
both figures for σib and σic.

The DFT-MD calculations in this study use the Perdew-
Burke-Ernzerhof (PBE) functional [37] in the generalized gra-
dient approximation (GGA), available in VASP and ABINIT. An
energy cutoff of 12 hartree was imposed, while a Nosé-Hoover
thermostat with a time step of 100 a.u. (2.4188 fs) was used. In
all cases the current versions of the codes were implemented
and the pseudopotentials proposed therein were used. The
projected augmented wave potentials supplied with the code
were used in VASP simulations. The finite-T implementation of
DFT codes used an occupation-number smearing to simulate
the Fermi functions [14]. The highest-k mesh (Monkhorst-
Pack grid) tested was 4×4×4, but the 2×2×2 mesh was
adopted for all our reported calculations. More details on the
simulation parameters used, such as occopt, tsmear, etc. (e.g.,
for ABINIT runs), or equivalent parameters used for VASP runs
followed standard usage and are available from the authors.

The DFT-MD-KG results for the conductivity fall below
the experimental σib or the NPA σib, a common trend for the
DFT-MD-KG σic as well, as discussed further in the Appendix.
It should be noted that Gathers gives two isobaric resistivities
in columns 4 and 5 of Table II in Ref. [15] and this has caused
some confusion; Gathers’ results are further discussed in the
Appendix, noting that column 5 of [15] is the ‘raw data’.

The isochoric conductivity of Al at 0.082 eV (nominal
melting point) is ≈5×106 S/m; the experimental isobaric
conductivity [34] at the melting point is σib = 4.1×106 S/m,
with a density of 2.375 g/cm3 instead of the room-temperature
density of 2.7 g/cm3 due to thermal expansion. The value of
4.08×106 S/m obtained from NPA calculations for aluminum
at 2.375 g/cm3 is in excellent agreement with experiment. It
is shown as a blue closed diamond in Fig. 1. This value drops
to 3.8×106 S/m if a bridge contribution (MHNC) is not used
in calculating the ion-ion structure factor.

B. Isochoric conductivity

The isochoric system, region (c) in Fig. 1, is at ρ0 =
2.7 g/cm3 and rWS � 2.98 a.u. (h̄ = |e| = me = 1) for all
T = Ti = Te. The NPA value of σic at T = 0.082 eV (nominal
melting point) is ≈5×106 S/m; this is higher than the
experimental value usually quoted [34] of σib = 4.1×106 S/m
as the density of normal aluminum becomes 2.375 g/cm3

instead of 2.7 g/cm3 due to thermal expansion. In region
(c) we see the OF conductivity of Ref. [33] going to a
minimum at T ∼ 5 eV and subsequently rise as T increases;
the DFT-MD-KG formula becomes increasingly prohibitive
at these higher temperatures. The NPA calculations show a
first minimum at ∼6 eV, followed by a maximum at 25 eV
and another minimum at ∼70 eV. These features in the NPA
results are due to the concurrent increase in Z̄ as well as the
competition between different ionization states. This effect,
i.e., the conductance minimum or resistivity saturation, occurs
when electrons become nondegenerate (i.e., μe � 0), i.e.,
when all electrons (not just those near EF ∼ 12 eV) begin
to conduct.

While we favor this explanation of the minimum in the
conductivity and first presented it in our discussion [38] of the
Mlischberg experiment, some authors (e.g., More in Ref. [2]
and also Faussurier and Blancard [39]) have proposed an
explanation in terms of resistivity saturation, as in Mott’s
theory of minimum conductance in semiconductors. The
electron mean-free path λ = v̄τmr, where v̄ is the mean electron
velocity, is claimed to reduce to the mean interatomic distance
at resistivity saturation. However, τmr evaluated using the
Ziman formula is a momentum-relaxation time associated
with scattering within the thermal window of the Fermi
distribution at the Fermi energy (more accurately, at an energy
corresponding to the chemical potential). Since 2kF is of the
order of an inverse rWS, it is not surprising that one can
connect a length scale related to rWS to λ. However, it does
not describe the right physics of the conductivity minimum.
Even the simplest form of the Ziman formula already shows
the conductivity minimum and it is a single-center scattering
formula using a Born approximation within a continuum
model; it contains no information on the interatomic distance
since one can even set S(k) = 1 and obtain the resistivity
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saturation. In contrast, the resistivity saturation shown in Fig. 1
for the NPA calculation manifests itself from approximately
half the Fermi energy (�6eV), corresponding to Z̄ = 3, to
about 70 eV, corresponding to a much higher ionization
of Z̄ ≈ 7. The increased ionization prevents the chemical
potential from becoming rapidly negative and delays the onset
of the steep rise in conductivity. These features cannot be
explained via a limiting mean-free-path model. In fact, in an
isochoric system the interionic distance does not change and
one cannot have the complex structure shown in the NPA σic

in such a model. For Te = 6 eV to about T = 25 eV, Z̄ = 3
for Al and steadily converts to Z̄ = 4, and then a decline and
a rise are accompanied by the conversion of Z̄ = 4 to Z̄ � 7
by T ∼ 70 eV.

Figure 1 of Faussurier and Blancard [39] displays the
isochoric resistivity for aluminum together with results from
Perrot and Dharma-wardana [40]. However, the latter gives the
scattering as well as the pseudopotential-based resistivity for
aluminum where the mean electron density n̄ is held constant,
not the usual isochoric resistivity where the ion density ρ̄

has to be held constant. Electron-isochoric and ion-isochoric
conditions are equivalent initially and as long as Z̄ = 3 for
aluminum, but the comparison becomes misleading beyond
T ≈ 15 eV. Figure 1 of Faussurier and Blancard [39] also
displays the aluminum isochoric resistivity from Yuan et al.
[41]. However, as explained in Sec. 3 of the Appendix, both
Faussurier and Blancard and Yuan et al. use an ion-sphere
model that leads to ambiguities in the definition of Z̄ and μ0,
leading to non-DFT features that are absent in the NPA model.
Hence their resistivity estimates are not directly comparable
to ours. Sufficiently accurate experiments are not yet available
at such high temperatures to distinguish between different
theories and validate one or the other. Such models should
also be tested using cases where accurate experimental data
are available (e.g., in the liquid-metal regime).

A further aspect of conductivity calculations is the need
to account for multiply ionized species. For T > EF /2, Z̄

begins to increase beyond 3 and departs substantially from
an integer (e.g., Z̄ = 3.5 at 20 eV). It is thus clear that a
multiple ionization model with several integral values of Z̄

(e.g, a mixture of Z̄ = 3 and Z̄ = 4) should be used, as
implemented by Perrot and Dharma-wardana [11], for lower-
density aluminum. The isochoric data σic reported in Fig. 1
use the approximation of a single ionic species with a mean Z̄.

C. Ultrafast conductivity

The nature of ultrafast matter and its properties are
determined by the initial state of the system. That is, if
the initial system were a room temperature solid and if the
experiment were performed with minimal delay after the pump
pulse of the laser, then the ion subsystem would remain more
or less intact. However, the initial state can also be the liquid
state and this will lead to different results. Both these cases are
studied to compare and contrast the resulting σuf for Al.

(i) For the case where the initial state is solid (fcc lattice),
we assume for simplicity that the ion-subsystem structure
factor S(k) can be adequately approximated by its spherical
average since aluminum is a cubic crystal. The major Bragg
contributions are included in such an approximation. In fact,
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FIG. 3. Ultrafast conductivity of Al at a density of 2.7 g/cm3

obtained from the NPA-MHNC-Ziman formula for a solid initial
state at 0.06 eV (blue curve with diamonds) and liquid initial state
(black curve with triangles) just above the melting point 0.082 eV.
The top curve was also displayed in Fig. 1 for comparison with σib

and σic.

the spherically averaged S(k) is taken to be the ion-ion S(k)
of the supercooled liquid at 0.06 eV as that is the lowest
temperature (closest to room temperature) where the Al-Al
S(k) could be calculated. The results are in fact insensitive
to whether we use the S(k) at 0.06 eV, 0.082 eV (melting
point), or 0.1 eV. Furthermore, here we are using the simplest
local (s-wave) pseudopotential derived from the NPA approach
using a radial KS equation. Hence the use of a spherically
average S(k) is consistent and probably within the large error
bars of current LCLS experiments (see Refs. [32,36]). The
NPA σuf results (Fig. 3) for the case where the initial state
is below the melting point (mimicking solid Al) have been
compared in detail with the experimental data in Ref. [36].
One notes that the σuf at Te = Ti = 0.6 eV does not go to
the conductivity of solid (crystalline) aluminum, but goes to
a lower value, possibly consistent with that of a supercooled
liquid. The lower conductivity, compared to the fcc crystal, is
qualitatively consistent with the drop in the conductivity from
the solid-state room-temperature density (equal to 2.7 g/cm3)
value of σ � 41×106 S/m to the liquid-state value at the
melting point, 4×106 S/m. The drop predicted by the NPA
σuf is larger. Hence this calculation appears to need further
improvement for T < 1.0 eV, e.g., using the structure factor of
the fcc solid and including appropriate band-structure effects.

(ii) The second model we study has molten Al at its
nominal melting point (0.082 eV) but at its isochoric density
of 2.7 g/cm3 as the initial state. This mimics the case where
the pump pulse had warmed the ion subsystem to some extent.
Then we use the S(k) and pseudopotentials evaluated at
0.082 eV (nominal melting point) and regard that they remain
unchanged while the electron screening and all properties
dependent on the electron subsystem are evaluated at the
electron temperature Te. The resulting σuf is shown in Fig. 3,
together with the case where the initial state was assumed
to be a temperature (e.g., the room temperature 0.026 or
0.06 eV) that is below the melting point. The two curves
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TABLE I. Gathers’ data for Al recalculated from Eqs. (6)–(10) in [15] and also from his fit equation [reproduced as Eq. (A24)] given in
the last row of Table 23 of [16].

T v/v0 ρ RG REq. (9) = R[16] σib

(K) (g/cm3) (μ� m) (μ� m) 106 (S/m)
Eq. (A6) Eq. (A7) Eq. (A8) 1/REq. (A8)

[15], Table-II, column 3 [15], Table-II, column 5 [15], Table-II, column 4 1/R[16]

933 1.12 2.42 0.261 0.233 4.30
1000 1.12 2.41 0.268 0.238 4.20
1500 1.18 2.29 0.331 0.281 3.56
2000 1.24 2.18 0.370 0.324 3.08
2500 1.30 2.08 0.476 0.367 2.73
3000 1.37 1.97 0.560 0.409 2.44
3500 1.44 1.87 0.651 0.451 2.22
4000 1.52 1.77 0.751 0.494 2.03

clearly suggest that the LCLS experiments (see Ref. [36] for
details) for Al are more consistent with the initial state (i.e.,
the state of matter at the peak of the laser pulse) being solid
and with no significant premelt.

Currently, no DFT-MD-KG results for σuf are available
for comparison. The usual DFT-MD-KG approach has to be
radically modified for DFT-MD-KG calculations of σuf , given
that no ion motion occurs during the lifetime of UFM.

D. Exchange-correlation functionals and the Al conductivity

Using a DFT-MD-KG approach, Witte et al. [42] examined
the σ for Al at ρ = 2.7 g/cm3 and T = 0.3 eV computed
with the exchange-correlation (XC) functionals of (i) Perdew
et al. [37] used in their Li work [43] as well, and (ii) Heyd
et al. [44]. Their results agree with those of Vlček et al.
[35] for the PBE functional; our DFT-MD calculations also
agree well with those of Vlček et al. as seen from region (c)
in Fig. 1. However, Witte et al. propose, from their Fig. 1,
that their Heyd-Scuseria-Ernzerhof (HSE) calculation agrees
[45] best with the experimental data of Gathers [15]. This
is based on a calculation of the conductivity at 0.3 eV only
(≈3500 K), which is compared with the corresponding entry
in Table II, column 4, of Ref. [15], viz., resistivity equal
to 0.451 μ� m, i.e., conductivity equal to 2.22×106 S/m.
However, this datum is given by Gathers for a volume dilation
of 1.44 (column 3), i.e., ρ = 1.875 g/cm3, and not 2.7 g/cm3.
Witte et al. incorrectly interprets column 4 of Gathers’ Table
II as providing isochoric conductivities of Al at 2.7 g/cm3.
Gathers’ tabulation and the several resistivities given are
indeed a bit confusing; we reconstruct them in Table I and
are further discussed in the appendix.

Columns 4 and 5 of our Table I give two possible results for
the isobaric conductivity of aluminum, with column 4 giving
the experimental resistivity as a function of the nominal input
enthalpy, i.e., raw data. Column 5 of our Table I gives the
resistivity where in effect the input enthalpy has been corrected
for volume expansion; this is not the isochoric resistivity of
aluminum, as proposed by Sperling et al. [32] and by Witte
et al. [42] but the isobaric resistivity.

All the resistivities in Gathers’ Table II, column 4 (i.e.,
our Table I, column 5) can be recovered accurately by our
parameter-free NPA calculation using the isobaric densities.

Also, the fit formula given in the last row of Table 23 of
Gathers’ review [16] confirms that Table II, column 4 in
Ref. [15] is indeed the final isobaric data at 0.3 GPa. Our
NPA calculation at the melting pt. recovers the known isobaric
conductivity [34] at 0.082 eV, which is also consistent with the
Gathers data.

The HSE functional includes a contribution (e.g., 25%)
of the Hartree-Fock exchange functional in it. If there is no
band gap at the Fermi energy, the Hartree-Fock self-energy
is such that several Fermi-liquid parameters become singular.
Hence the use of this functional in WDM studies may lead
to uncontrolled or unknown errors. Furthermore, previous
studies, e.g., those of Pozzo et al. [7] and Kietzmann et al. [46],
show that the PBE functional successfully predicts conduc-
tivities. Those conductivities, if recalculated with the HSE
functional, are most likely to be in serious disagreement with
the experimental data.

Density-functional theory is a theory that states that the free
energy is a functional of the one-body electron density and
that the free energy is minimized by just the physical density.
It does not claim to give, say, the one-electron excitation
spectrum or the density of states (DOS). The spectrum and the
DOS are those of a fictitious noninteracting electron system at
the interacting density and moving in the KS potential of the
system. The KS potential is not a mean-field approximation
to the many-body potential, but a potential that gives the
exact physical one-electron density if the XC functional is
exact. Hence any claimed agreement between the DFT spectra
and physical spectra is not relevant to the quality of the XC
functional, except in phenomenological theories that aim to
go beyond DFT and recover spectra, DOS, band gaps etc.,
by including parameters in metafunctionals that are fitted to a
wide array of properties. There is however no theoretical basis
for the existence of XC functionals that also simultaneously
render accurate excitation spectra, DOS, and band gaps in a
direct calculation.

Witte et al. [42] use their HSE-generated aluminum
conductivity (which leads to the incorrect lower conductivity)
in further calculations of x-ray-scattering spectra and conclude
that strong electron-electron interactions exist in aluminum.
In our view, a more standard interpretation will result if a
two-temperature aluminum WDM model is invoked, as in our
reanalysis [36] of the study of Al by Sperling et al. [32].
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In our NPA calculations we have used the PDW XC
functional derived from the classical-map model of the finite-T
homogeneous electron fluid (see Ref. [47]). A comparison
of the PDW XC functional with finite-T quantum Monte
Carlo results is given in Ref. [48] and shows excellent
agreement, especially in the regimes of rs and T relevant to
WDMs. Unlike in the DFT-MD method, which works with a
highly inhomogeneous multicenter electron distribution, the
NPA works with a single-center electron distribution that
is more smooth in comparison and hence the local-density
approximation (LDA), adopted here, usually works quite well.

E. Variation of the conductivity as a function of temperature

The evolution with temperature of the conductivity can be
understood within the physical picture of electrons near the
Fermi energy (chemical potential) undergoing scattering from
the ions in a correlated way via the structure factor. However,
the scattering is possible within the thermal smearing window
W = f (�k,T ){1 − f (�k + �q,T )}, where f (k,T ) is the Fermi
occupation factor and {1 − f (�k + �q,T )} is the available final
state for a scattering vector �q. As can be seen from the Ziman
formula, the strength of the scattering in turn involves the
S(k) whose peak position relative to the Fermi momentum
kF becomes relevant. The breakdown of the Fermi surface
as T/EF increases leads to a widening of W . These effects
are countered to some extent by the increasing ionization that
increases the Fermi energy and the degeneracy. However, the
decrease of μ0 with temperature is dominant and at sufficiently
high temperatures the chemical potential μ0 tends to zero and
to negative values (we only need to consider μ0 within a DFT
context). The conductivity then becomes that of a classical
charged fluid (see Ref. [38]). This is easily understood by
noting that μ0 is of the form [49]

μ0/EF = 1 − π2

12
(T/EF )2 − 0.7103(T/EF )4 + · · · . (1)

When μ0 becomes sufficiently negative, the Fermi factors
simplify to Boltzmann factors and there is no Fermi surface
or Fermi statistics to limit the electron scattering; then the
conductivity increases with temperature as in Spitzer theory.
Hence we conclude that the conductivity minimum (resistivity
plateau) in WDM systems occurs in transiting from the metal-
like conductivity of (partly or fully) degenerate electrons that
decrease with temperature to the classical-plasma conductivity
of nondegenerate electrons that increase with temperature. It
is not related to the Mott minimum conductivity.

The differences between σic and σuf , both isochoric, arise
because the structure factors S(k,Ti) of the two systems are
different, while Uei(k) and the Fermi-surface smearing for
them are essentially the same at Te, with Z̄ � 3 for Al. The ion
structure factors at different temperatures, calculated using the
NPA pseudopotential Uei(k,Te) and used for evaluating σic, are
shown in Fig. 4(a). The Uei and S(k), and hence σ , are first-
principles quantities determined entirely from the NPA-KS
calculation. If the initial temperature T0 at the time of creation
of the Al UFM were 0.082 eV (i.e., on the order of the melting
point), then the corresponding S(k,T0) is used in evaluating
σuf at all Te, together with the Uei(k,Te). More details of σuf

and a comparison with LCLS data may be found in Ref. [36].
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FIG. 4. (a) Static structure factor S(k) of isochoric aluminum
WDM at different temperatures; S(k) at 2kF changes by 65% from
T = 0.1 to T = 5 eV. In ultrafast aluminum S(k) remains fixed at
the initial temperature, even when Te changes. (b) Evolution of S(k)
for isochoric Li at 0.542 g/cm3 as a function of temperature. As T

increases, the peak broadens and shifts away from 2kF .

The isobaric system differs from the isochoric and ultrafast
systems due to volume expansion. Hence the S(k) and the Uei

are calculated at each expanded density.
Degenerate electrons (Te/EF < 1) scatter from one edge

(e.g., −kF ) of the Fermi surface to the opposite edge (kF ),
with a momentum change k � 2kF , and their scattering
contribution essentially determines σ . Thus the position of
2kF with respect to the main peak of S(k) and its changes
with Te explain the Te dependence of σ (Te). For aluminum
at ρ = 2.7 g/cm3, 2kF lies on the high-k side of the main
peak, and as Ti = Te increases, the peak broadens into the
2kF region [see Fig. 4(a)], resulting in increased s. In the
isochoric UFM case both Ti and S(k) do not change, but as Te

increases the window of scattering f (k)[1 − f (k′)], where �k′
is the final state, becomes larger and σuf decreases.

As Fig. 4 is burdened with many plots, we have given the
comparison of Al and Li ion-ion pair-distribution functions
obtained from DFT-MD and NPA-MHNC simulations sepa-
rately. However, the good agreement of NPA g(r) and S(k)
with DFT-MD data, or experimental S(k), is routinely found
for compressions of 0.5 to twice the normal density. Such
agreement with DFT-MD simulations is seen in, e.g., Fig. 8
of Ref. [6] for Li and in Figs. 1 and 3 of Ref. [46]. We give
a comparison of the NPA-MHNC equation generated g(r) for
Al and Li at 2.7 and 0.542 g/cm3, respectively, at 1 eV where
they are partially degenerate WMDs, in Fig. 5. The details for
the DFT-MD simulations are as described in Sec. II A. The
NPA calculation is with the PDW local-density XC functional
[47] for the electrons, as explained in Sec. II D, while the
HNC-bridge functional was used for the classical correlations.

The excellent agreement between the NPA σib and the
Gathers aluminum data for σib (see Fig. 2) confirms the
accuracy of NPA pseudopotentials Uei , structure factors, and
XC functionals used and enhances our confidence in the NPA
predictions for σic. Conductivity experiments at other density
ranges had also been found to be in good agreement with
NPA calculations [29] and with the DFT-MD calculations of
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FIG. 5. The NPA-MHNC g(r) of isochoric Al at 1 eV, ρ =
2.70 g/cm3, and rWS � 3.0 and isochoric Li at 1 eV, ρ =
0.542 g/cm3, and rWS � 3.3 compared with the DFT-MD g(r)
obtained using ABINIT and 108 atoms in the simulation. At 1 eV,
T/EF ∼ 0.1 and 0.2 for Al and Li, respectively, which correspond to
partially degenerate WDM systems.

Dejarlais et al. [50]. Furthermore, the NPA approach becomes
more reliable at higher temperatures (T/EF > 1) while the
DFT-MD methods rapidly become impractical due to the large
number of electronic states that are needed in the calculation
due to the spread in the Fermi distribution. At lower T ,
ion-ion correlations and interactions become important and
the DFT-MD method treats them well. However, at low T ,
the higher conductivities imply longer mean free paths and
the need for simulation cells with larger Lbx [51]. Good
DFT-MD-KG results, when available, provide benchmarks for
calibrating other methods.

III. CONDUCTIVITIES OF WDM LITHIUM

The three conductivities σic, σib, and σuf for Li are shown
in Fig. 6. The isobaric data are in the triangular region. All
calculations except that due to Witte et al. shown here are
from the NPA-MHNC-Ziman formula. For T/EF > 0.3 the
bridge corrections become negligible and the MHNC equation
becomes equivalent to the HNC equation.

The NPA isochoric conductivities σic at a density of ρ =
0.542 g/cm3, i.e., rWS = 3.25 a.u., are given for a range of
T , while one value at ρ = 0.6 g/cm3 and Te = Ti = 4.5 eV
is also given. This is for conditions reported by Witte et al.
[43]. The experimental isobaric data from Oak Ridge National
Laboratory [17] for σib (0.5 g/cm3 at 0.05 eV to 0.4 g/cm3

at 0.1378 eV), as well as the NPA σib, are also shown. Unlike
aluminum, Li is a low-electron-density material with Z̄ = 1.
Hence its EF ∼ 5 eV is small compared to that of aluminum.
For Li, 2kF lies on the low-k side of the main peak, as can be
seen in Fig. 4(b). The UFM conductivity σuf remains higher
than the σic and its temperature dependence can be understood,
as discussed in Sec. II E, by the varying position of kF with
respect to S(k) as Te varies.

The agreement between the NPA σib and the Oak Ridge
National Laboratory data for isobaric Li is moderate. The NPA
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FIG. 6. Isobaric (σib), isochoric (σic), and ultrafast (σuf) con-
ductivities of Li at a density of 0.542 g/cm3 obtained from the
NPA-MHNC-Ziman formula. Isobaric experimental conductivities
σib are for 0.5 � ρ � 0.4 g/cm3. The DFT-MD-KG σic value of Witte
et al. at 0.6 g/cm3 [43], and the corresponding NPA-MHNC-Ziman
value for σic are also shown.

Li pseudopotential is the simplest local (s-wave) form and
corrections (e.g., for the modified DOS) have not been used.
In Fig. 7 we have attempted to compare the Oak Ridge National
Laboratory experimental data for liquid lithium with the DFT-
MD-KG calculations of Kietzmann et al. [46]. We use their
calculations as a function of density for 600 and 1500 K. The
Kietzmann et al. calculation at 2000 K is also shown in Fig. 7,
but since the boiling point of lithium under isobaric conditions
is �1600 K, their calculation at 2000 K cannot be justifiably
used to estimate a value for 1500 K from the data of Kietzmann
et al., which also include the two points at 600 and 1000 K.
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FIG. 7. Oak Ridge National Laboratory experimental data com-
pared with the NPA-MHNC-Ziman results and the DFT-MD-KG
conductivity of Kietzmann et al. [46] using the VASP code. Their 600
and 1000 K results have been slightly extrapolated to the low-density
region covered by the experiments. The curve at 2000 K given
by Kietzmann et al. is above the boiling point of Li and is not
representative of the behavior of Li at 1500 K.
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Nevertheless, their results are consistent with the observed
trend and agree with our NPA results to the same extent as
with the Oak Ridge National Laboratory data.

Disconcertingly, the NPA-Ziman formula and the DFT-MD
σic for ρ = 0.6 g/cm3 and T = 4.5 eV reported by Witte et al.
[43] using a 64-atom simulation cell disagree by a factor
of 5. However, the NPA-XRTS calculations for Li (see the
Appendix) agree very well with the DFT-XRTS experiment
of Witte et al. Furthermore, we had already shown that the
pair-distribution functions from the NPA calculations for Li
for the density range of interest are in good agreement with
the simulations of Kietzmann et al. (see Ref. [6]). However, at
T = 4.5 eV, μ = 0.035 a.u., i.e., the plasma is nearly classical.
Hence small-k scattering becomes important in determining σ .
A simulation cell of length a = 20.26 a.u. holds for 64 atoms.
The smallest momentum accessible is π/a = 0.16 (a.u.)−1

and fails to capture the smaller-k contributions to σ . These
could cause the observed differences between the NPA and
DFT-MD-KG results.

IV. CONDUCTIVITIES OF WDM CARBON

Solid carbon is covalently bonded, with strong sp3,sp2,sp

bonding (with a bond energy of ∼8 eV) being possible,
since a single covalent bond has an energy of about 4 eV
[20,52]. Hence efforts to create potentials extending to several
neighbors, conjugation, torsional effects, etc., have generated
complex semiempirical bond-order potentials parametrized to
fit data bases but without any T dependence. Transient C-C
bonds occur in liquid-WDM carbon. Normal-density liquid C
near its melting point is a good Fermi liquid with four free
electrons (Z̄ = 4) per carbon. Unlike in bond order potentials
where the electron fluid is subsumed, we explicitly retain a
two-component (ions and electrons) description and obtain
simple, successful NPA potentials for carbonlike fluids. An
early comparison of Car-Parrinello calculations for carbon
with the NPA method was reported by Dharma-wardana and
Perrot [53]. The NPA method successfully predicts the S(k)
and g(r), inclusive of prepeaks due to C-C bonding [20] as also
obtained from DFT-MD simulations of WDM carbon[18,19].
The DFT and path-integral Monte Carlo g(r) [54] also agree
closely with NPA results [20].

No experimental σib are available for carbon; hence we
calculate only σic and σuf to display the remarkable difference
in the conductivities of complex WDMs with (transient)
covalent bonding, compared to simpler WDMs like Al and
Li. Figure 8(a) displays σic and σuf for isochoric carbon at
3.7 g/cm3. Here EF is ∼30 eV (for Z̄ = 4) and the WDM
behaves as a simple metal, with σ dropping as T increases
and then increasing at higher Te when μe becomes negative.
The conductivity (for T � 0.5EF ) is determined mainly by
the value of S(k) at 2kF , shown in Fig. 8(b). This is set by
the C-C peak in S(k), which is relatively insensitive to T , and
hence σ is also insensitive to temperature (compared to WDM
Al or Li) in this regime. The insensitivity of S(k = 2kF ) to
temperature also leads to the strikingly different behavior of
the ultrafast conductivity for liquid carbon as compared to
σuf and σic of WDM Al or Li. In WDM carbon the ultrafast
and isochoric conductivities are very close in magnitude.
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FIG. 8. (a) Isochoric conductivity σic and ultrafast conductivity
σuf for carbon at ρ = 3.7 g/cm3 from the NPA and DFT-MD
methods [18] and isochoric conductivity from the NPA method for
ρ = 2.0 g/cm3. (b) Ion-ion S(k) for several temperatures from the
NPA method; note the nearly constant value of S(k) at 2kF (indicated
by a vertical line).

The DFT-MD σic values for 3.7 g/cm3 differ from the NPA
method at low-T where strong-covalent bonds dominate.
The N ∼ 100 atom DFT-MD simulations may be seriously
inadequate due to such C-C bond formation. The NPA method
itself deals only in a spherically averaged way with the covalent
bonding. That approximation is probably sufficient for static
conductivities if the bonding is truly transient. In any case,
accurate experimental σib data for liquid carbon are badly
needed to test theoretical models.

V. CONCLUSION

Although it is not necessary to distinguish between iso-
choric and isobaric conductivities, as the specification of the
density and temperature is sufficient, such a distinction is
useful in comparing experiment and theory. The temperature
variations of the three conductivities have distinct features. The
ultrafast conductivity is indeed a physically distinct property as
the ion subsystem remains unchanged while only the electron
subsystem is changed during the short-time delay between
the pump pulse and the probe pulse. Thus it is useful to
distinguish isochoric, isobaric, and ultrafast conductivities of
WDM systems, as illustrated using Al, Li, and C. The NPA
σib are in excellent agreement with the aluminum experimental
data of Gathers [15], while the DFT-MD-KG calculations with
108-atom simulations estimate a lower conductivity. The NPA
results are in moderate agreement with the Oak Ridge National
Laboratory σib for Li, as is also the case with DFT-MD-KG
calculations. The carbon σic and σuf from NPA calculations
have a striking behavior in the regime of (normal) densities
studied here and differ from Al and Li. This is attributed to
the effect of transient C-C bonds that are included in the NPA
calculations within an average description via effective pair
potentials.
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HNC method (this work) and the DFT-MD method (Ref. [43]) for
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the DFT-MD simulation due to the finite size of the DFT simulation
cell. Here q(k) is the Fourier transform of the free-electron density at
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N (k) = f (k) + q(k). The ion feature W (k) = N (k)2S(k) involves the
ion-ion structure factor S(k). Experimental points are from Saiz et al.
cited in the work of Witte et al. [43], Fig. 8.

APPENDIX

This Appendix addresses the following topics: NPA calcu-
lation of the XRTS ion feature W (q) for comparison with the
DFT-MD calculations of Witte et al. [43], where the excellent
agreement is in clear contrast to the disagreement for the
conductivity datum for Li reported by Witte et al.; details
of the NPA model and how it differs from other average-atom
models; the Ziman formula for the conductivity using the NPA
pseudopotential and the ion-ion S(k); KG calculations for Al,
Li, and C; Drude fits to the conductivity of Al and Li; and
review of the aluminum σib and σic, the experiment of Gathers,
and the disagreement with the conductivity of Al reported in
Fig. 1 of Ref. [42] by Witte et al. using the HSE XC functional.

1. X-ray Thomson scattering calculation for Li at density
ρ = 0.6 g/cm3 and temperature T = 4.5 eV

The calculation of XRTS of WDM using the NPA method
has been described in detail in Ref. [55]. The XRTS ion
feature W (k) for Li at T = 4.5 eV and ρ = 0.6 g/cm3 has
been calculated (see Fig. 9) to compare our NPA results with
the results from the DFT-MD simulations by Witte et al.
(Ref. [43], Fig. 8). This establishes the excellent agreement
with the electronic structure part of the NPA calculation and
the ionic part Sii(k) resulting from the DFT-MD calculations,
irrespective of the XC functional used, viz., PBE GGA by
Witte et al. and the PDW LDA in NPA calculations. It also
implies that the DFT S(k) and the NPA-MHNC S(k) are in
agreement.

The mean ionization Z̄ for Li in the NPA calculation is
unity, as also used by Witte et al.. They calculate the quantities
q(k), f (k), N (k), and W (k) = N (k)2S(k). The quantity q(k)
is the screening cloud, i.e., the Fourier transform of the free-

electron density at the Li ion in the plasma, while f (k) is the
bound-electron form factor and N (k) = f (k) + q(k). Finally,
W (k) = N (k)2S(k) is known as the ion feature. It involves the
ion-ion structure factor S(k).

The excellent accord between our XRTS calculation and
that of Witte et al. establishes that our S(k), electron
charge distributions, and potentials Uei(k) and Vii(k) are fully
consistent with the structure data and electronic properties
coming from DFT-MD simulations. The S(k) and Uei(k) are
the critical inputs to the Ziman formula for σ0. Nevertheless,
our estimate of the conductivity disagrees strongly with the
Kubo-Greenwood estimate of Witte et al. Given the relatively
good agreement that we found with the Oak Ridge National
Laboratory experimental data, as well as with the Kietzmann
et al. data (see Fig. 7), this disagreement is a priori quite
surprising; one possible contributory factor (see Sec. 7) may
be the use of a small 64-atom DFT-MD simulation cell.
The conductivity estimate by Witte et al. for T = 0.3 eV at
2.7 g/cm3 is also problematic and it is taken up below, in our
discussion of Gathers’ results for aluminum.

2. Details of the NPA model and Z̄

The NPA model used here [11,12] has been described in
many articles; we summarize it again here for the convenience
of the reader, as it should not be assumed that it is equivalent
to various currently available ion-sphere (IS) average-atom
(AA) models such as PURGATORIO [56] used in many labo-
ratories. While these models are closely related, they invoke
simplifications that are outside DFT. The NPA model is a
rigorous DFT model based on the variational property of the
grand potential �([n],[ρ]) as a functional of both one-body
densities n(r) and ρ(r), directly leading to two coupled KS
equations where the unknown quantities are the XC functional
for the electrons and the ion-correlation functional for the
ions [57]. Approximations arise in modeling those functionals
and decoupling the two KS equations [11,30] for simplified
numerical work.

The NPA model assumes spherical symmetry for fluid
phases and calculates the KS states of a nucleus of charge
Z immersed in an electron gas of input density n̄. The ion
distribution ρ(r) = ρ̄g(r) is approximated by a neutralizing
uniform positive background containing a cavity of radius
rWS, with the nucleus at the origin. The Wigner-Seitz (WS)
radius rWS is that of the ion-density ρ̄, i.e., rWS = {3/4πρ̄}1/3.
The effect of the cavity is subtracted from the final result
whereby the density response of a uniform electron gas to the
nucleus is obtained. The validity of this approach has been
established in previous work and reviewed in Ref. [10]. The
solution of the KS equation extends up to Rc = 10rWS, defining
a correlation sphere (CS) large enough for all electronic and
ionic correlations with the central nucleus to have gone to
zero. The KS equations produce two groups of energy states,
viz., negative and positive with respect to the energy zero
at r → ∞ outside the CS. That is, a Chihara decomposition
automatically arises. States in one group decay exponentially
to zero as r → Rc and in fact become negligible already for
r → rWS in the case of low-Z elements. These states, fully
contained within the WS sphere, are deemed bound states and
allow one to define a mean ionization per ion Zb = Z − nb,
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where nb is the total number of electrons in the bound states
and Z is the nuclear charge:

Zb = Z − nb, nb =
∑
nl

2(2l + 1)
∫

d�r fnl|φnl(r)|2. (A1)

Here fnl = 1/{1 + exp(xnl)} and xnl = {εnl − μ0}/T is the
Fermi factor for the KS state φnl with energy εnl . The
noninteracting electron chemical potential μ0 is used here.
Furthermore, there are plane-wave-like phase-shifted KS states
that extend through the whole correlation sphere. These
are continuum states and their electron population is the
free-electron distribution nf (r). The nucleus Z, the bound
electrons nb, the cavity with a charge Zc = (4πn̄/3)r3

WS, and
the free electrons form a neutral object and hence it is a weak
scatterer called the neutral pseudoatom. The Friedel sum ZF

of the phase shifts of the continuum states and the cavity
charge Zc add up to zero when the KS equations are solved
self-consistently. Thus

Zc = ZF = 2

πT

∫ ∞

0
kfk(1 − fk)

∑
l

(2l + 1)δl(k)dk. (A2)

Here fk = fkl is the Fermi occupation factor for the k,l state
with energy ε = k2/2. Full self-consistency requires that

Zb = Zc = ZF , n̄ = Z̄ρ̄. (A3)

Hence, given an input mean free-electron density n̄, the
WS radius (equivalently ρ̄) is iteratively adjusted until self-
consistency is obtained, i.e., Eq. (A3) is satisfied to a chosen
precision. The mean ionization ρ̄ is thus seen to be the
Lagrange multiplier ensuring charge neutrality, as discussed
in Ref. [26]. The ρ̄ resulting from the input n̄ may not be the
required physical ion density and hence several values of n̄

and the corresponding ρ̄ are determined to obtain the actual
n̄ that corresponds to the required experimental ion density ρ̄.
This process produces a unique value of Z̄ and the problem
of having several different estimates of Z̄, as found in IS-AA
models [27,56], does not arise here. The agreement among
ZF , Zc, and Zb is essential to the convergence of the NPA-KS
equations. It is sensitive to the exchange-correlation functional
FXC(T ) and to the proper handling of self-interaction (SI)
corrections, whenever Z̄ is close to a half-integer. Using a
valid Z̄ is essential to obtaining good conductivities.

We emphasize that a key difference between IS models and
the NPA method is that the free electrons are not confined to the
Wigner-Seitz sphere, but move in all of space as approximated
by the correlation sphere. These differences are discussed
in Sec. 3.

In this study we use the local-density approximation to
the finite-T XC functional as parametrized by Perrot and
Dharma-wardana [47]. This simplest implementation (in the
LDA) is a useful reference step needed before more elaborate
implementations (involving SI, nonlocality, etc., in the XC
functionals) are used.

Since Z̄ is the free-electron density per ion, it can develop
discontinuities whenever the ionization state of the element
under study changes due to, e.g., increase of T or compression.
This is analogous to the formation or disappearance of band
gaps in solids. In fact, if the NPA model is treated with periodic
boundary conditions, as for a solid with one atom in the unit

cell, then the discontinuity in Z appears as the problem of
correctly treating the formation of a gap in the DOS at the
Fermi energy. A proper evaluation of such features in the DOS
and band gaps is difficult in DFT as this is a theory of the total
energy as a functional of the one-body density, not a theory
of individual energy levels. Physical one-electron states are
given by the Dyson equation. Thus band-structure calculations
inclusive of GW corrections are used in solids to obtain
realistic band gaps and excitation energies. In dealing with
discontinuities in Z̄, a similar procedure is needed [58], includ-
ing the use of SI corrections and XC functionals that include
electron-ion correlation corrections, i.e., Fei(n,ρ) [57,59].

Some authors have claimed that Z̄ “does not correspond to
any well-defined observable in the sense of quantum mechan-
ics” [60], i.e., that there is no quantum operator corresponding
to Z̄. This view is incorrect as quantities like the temperature
T , the chemical potential μ, and the mean ionization Z̄ are
quantities in quantum statistical physics. There may be no
operator for them in simple T = 0 quantum theories (e.g.,
not coupled to a heat bath). In most formulations of quantum
statistical physics these appear as Lagrange multipliers related
to the conservation of the energy, particle number, and charge
neutrality. They can be incorporated as operators in more
advanced field-theoretic formulations of statistical physics
(e.g., as in the thermofield dynamics of Umezawa). Some of
these broader issues are discussed in Chap. 8 of Ref. [61].

Finally, it is noted that the mean number of electrons per ion,
viz., Z̄, in, e.g., gas-discharge plasmas, is routinely measured
using Langmuir probes or derived from optical measurements
of various properties including the conductivity and the XRTS
profile [62] for WDM plasmas. Hence Z̄ is a well-established
measurable property.

3. Some differences between the NPA model
and typical average-atom models

Conductivity calculations using the PURGATORIO model
for isobaric aluminum are unavailable for comparison with
experimental data. Comparison is also problematic due to the
lack of an unequivocal value for the mean ionization Z̄ in
IS-AA models [56]. We list several differences with the NPA
model that particularly affect conductivity calculations.

(i) Most average-atom models are based on the IS-AA
model where the free-electron pileup around the nucleus is
strictly confined to the Wigner-Seitz sphere

Z̄ = 4π

∫ RWS

0
�nf (r)r2dr. (A4)

This condition was used in Salpeter’s early IS model, in the
INFERNO model of Lieberman, and in codes like PURGATORIO

[56] derived from it, to determine an electron chemical
potential μ0

WS. It is also used by Yuan et al. [41], Faussurier
and Blancard [39], Starrett and Saumon [63], and in other
AA codes discussed by Murillo et al. [27]. However, μ0

WS is
not identical to the noninteracting μ0 because it includes a
confining potential applied to the free-electron density nf (r)
constraining the electrons to the IS. As it is applied via a
boundary condition, it is a nonlocal potential. The KS XC
potential is also a nonlocal potential and hence the use of
Eq. (A4) contaminates the XC potential. On the other hand,
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DFT is based on mapping the interacting electrons to a system
of noninteracting electrons whose chemical potentially is
rigorously μ0, as used in the NPA model that we employ.
In the NPA model we use a CS with a large radius Rc,

Z̄ = π

∫ Rc

0
�nf (r)r2dr. (A5)

The upper limit of the integral is Rc ≈ 10rWS and defines a
sphere large enough for all correlations with the central ion
to have died down at the surface of the sphere. This enables
the use of the noninteracting chemical potential in the NPA
model, as needed in DFT, since all equations use the large-r
limit beyond the CS radius as the reference state.

The constraint placed by Eq. (A4) is clearly invalid at low
temperatures where the de Broglie wavelength of the electrons,
being proportional to 1/

√
T , exceeds rWS at sufficiently low

T . Hence such AA models become invalid at low temperatures
and are not true DFT models. In contrast, the first successful
applications of the NPA were to T = 0 solids.

(ii) The use of the constraint placed by Eq. (A4) in
AA models has far-reaching consequences as it prevents
the possibility of providing a unique definition of the mean
ionization, as emphasized by Stern et al. [56] in regard to
the INFERNO code. In fact, even at high T , there are several
definitions of Z̄ that differ and hence the estimates of the
electrical conductivity are not unambiguous. This is not the
case in the NPA model. The problem of discontinuities in Z̄

and the band-gap problem in DFT were already discussed in
the preceding section.

(iii) The IS-AA models do not satisfy a Friedel sum rule for
Z̄, while the f -sum rule is also constrained by the condition
imposed by Eq. (A4).

(iv) As the electrons are confined to the WS sphere in
IS-AA models, they cannot display prepeaks due to transient
covalent bonding as found in liquid carbon, hydrogen, and
other low-Z WDMs. This was confirmed by Starrett et al.
[64] for carbon for their AA model. The bonding occurs by an
enhanced electron density in the interionic region between two
WS spheres and this is not allowed in IS models. In contrast,
the NPA model shows prepeaks in gii(r) corresponding to
transient C-C bonding in liquid carbon and produces a pair
potential with a minimum corresponding to the C-C covalent
bond distance at sufficiently low T [20]. Neutral pseudoatom
calculations for hydrogen show H-H bonding prepeaks in g(r)
in the appropriate temperature and density regimes [65].

4. Pseudopotentials and pair potentials from the NPA model

The KS calculation for the electron states for the NPA
model in a fluid involves solving a simple radial equation.
The continuum states φk,l(r) and εk = k2/2, with occupation
numbers fkl = fk , are evaluated to a sufficiently large energy
cutoff and for an appropriate number of l states (typically 9 to
39 were found sufficient for the calculations presented here).
The very-high-k contributions are included by a Thomas-
Fermi correction. This leads to an evaluation of the free-
electron density nf (r) and the free-electron density pileup
�n′(r) = nf (r) − n̄. A part of this pileup is due to the presence
of the cavity potential. This contribution m(r) is evaluated
using its linear response to the electron gas of density n̄ using

the interacting electron response χ (q,Te). The cavity-corrected
free-electron pileup �nf (r) = �n′(r) − m(r) is used in con-
structing the electron-ion pseudopotential as well as the ion-ion
pair potential Vii(r) according to the following equations (in
hartree atomic units) given for Fourier-transformed quantities:

Uei(k) = �nf (k)/χ (k,Te), (A6)

χ (k,Te) = χ0(k,Te)

1 − Vk(1 − Gk)χ0(k,Te)
, (A7)

Gk = (1 − κ0/κ)(k/kTF), Vk = 4π/k2, (A8)

kTF = {4/παrs}1/2, α = (4/9π )1/3, (A9)

Vii(k) = Z2Vk + |Uei(k)|2χee(k,Te). (A10)

Here χ0 is the finite-T Lindhard function, Vk is the bare
Coulomb potential, and Gk is a local-field correction (LFC).
The finite-T compressibility sum rule for electrons is satisfied
since κ0 and κ are the noninteracting and interacting electron
compressibilities, respectively, with κ matched to the FXC(T )
used in the KS calculation. In Eq. (A9), kTF appearing in the
LFC is the Thomas-Fermi wave vector. We use a Gk evaluated
at k → 0 for all k instead of the more general k-dependent
form [e.g., Eq. (50) in Ref. [47]] since the k dispersion in
Gk has a negligible effect for the WDMs of this study. Steps
towards a theory using self-interaction corrections in the FXC, a
modified electron DOS, self-energy corrections, etc., have also
been given [58,59]. In this study we use the above equations
and only in the LDA.

5. Calculation of the ion-ion structure factor

The ion-ion structure factor S(k) is also a first-principles
quantity as it is calculated using the ion-ion pair potential,
Eq. (A10) given above. For simple fluids like aluminum we
use the MHNC equation

g(r) = exp{−βVii(r) + h(r) − c(r) + B(r)}, (A11)

h(r) = c(r) + ρ̄

∫
d�r1h(�r − �r1)c(�r1), (A12)

h(r) = g(r) − 1. (A13)

Here c(r) is the direct correlation function. Thermodynamic
consistency (e.g., the virial pressure being equal to the ther-
modynamic pressure) is obtained by using the Lado-Foiles-
Ashcroft (LFA) criterion (based on the Gibbs-Bogoliubov
bound for the free energy) for determining B(r) using the
hard-sphere model bridge function [66]. That is, the hard-
sphere packing fraction η is selected according to an energy
minimization that satisfies the LFA criterion. The iterative
solution of the MHNC equation, i.e., Eq. (A11), and the
Ornstein-Zernike equation, Eq. (A12), yield a gii(r) for the ion
subsystem. The LFA criterion and the associated hard-sphere
approximation can be avoided if desired, by using MD with the
pair potential to generate the g(r). The hard-sphere packing
fraction η calculated via the LFA criterion is the only parameter
extraneous to the KS scheme used in our theory. In calculating
the S(k) of complex fluids like carbon, where the leading peak
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in g(r) is not determined by packing effects but by transient
C-C bonding, we use the simple HNC equation.

6. Calculation of the electrical conductivity

The Ziman formula uses the momentum-relaxation-time
approximation, while the KG formula typically uses the same
approximation when extracting the static conductivity using
a Drude fit to the dynamic conductivity σ (ω). The Ziman
formula used here is [11]

σ = 1/R, R = (h̄/e2)(3πn̄Z̄)−1I, (A14)

I =
∫ ∞

0

q3�(q)dq

1 + exp{β(εq/4 − μ)} , (A15)

εq = (h̄q2/2m), β = 1/T , (A16)

�(a) = S(q)|Uei(q)/2πε(q)|2, (A17)

1/ε(q) = 1 + Vqχ (q,T ). (A18)

The Born-approximation-like form used here is valid to the
same extent that the pseudopotential Uei(q) constructed from
the (nonlinear) KS nf (r) via linear-response theory [Eq. (A7)]
is valid. The NPA S(k) is available even for small-k values
unlike in DFT-MD simulations where the smallest accessible
k value is limited by the finite-size Lbx of the simulation cell.

7. Kubo-Greenwood conductivity

The KG dynamic conductivity σ (ω) is a popular approach to
determining the static conductivity of WDM systems via DFT-
MD simulations [67]. The details of our DFT-MD simulations
are given in Sec. II A.

The quenched-crystal KS eigenstates φν(r) and eigenvalues
εν , where ν is a band-index quantum number, are used in
the Kubo-Greenwood conductivity as provided in the standard
ABINIT code. Usually six to ten such evaluations were obtained
by evolving the quenched crystal by further MD simulations
(using only the � point) and in each case the σ (ω) was obtained
[see Fig. 10 for typical aluminum, lithium, and carbon results
for σ (ω)].

The aluminum σ (ω) is well fitted by the Drude form

σ (ω) = σ0/[1 + (ωτ )2], σ0 = n̄τ. (A19)

However, there is no justification for using a Drude form for
carbon. The peak position in σ (ω) roughly corresponds to
the bonding to antibonding transition in the fluid containing
significant covalent bonding [see Fig. 4(b)] at 0.5 eV. This can
be seen from the strong peak in g(r) near 3 a.u. (1.55 Å)
corresponding to the C-C bond length. This suggests that
the N = 108 simulation is quite inadequate for complex
liquids like carbon, as bonding reduces the effective N of
the simulation. In the case of carbon, the static limit of the
KG σ (ω) was simply estimated from the trend in the ω → 0
region rather than using a Drude fit, but this is an unsatisfactory
procedure unless it agrees with the result from, say, the Ziman
formula. Furthermore, the different quenched crystals (108
atoms in the simulation) gave significant statistical variations,
as reflected in the error bars shown in Fig. 4(a). At higher
T , e.g., for T = 1–2 eV, the estimated conductivity behaves
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FIG. 10. The KG conductivity σ (ω) for Al, Li, and C. Note the
slight non-Drude behavior of Li σ (ω) near 0.08 a.u. in (b). The carbon
σ (ω) is highly non Drude-like, with the peak moving to higher energy
as T is lowered; no Drude form is shown for carbon.

similarly to that from the NPA, but somewhat less conductive.
The KG formula does not include any self-energy corrections
in the one-electron states and excitation energies, and less
importantly, no ion-dynamical contributions either, as the
ions are stationary (Born-Oppenheimer approximation). The
form of σ (ω) including ion dynamics has been discussed by
Dharma-wardana in Ref. [68].

8. Conductivity of Li at T = 4.5 eV and a density of 0.6 g/cm3

The conductivity of Li, at density ρ = 0.6 g/cm3 at 4.5 eV
estimated by Witte et al. [43], is roughly a factor of 5 less
than that obtained from the NPA-Ziman formula. It is hard to
find an explanation for this strong disaccord, given the good
agreement in the XRTS calculation. One possibility is the
use of a 64-atom cell in DFT-MD simulations for Li at a
chemical potential μ ∼ 0. The DFT-MD simulation with the
KG formula using N ∼ 100 atoms in the simulation seems to
significantly underestimate σ0 for low-valence substances like
Li and Na, especially as T is increased. Low-valence materials
have a small μ = EF and hence a modest increase in T can
push μ to small values where small-k scattering is important
and finally to μ < 0 values (classical regime).

At low T/EF the major contributions to σ are provided
by electron scattering between −kF and kF , kF = √

2EF , i.e.,
momentum changes of the order of 2kF . However, at finite
T , μ replaces EF , and as T increases, μ → 0 and negative
values. The scattering momenta near μ → +0 are in the small-
k region and involve long-range Coulomb scattering. These
contribute significantly to σ at T = 4.5 eV for Li at 0.6 g/cm3.
In Li, if a 64-atom simulation is used, an appropriate length
a of the cubic simulation cell would be a = 20.26 a.u. The
smallest momentum accessible by such a simulation is π/a =
0.16 (a.u.)−1 and hence the corresponding Kubo-Greenwood
formula will not sample the small k < 0.16 region. We see
from Fig. 9 also that the DFT-MD simulations do not provide
values for k smaller than ≈0.6 Å−1 due to the finite size of the
cell used in Ref. [42].
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FIG. 11. Isochoric conductivity of aluminum from near its melt-
ing point to about 0.7 eV, expanded from Fig. 1, and now including
the Witte et al. [42] calculation of the Al conductivity at 0.3 eV and
ρ = 2.7 g/cm3. Our DFT-MD data and those of Vlček et al. [35] are
shown.

Hence such DFT-MD-KG calculations of σ are strongly
weighted to the larger-k strong scattering regime and predict
a low conductivity. The results of Pozzo et al., where a
1000-atom simulation was needed for Na, is a case in point.
However, such large simulations are beyond the scope of most
laboratories, while NPA-type approaches usually provide good
results in all cases that we have studied.

9. Isobaric and isochoric conductivity of aluminum
in the liquid-metal region

High-quality experimental data (errors of ±6%) are avail-
able for the isobaric conductivity σib of liquid aluminum at
low T [15,16]. The relevant region, viz., (a) of Fig. 1, is
shown enlarged to display the experimental and calculated
data in Fig. 2. The NPA calculation is in excellent agreement
with the experiment of Gathers, to well within the error
bars. On the other hand, the DFT-MD calculation captures
about 75% of the experimental conductivity. An ∼100-atom
simulation cannot capture the k values smaller than π/a ∼
0.12 (a.u.)−1 for Al at this density, and may contribute to some
of the underestimate.

Isochoric conductivities (with ρ = 2.7g/cm3) of aluminum
obtained from the NPA calculation and from the DFT-MD
calculation by us and by Vlček et al. [35] are shown in
Fig. 11, together with a single data point from Witte et al. [42]
with the PBE functional and also with the HSE functional.
The result obtained using the HSE XC functional is a strong
underestimate compared to other DFT-MD [50,69], orbital-
free [33], and NPA estimates.

In Ref. [42] Witte et al. strongly argue for the HSE
functional even for aluminum, a simple metal proven to work
well with more standard approaches, and propose that there
are strong electron-electron interactions in Al. The value of
2.23×106 S/m quoted by them at 0.3 eV, 2.7 g/cm3, is taken

to agree with experiment, based on their interpretation of the
experimental data of Gathers [15]. However, as discussed
below, Gathers’ datum at 0.3 eV (�3500 K) is for isobaric
aluminum at ρ = 1.875 g/cm3 and 0.3 GPa and the Witte
et al. interpretation is incorrect.

10. Experimental data of Gathers

Gathers measures the resistivity of aluminum in an isobaric
experiment, starting from the solid (ρ0 = 2.7 g/cm3 and v0 =
0.37 cm3/g) and heating to the range 933–4000 K at 0.3 GPa
[15]. Gathers himself recommends the Gol’tsova-Wilson
[70,71] volume expansion data rather than those measured
by him. In Table II of Ref. [15], the experimental resistivity
(raw data) calculated using the nominal enthalpy input to the
sample is given in column 5. The apparatus and the sample
undergo volume expansion; the resistivities for the input
enthalpy corresponding to the volume expanded sample (using
the Gol’tsova-Wilson data) are given in column 4 of the
same table. Hence the volume-corrected isobaric resistivity
for aluminum in the range (T = 993 K,ρ = 2.42 g/cm3) to
(T = 4000 K,ρ = 1.77 g/cm3) are the values found in col-
umn 4, while column 5 gives the raw data. Column 4
resistivities agree with the isobaric resistivity values that may
also be obtained from the fit formula given in the last row of
Table 23 of [16].

Since Table II given by Gathers is somewhat misleading,
we have recalculated the resistivities R (see Table I) using the
fit equations given by Gathers. His Eq. (8) in [15] gives the
(expansion-uncorrected) raw data, labeled RG. The expansion
correction essentially brings the input heat to the actual volume
of the sample. Thus Eq. (9) in [15], where the enthalpy input
is corrected for volume expansion, agrees with Gathers’ fit
equation given subsequently in Ref. [16] and hence labeled
R[16]. Gathers uses the enthalpy as the primary variable in
Eqs. (8) and (9) of [15], but also gives RG directly as a function
of v/v0 in Eq. (10) of [15]. Thus Eqs. (8) and (10) of [15] yield
the same resistivity RG at a given density and corresponding T ,
while Eq. (9) of [15] is the volume-corrected equation restated
in the review in Ref. [16].

According to Gathers, the experimental resistivities have an
error of ∼±6%. The relevant equations from Gathers’ work in
[15] are given below:

H = 0.004 891 0 + 0.001 070 4T

+ 2.3084×10−8T 2 [Gathers’ Eq. (6)], (A20)

v/v0 = 1.0205 + 8.3779×10−2H

+ 4.9050×10−3H 2 [Gathers’ Eq. (7)], (A21)

R9 = 0.1494 + 7.9448×10−2H

− 1.3189×10−3H 2 [Gathers’ Eq. (9)], (A22)

1.12 � v/v0 � 1.56 (i.e., 2.411 g/cm3

� density � 1.731 g/cm3). (A23)

The enthalpy H can be eliminated in Gathers’ Eq. (9), i.e.,
(A22), using the preceding equations. The result agrees with
the fit equation given in the subsequent review article by
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Gathers [16], Table 23 (last row). This is given as a fit for
the isobaric resistivity (at 0.3 GPa) (μ� m), viz.,

R(v) = −1.0742 + 4.1997×103v − 2.5124×106v2. (A24)

Here v is the volume in m3 kg−1 with 4.1×10−5 � v �
5.78×10−4. The resistivity calculated from this equation
agrees with column 4 of Table II of Gathers [15].

The NPA calculation that takes the nuclear charge, tem-
perature, and density as the basic inputs and uses the finite-T
PDW XC functional (LDA) [47] gives excellent agreement for
σib with the Gathers data at all densities listed in Table I,
as shown in Fig. 2. At T = 0.3 eV, ρ = 1.875 g/cm3

and σib = 2.22×106 S/m, while the HSE functional used

with MD-DFT-KG formula gives this conductivity only at
2.7 g/cm3, as reported by Witte et al. [42].

Our DFT-MD estimates of the isochoric conductivity using
the PBE functional, the DFT-MD estimates of Vlček et al.,
and the Witte et al. DFT-MD estimate [42] using the PBE
functional for 2.7 g/cm3 at 0.3 eV are in close agreement.
They all fall below the NPA-Ziman estimate and we attribute
this partly to the inability of the DFT-MD-KG approach to
access small-k scattering contributions unless the number of
atoms N in the simulation is sufficiently large. Furthermore, as
T/EF → 0, the estimate of the derivative of the Fermi function
and also the matrix element of the velocity operator probably
require an increasingly dense mesh of k points.
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