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Deciphering the kinetic structure of multi-ion plasma shocks
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Strong collisional shocks in multi-ion plasmas are featured in many high-energy-density environments,
including inertial confinement fusion implosions. However, their basic structure and its dependence on key
parameters (e.g., the Mach number and the plasma ion composition) are poorly understood, and inconsistencies
in that regard remain in the literature. In particular, the shock width’s dependence on the Mach number has
been hotly debated for decades. Using a high-fidelity Vlasov-Fokker-Planck code, iFP, and direct comparisons to
multi-ion hydrodynamic simulations and semianalytic predictions, we resolve the structure of steady-state planar
shocks in D-3He plasmas. Additionally, we derive and confirm with kinetic simulations a quantitative description
of the dependence of the shock width on the Mach number and initial ion concentration.
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I. INTRODUCTION

Strong shocks in multi-ion plasmas are key to a number of
high-energy density settings. One prominent example is laser
driven inertial confinement fusion (ICF) implosions, which
rely upon strong shocks for initial compression and heating of
the fuel. It follows that multi-ion and kinetic effects associated
with shocks may crucially affect the performance of ICF
implosions [1–5]. ICF implosions, for example, are normally
simulated with radiation hydrodynamics (rad-hydro). Such a
treatment is only valid for NK � 1, where NK (the Knudsen
number) is the ratio of the constituent ions’ mean free path
(MFP) to a characteristic gradient length scale. From simple
hydro estimates, as the Mach number, M , of a collisional shock
increases, so should NK [6]. Consequently, the hydrodynamic
treatment is formally valid for weak shocks with M − 1 � 1
[7,8], where NK ∼ 2(M − 1). Thus, a kinetic treatment is
required for strong or intermediate strength shocks. Despite
this limitation, the structure of steady-state planar shocks in
single species plasmas has been studied in the hydro limit by
multiple authors [7,9–11].

Initial kinetic studies of strong shocks in a single species
plasma employed the Mott-Smith ansatz. The Mott-Smith
approach [12] admitted a solution to the Vlasov-Fokker-Planck
(VFP) equations, by assuming that the particle velocity space
distribution in a strong shock has a bi-Maxwellian form
determined by the upstream and downstream conditions. These
studies concluded that the kinetic shock width is considerably
greater than the hydro equivalent [8,12,13], and is expected
to grow with M [12,14,15]. Using a finite electron thermal
conductivity, Ref. [12] predicted finite asymptotic growth
and saturation of the ion shock width (normalized to a
downstream mean free path) as M → ∞. This broadening
of the shock width for M � 1 was later observed in FPION
VFP simulations of a hydrogen plasma shock [16,17].

In contrast to the Mott-Smith prediction in Ref. [12],
researchers using the hybrid particle-in-cell (PIC) code LSP

found that the shock width (normalized to the ion-ion mean
free path in the downstream) reaches a maximum at M ∼ 6,
and monotonically decreases for larger M [18].
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It is worth noting that these studies typically considered
single-ion plasmas. Hence, the structure of a collisional shock
in a multi-ion plasma is a largely unexplored problem, and
some peculiarities exist in the sparse multi-ion literature so
far [18–20]. For example, FPION simulations for multi-ion
(planar) plasma shocks in an equimolar mixture of deuterium
and helium-3 [20] predicted deuterium temperature profiles
overcoming electron temperature ones in the entirety of the
electron preheat layer. Such a peculiar behavior was excused
by the presence of ion kinetic effects.

However, as discussed in Ref. [6] using gas-kinetic ar-
guments, the electron temperature is expected to exceed the
temperature of all the ion species in the upstream portion of
the preheat layer. This is due to the corresponding heat fluxes
(plus the electron-ion energy exchange for the ions) being the
main heating mechanisms for the species in this region, and
the electron heat flux exceeding the ion heat flux by a factor
of order

√
mi/me � 1 (for low-Z ions) with me and mi the

electron and ion masses, respectively. This was found to be the
case in earlier single ion-species FPION studies [17], as well
as multifluid analyses [21].

The lack of consistency between the results of Refs. [17]
and [20], both using the FPION code, appears even more
puzzling once it is realized that the presence of 3He in any
D-3He mixture renders deuterons more collisional than in pure
deuterium (or hydro equivalent pure proton plasma, which has
the same ion-ion mean free path as pure deuterons; here, hydro
equivalence means the same mass density and pressure), and
increased collisionality is expected to suppress kinetic effects.

In this paper, we resolve these inconsistencies by systemat-
ically studying shocks in D-3He plasma with a state-of-the-art
VFP code, iFP. This code is fully mass, energy, and momentum
conserving; it is also adaptive and well verified [22–26]. iFP
treats ions fully kinetically, resolving both species within their
own separate velocity spaces, while simultaneously solving
the quasineutral fluid equations for electrons [27].

For comparison, we also consider a multi-ion hydro
description that is grounded in a multispecies generalization of
the Braginskii equations [27–30]. We note that a full multifluid
formulation has not been available until recently. The analytic
theory of multi-ion (hydro) plasma shocks employed in
this paper is described in detail in Ref. [30]. This theory
includes multi-ion physics, such as full ion diffusion. It does
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FIG. 1. Electron and ion temperature profiles for an M = 1.5
shock.

not, however, allow for temperature separation between ion
species, since ion temperature separation is a higher-order
effect in NK � 1 (for details, see Ref. [30]). The hydro code
has been benchmarked against analytical shock profiles for
M − 1 � 1 [30].

The paper is organized as follows. Section II discusses
intermediate strength shocks (M � 1) and Sec. III explores
the strong shock (M � 1) regime. Section IV studies how
the shock width changes with increasing Mach number, and
presents the semianalytic theory that underlies the shock
width’s dependence on M . Finally, we conclude in Sec. V.

II. INTERMEDIATE STRENGTH SHOCKS

Weak shocks are accurately described with multi-ion
hydrodynamics [30]. We begin by demonstrating that iFP
produces correct results in this limit. Recovering the hydro
limit is difficult for Fokker-Planck codes, and therefore this
is a challenging verification test for iFP. In Fig. 1, we
show electron and ion temperature comparisons between
iFP and the multi-ion hydro results. The upstream mass
concentration of deuterium (i.e., on the left side of the
figure) is c0 ≡ mDnD0/ρ0 = 0.57, where mD , nD0, and ρ0

are the deuterium mass, number density, and total plasma mass
density, respectively. The x axis is normalized to the deuterium-
deuterium (DD) mean free path in the downstream, λDS

DD , and
T0 is the upstream temperature. Although an M = 1.5 shock
is not strictly “weak,” iFP and our multicomponent hydro
code demonstrate superb agreement. Note that, herein, all iFP
and hydrodynamic simulations assume a constant Coulomb
logarithm of 10 for all species.

In Fig. 2, we confirm very good agreement in the change
of D concentration across the shock front between iFP and the
multi-ion hydro simulation prediction for M = 1.5. Since the
change in the deuterium mass concentration (c − c0, where c0

is the upstream concentration) is more sensitive to NK than
the temperatures [30], larger differences between the hydro
and kinetic results are appreciated.

III. STRONG SHOCKS

Next, we consider strong shocks. The structure of a strong
(hydro) plasma shock is well known [7,9–11], and is displayed

FIG. 2. Change in deuterium concentration, c − c0, for an M =
1.5 shock.

in Fig. 3. There are three principal regions: (1) an electron
preheat “pedestal” region where the electron temperature far
exceeds the ion temperature, (2) the embedded/compression
ion shock, and (3) an equilibration layer where the electrons
and ions relax to the downstream temperature. Both regions 1

and 3 are ∼
√

mi

me
λii (where mi and me are the ion and electron

masses, respectively, and λii is the ion-ion downstream mean
free path), whereas region 2 is a few ion-ion mean free paths
in length.

In the following plots, we feature an M = 5 D-3He shock,
since our simulations indicate that the essential structure of
a plasma kinetic shock is adequately captured here (i.e., our
results for higher M are qualitatively similar).

Figure 4 shows a considerable kinetic enhancement of
the ion temperature in the preheat layer and at the shock
front vs the hydro simulations. Moreover, the D temperature
is higher than the 3He temperature in the preheat layer, as

FIG. 3. Normalized temperature profiles for a hydro plasma
shock with M � 1. T0 is the upstream temperature.
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FIG. 4. Temperature profiles for an M = 5 shock.

expected from the lighter species. The deuterons also penetrate
a greater depth into the upstream than 3He due to the deuterons’
higher thermal velocity, as evidenced by Fig. 5. In contrast,
the multicomponent hydro result shows a sharp cutoff of the
ion enrichment at the shock front, corresponding to a sharp
gradient in the ion temperature. Consequently, the buildup of
deuterium in the upstream is a purely kinetic effect resulting
from enhanced D ion mobility.

Lastly, it is worth examining the Knudsen numbers for all
plasma species across the shock front. In Fig. 6, we have plotted
NK ≡ λs∇ln(Ts), where λs is the total MFP (i.e., including
interactions with all species) of species s (i.e., for electrons,
deuterium, and helium ions). Notice that the deuterium NK

approaches O(0.1) within the vicinity of the ion temperature
pedestal’s end points. This is to be expected, since these are
the sites of the strongest temperature and density gradients
in the hydro shock. The helium NK is smaller than the
deuterium NK due to the higher collisionality (higher charge)
of the former. Also note that the electron Knudsen number
approaches O(0.1) at the leading edge of the preheat layer,
indicating strong kinetic behavior, and the need to model
electrons kinetically in this region.

IV. SHOCK WIDTH

As mentioned previously, various contradictory claims exist
in the literature about the width of a plasma shock for M � 1.

FIG. 5. Deuterium enrichment for an M = 5 shock.

FIG. 6. Knudsen numbers for electrons, deuterons, and helium
ions in an M = 5 planar shock in a 50 : 50% D-3He plasma mixture.
The x axis is normalized to the total deuteron mean free path.

Here, we revisit this issue both from a fluid and a kinetic
perspective. We begin by developing a semianalytic fluid
theory that describes the shock width as a function of M and
c0. As we will show later in this paper, the kinetic shock
width behaves similarly to the hydro shock width, but with a
quantifiable kinetic enhancement.

From Ref. [30], a hydrodynamic two-ion steady-state
plasma shock may be described by two equations. First, we
have the electron energy equation:

∂x̂

(
3

2
p̂e0T̂e − κ̂e∂x̂ T̂e

)
+ p̂e0

T̂e

V̂
∂x̂ V̂ = ν̂ei(T̂i − T̂e), (1)

where V̂ ≡ ρ0/ρ, p̂e0 is the electron pressure in the upstream
normalized by the total upstream pressure, κ̂e is the normalized
electron thermal conductivity coefficient, T̂i is the single ion
temperature, ν̂ei is an electron-ion energy exchange frequency,
x̂ is the distance normalized to the DD mean free path in
the upstream, and all other quantities are normalized to their
respective upstream values. Next, we have an equation for the
ion mass density:

2γM2(V̂ − 1)(V̂1 − V̂ ) + 3
2 η̂V̂ ∂x̂ V̂ ≈ κ̂e∂x̂ T̂e, (2)

where η̂ is the normalized ion viscosity coefficient, V̂1 ≡
ρ0/ρ1, and γ = 5/3 is the adiabatic index.

The electron and ion temperatures inside the shock front
scale as M2, since they are of the order of the downstream
temperature. Next, we note that ν̂ei(T̂i − T̂e) in Eq. (1) scales as
1/M2, since ν̂ei ∝ M−4. This expression is generally smaller
than the left-hand side of the equation, owing to the fact that

ν̂ei contains a factor of
√

me

mD
and the energy exchange between

ions and electrons is not the primary heating mechanism within
the embedded shock. For this reason, we ignore the energy
exchange term in Eq. (1), to obtain[

3
2 + ln(V̂ )

]
p̂e0T̂e− − κ̂e∂x̂ T̂e ≈ const, (3)

where we have used the fact that the electron temperature
within the shock, denoted by T̂e−, is approximately constant
[9]. The integration constant is effectively zero, as follows from
the upstream boundary condition. Additionally, 1/4 � V̂ � 1.
Given these considerations, and the fact that T̂e− ∝ M2, we
conclude that κ̂e∂x̂ T̂e must also scale as M2.
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We now turn our attention to Eq. (2). The coefficient of ion
viscosity, η̂, scales as M6. We may rewrite Eq. (2) as

dx̂

dV̂
≈

3
2 η̂V̂

κ̂e∂x̂ T̂e − 2γM2(V̂ − 1)(V̂1 − V̂ )
, (4)

from which we may conclude that dx̂/dV̂ scales as M4, which
is the Mach number dependence found in Refs. [13,14] for
strong shocks using the Mott-Smith ansatz. Reference [18]
defined the shock width (SW ) as the length over which the
ion density increases from 1.2 times its upstream value, ρ0,
to 0.9 times its downstream value, ρ1 (normalized to the
ion-ion mean free path in the downstream). For a meaningful
comparison, we adopt the same definition. Normalizing to the
downstream MFP introduces a factor of 1/M4, indicating that
the normalized shock width,

SW ≡ 1

V̂1T̂
2

1

∫ V̂ = V̂1
0.9

V̂ = 1
1.2

dx̂

dV̂
dV̂ , (5)

does not scale with M , and therefore reaches a finite asymptotic
value as M → ∞, which is in agreement with Ref. [12].

To integrate this equation, we first note that the electron
temperature within the embedded shock is approximately
constant. For the portion of the preheat layer nearest to the
upstream, ln(V̂ ) ≈ ν̂ei(T̂i − T̂e) ≈ 0, and thus we may directly
obtain the electron temperature in the preheat layer from
Eq. (1) as [6]

T̂e(x̂) ≈
[

15

4

p̂e0

κ̂e0
(x̂ − x̂0) + 1

] 2
5

, (6)

where κ̂e0 ≡ κ̂e|x̂=x̂0 , and x̂0 is the position of the upstream
edge of the preheat layer. To obtain T̂e−, we evaluate Eq. (6)
at the location of the embedded shock, which is at x̂ − x̂0 =
x̂preheat ∼ λeevthe/(u0λ

US
DD), where λUS

DD is the ion-ion mean
free path in the upstream, and u0 is the shock velocity. It

is easy to show that xpreheat ∼
√

mi

me
λDS

ii ∼ λee
vthe

u0
. The exact

value of x̂preheat, which depends on c0, M , etc., is unknown.
Consequently, we slightly tweak T̂e− to best fit the results
from full multi-ion hydro simulations. An expression for T̂e−
allows us to estimate [30] η̂ ∝ T̂

5/2
i , where T̂i is given by the

expression

T̂i ≈ f (c0,μ,ξ )[1 − γM2(V̂ − 1)]V̂ − [f (c0,μ,ξ ) − 1]T̂e−
(7)

with μ ≡ m2/m1 and ξ ≡ Z2/Z1 being the ion mass and
charge ratios, respectively.

The final step is to obtain an expression for κ̂e∂x̂ T̂e within
the embedded shock. Our hydro simulations indicate that the
ion viscosity is only important near the middle of this domain.
Consequently, Eqs. (2) and (3) imply

κ̂e∂x̂ T̂e ≈ 2γM2(V̂− − 1)(V̂1 − V̂−) + p̂e0T̂e−ln

(
V̂

V̂−

)
,

(8)

where V̂− = 1/1.2, as per our definition of the shock width.
Our simulations have confirmed that this is a decent approx-

FIG. 7. Semianalytic multi-ion hydro shock width (for M = 5)
vs c0. Included are results from full multi-ion hydro simulations.

imation. Now, with Eqs. (4)–(8), we may obtain the hydro
shock width as a function of M and c0.

Figure 7 depicts M = 5 as a function of c0. The semian-
alytic curve for M = 5, the (blue) dashed line, matches the
multi-ion hydro simulation points, shown in (red) stars, fairly
closely. To show the full dependence of SW on c0, we have
normalized SW to λDS

D ≡ 1/(λ−1
DD + λ−1

D3He
).

Figure 8 shows the shock width as a function of Mach
number from full multi-ion hydro simulations as (red) stars for
c0 = 0.40, along with a gray dashed fit curve. The figure also
shows the corresponding iFP shock width. Overlapping the
latter points is the fit for the hydro regime, translated upward
by a fixed amount that depends on c0, but not M . We see that the
kinetic shock width, for M � 1, is simply the multi-ion hydro
shock width plus a correction. It follows that the kinetic shock
width also asymptotes to a constant as M → ∞. This result
is consistent with the Mott-Smith results from Refs. [12–14],
but is at odds with Ref. [18], which predicted that the shock
width decreases for M � 6.

The kinetic extension of the shock width is simply due to hot
downstream ions penetrating upstream beyond the ion density
pedestal [13,17]. We may quantify this effect by plotting
the kinetic shock width enhancement, S iFP

W − S
hydro
W , vs c0,

FIG. 8. The ion shock width vs Mach number for M = 5 and
c0 = 0.40.
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FIG. 9. S iFP
W − S

hydro
W normalized to the length of the electron

preheat layer vs c0 with two proposed theoretical models.

normalized to the length of the electron preheat layer (as in
Fig. 9). Note that the SW enhancement is independent of M . In
Fig. 9, the dots are from simulations, and the (green) dashed
line is a characteristic ion energy relaxation distance.

The ion energy relaxation distance is obtained by consid-
ering a flow of downstream deuterons into a colder pedestal
plasma in the upstream. Kinetic effects are most prominent in
the pedestal, since this is the site of the sharpest gradients in
temperature, density, etc. Additionally, this definition of the
distance is independent of Mach number for M � 1 [11].

This distance can be estimated by considering a char-
acteristic time for hot particles, α, to exchange energy
with colder background plasma particles, β [31], given by

(τα
ε )−1 ≡ ∑

β 1/τ
α/β
ε , where τ

α/β
ε ≡ τ

α/β

1
4μ(xβ )/xβ

, xβ = (mβ

mα
) Tα

Tβ
,

μ(x) = 2√
π

∫ x

0

√
te−t dt , τα/β

1 =
√

mα

π
√

2e2
αe2

β

T
3/2
α

nβ ln(�) , with ln(�) the

Coulomb logarithm, Tα the downstream D temperature, nβ and
Tβ the number densities and temperatures of the plasma species
in the pedestal region, respectively, and mα , mβ , eα , and eβ the
corresponding masses and charges. The ion energy relaxation
distance for D is defined in terms of the shock velocity u0 as

dε ≡ u0τ
D
ε . (9)

The agreement between the numerical kinetic SW enhance-
ment and this ion energy relaxation distance in Fig. 9 is
remarkable.

Figure 9 also depicts the characteristic slowing-down
distance as a (red) dash-dotted line, proposed in Ref. [17]
as an alternate measure of the kinetic extension of a plasma
shock to the slowing-down distance, which is defined similarly
to that in Eq. (9), but in terms of the slow-down time:
τ

α/β
s ≡ τ

α/β

1 /[(1 + mα

mβ
)μ(xβ)] [31].

Evidently, the extension of the kinetic shock width is
more accurately represented by the total ion energy relaxation
distance than by the slowing-down distance. Figure 9 makes
one final important point, namely, that the ion energy exchange
distance is smaller than the electron preheat layer width for all
c0, confirming that the ion temperature does not overcome the
electron temperature in the upstream edge of the preheat layer.

V. DISCUSSION

In conclusion, this paper has unravelled the rich structure
of multi-ion plasma shocks. We began by demonstrating that
our kinetic code, iFP, is capable of accurately resolving the
weak shock regime. This is the hardest regime for VFP
codes, and the iFP results show excellent agreement with
multi-ion hydro simulations, underscoring iFP’s accuracy and
reliability.

Next, we examined the strong shock regime. For an M = 5
shock in D-3He, we showed that the kinetic shock structure
markedly differs from multi-ion hydro predictions. This was
most apparent in the enhanced abundance of deuterium ions
in the preheat layer of the shock, which is solely a kinetic
effect.

Additionally, we found that kinetic effects saturate for M �
1 (i.e., the kinetic extension of the shock width, normalized to a
downstream mean free path, becomes independent of the Mach
number). Moreover, the asymptotic value strongly depends on
the upstream lighter species concentration. This is true of both
the multi-ion hydro and kinetic shock widths, with the latter
exceeding the former by a characteristic ion energy exchange
distance. Our findings, while consistent with early Mott-Smith
predictions [12] and Fokker-Planck results [17], conflict with
the LSP (PIC) predictions from Ref. [18]. Given the outstanding
agreement between iFP and our theoretical predictions, we
believe that the debate over the shock width’s dependence on
M may now be safely laid to rest.

Lastly, we confirmed that the ion temperature never exceeds
the electron temperature in the preheat layer, contradicting
a recent study with FPION [20], but in agreement with an
earlier FPION study [17], and a study using a multifluid model
[21]. Rather, we found that the kinetic multi-ion shock width,
which is a proxy for the ion temperature, is extended beyond
the hydro one by a characteristic energy exchange distance,
which is smaller than the length of the electron preheat
layer.

This result is physically grounded. The basic argument
is as follows. The heat flux for species s can be estimated
by qi ∼ psvth,s min(Ns

K,FLs) with ps , vth,s = √
2Ts/ms , Ns

K ,
and FLs the pressure, thermal speed, Knudsen number, and
flux limiter, respectively. This expression is applicable for
all Ns

K , and therefore for all M . We do not expect the
electron and ion flux limiters to be drastically different in
the kinetic regime (FLe = 0.05–0.15 is typically used in
ICF rad-hydro simulations [32]). Additionally, we showed
in Fig. 6 that the ions and electrons have comparable
Knudsen numbers throughout the preheat layer, since ions
and electrons have comparable temperatures immediately
upstream of the compression shock (i.e., the roughly defined
boundary between the compression shock and the preheat
layer). The ratio of the electron to deuteron heat fluxes (for
D-3He with c0 = 0.40, as a concrete example), therefore,
becomes

qe

qi

∼ pevth,e min(Ne
K,FLe)

pDvth,D min(ND
K ,FLD)

∼ 3

√
mD

me

∼ 182, (10)

where we have used FLi = 1.0, FLe = 0.1, and Ne
K =

Ni
K = 0.1 (valid for M � 1). Thus, the electron heat flux

is much larger than the deuteron (or 3He) heat flux at
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the beginning of the preheat layer (which is then carried
throughout the layer, as the electron temperature gradient
becomes sharper and sharper), resulting in higher electron
temperatures.

Finally, as mentioned previously, Fig. 6 speaks to the need
for a kinetic treatment for the electrons, since Ne

K becomes
quite large near the upstream end of the preheat layer. This
is to be expected, since the electron temperature exhibits a
very sharp gradient there. Hence, the true kinetic structure
of collisional plasma shocks has yet to be explored, since
kinetic electrons are likely important in the outer edge of the
preheat layer. Nevertheless, we do not expect electron kinetic
effects to be important within the compression shock itself.

Consequently, our results for the shock width should hold
generally.
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