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Experimental determination of phase transitions by means of configurational
entropies in finite Yukawa balls
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The phase transition of finite Yukawa balls (ordered systems of microspheres in a gaseous plasma environment)
with less than 100 particles is studied experimentally by means of configurational entropies. We have developed
cylindrical two- and three-particle-correlation functions to measure these entropies for multiple cluster sizes over
a wide temperature range. The cluster temperature is finely tuned using a stochastic laser heating setup. It is
shown that the correlation functions give a detailed insight into the structural properties of the cluster. The derived
configurational entropies give a clear indication of the transition temperature from a solid-like to a fluid-like
state. Comparing the transition temperatures of different sized clusters it is found that the transition temperature
increases with cluster size in general agreement with theoretical predictions.
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I. INTRODUCTION

The transition from very small clusters with only few
constituents to an extended system is essential for the un-
derstanding of how macroscopic effects of matter develop
on multiple scales. Well-known objects of investigation for
these effects are, e.g., atomic and molecular clusters [1–3] or
the many forms of granular matter [4]. Such systems inherit
properties that depend on the number of constituents and how
they interact on the individual level. The focus of this work
will be on the determination of phase transitions of rather
small conglomerates and how they are affected by the number
of constituents.

The objects of investigation in this paper are Yukawa
balls in a dusty plasma environment. Besides the neutral gas
component, dusty plasmas consist of ions and electrons with
an additional third charged species, the dust (for details, see,
e.g., [5–7] and related references therein). These macroscopic
dust particles with a size between a few nanometers and several
micrometers charge due to the inflow of plasma electrons and
ions. Usually, they gain very high negative charges since the
electrons are more mobile than the ions. Yukawa balls [8–11]
are finite three-dimensional systems made of only a few to
thousands of microspheres. From the competition of Coulomb
repulsion and confining plasma forces the particles arrange
in a spherical structure on nested, concentric shells [12,13].
Being strongly coupled but optically thin makes them a unique
and rich tool for investigating size-depending effects of phase
transitions on the individual particle level. In such a finite
particle system one can directly measure the velocity v of
individual particles with mass m. From that one can define
the kinetic temperature T = m〈v2〉/3kB of the system from
the particles’ velocity distribution. By increasing the kinetic
temperature of the particles one can drive and study phase
transitions in these small systems.

In a simplified picture the point of phase transition of a
macroscopic solid state body can be determined by feeding
heat to the system and monitor the temperature change. First,
the temperature will rise as the atoms oscillate stronger around
their fixed lattice positions. At a certain point the temperature
rise will stop because the additional heat is used to break up
the bond structure. This point is the transition temperature

in a first-order phase transition. Upon further heating the
atoms overcome their lattice positions entering the liquid
state where the atoms can move more freely. Accordingly,
the system exhibits a jump in the entropy at the transition
temperature.

It is a question of high interest how this can be translated
into a finite system of less than 100 charged particles that
form an ordered structure like a Yukawa ball. A strongly
coupled charged-particle system is described by the cou-
pling parameter which is the ratio of thermal and Coulomb
energy

� = Z2e2

4πε0bWS

1

kBT
(1)

with the electrical charge number Z and the Wigner-Seitz
distance bWS = 3

√
3/4πn, which is of the order of the inter-

particle distance and is calculated from the particle number
density n. It has been shown in simulations [14] that an infinite
three-dimensional (3D) one-component plasma (a system
of a single charged species in a homogeneous neutralizing
background) will change its phase from solid to liquid at a
critical value of �crit ≈ 168 being solid above it and liquid-like
below it. In an experimental dusty plasma the particles interact
with a shielded Coulomb potential which affects the crystal-
lization properties. To account for this, Ikezi [15] estimated
a modified coupling parameter �eff,crit = � exp(−κ) = 168
with an added shielding term κ = bWS/λD which gives the
Wigner-Seitz radius in units of the Debye length λD. This
has been studied further by Vaulina et al. [16] revealing a
more complex dependency between coupling parameter and
screening. However, in general the transition line for a Yukawa
system runs in a � − κ-plane where the (unmodified) critical
coupling parameter increases with the strength of the shielding
[17].

Schiffer [18] studied in simulations how the critical cou-
pling parameter depends on the number of particles for finite
systems. He evaluated the transition temperature as an inverse
coupling parameter for different sized Coulomb clusters. He
has shown that the critical coupling parameter increases with
the decreasing particle number.
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FIG. 1. Sketch of Yukawa clusters with two shells illustrating the
coordinates used for the C2P and TCF in a) spherical symmetry and
b) cylindrical symmetry.

The aim of this paper is to study the size dependence of
the transition temperature for Yukawa balls with less than 100
particles. To reach it we want to induce and investigate phase
transitions and identify the critical point by using statistical
entropy methods.

II. CONFIGURATIONAL ENTROPIES

Phase transitions in finite systems can be described in
a phenomenological way, for example by analyzing fluc-
tuations in the calculated inter-particle distance [19] or
by looking at the decay of radial and angular correlation
functions [20–22]. Recently, a melting criterion has been
derived from a thermodynamics quantity by Thomsen and
Bonitz using configurational entropies from different particle
correlation functions [23]. This allows identifying phase
transitions in finite systems on a quantitative level and it
is the aim of this paper to study these entropies from
experiments.

Two correlation functions used by Thomsen and Bonitz
are the center two-particle correlation function (C2P) and the
triple correlation function (TCF) to measure the configura-
tional entropy of a system. These correlations are evaluated
from the 3D positions of the particles in a specific set of
coordinates exploiting the spherical symmetry of the problem
as illustrated in Fig. 1(a). For the C2P the length of the
respective position vectors rI and rII relative to the trap center
and the solid angle ϑ between them are considered. The TCF
uses a particle triplet 1-2-3 on a selected shell evaluating the
angular distances ϑI,ϑII between particles 2-1 and 2-3 and the
bond angle ϕ on the spherical shell surface.

For the C2P, the probability of finding a particle pair at
rI,rII, and ϑ is determined by averaging over all particle
pairs. Similarly, for the TCF the probability of finding particle
triplets with ϑI,ϑII, and ϕ is determined. Moreover, the
averaging extends over a large number of manifestations
of the finite system at a fixed temperature. Hence, one
needs the 3D positions of all particles at many instants in
the described coordinate sets Q. This poses a challenge
to the experiments. Finally, the space-resolved histograms
ρ̃k(Q) have to be normalized by geometrical factors Vk that
depend on the chosen coordinates and are given in [23]
for spherical symmetry. Hence, the correlation functions are

FIG. 2. Experimental setup: 1—CMOS cameras, 2—
galvanometer scanners for laser manipulation, 3—illumination
lasers, 4—rf plasma chamber, 5—confinement ring above heatable
electrode.

given as

C2P(rI,rII,ϑ) = ρ̃2(rI,rII,ϑ)

V2(rI,rII,ϑ)
(2)

and

TCF(ϑI,ϑII,ϕ) = ρ̃3(ϑI,ϑII,ϕ)

V3(ϑI,ϑII,ϕ)
, (3)

where k indicates the number of correlated particles. From
those, the reduced Shannon entropies

S(2) ≡ −〈ln C2P〉 and S(3) ≡ −〈ln TCF〉 (4)

measure the configurational entropy of the system at the
temperature T (see [23,24]). As usual, it is possible to derive
heat capacities as C = ∂S/∂T but this paper will focus purely
on the configurational entropy. The described correlation
functions and configurational entropies have been investigated
in simulations by Thomsen and Bonitz using Yukawa balls
with perfect spherical symmetry.

III. EXPERIMENTAL SETUP

The experimental setup shown in Fig. 2 is a refined version
of the one used by Schella et al. [22,25]. Its centerpiece is a
capacitively coupled radio frequency (rf) discharge operated
in argon at gas pressures typically between 5 and 50 Pa. The
electrode at the bottom of the chamber is driven with rf powers
below 2 W while the rest of the chamber is grounded, hence
forming an asymmetrical low temperature discharge.

Melamine-formaldehyde (MF) particles with a radius of
4.7 μm are trapped in the sheath region above the rf-electrode.
For confinement of the particles we use a brass ring instead of
the conventional glass cuvette [10]. The ring floats electrically
and is positioned about 20 mm above and parallel to the
electrode. The upwards sheath electric field, the radial inwards
electric field due to the ring and the downward gravitational
field create a nearly harmonic 3D confinement in which the
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particles form a Yukawa ball. The experiments on the dust
clusters shown here have been performed at a gas pressure of
14.5 Pa and an rf power of 800 mW.

In order to observe the particles they are illuminated by two
fiber-coupled DPSS lasers at 660 nm with a light output of
up to 1000 mW each. The forward scattered light is captured
by three CMOS cameras that record images at a resolution
of 1280 × 1024 pixels at a frame rate of up to 500 fps. Two
cameras are viewing from the side under 90◦ relative to each
other, while the third is viewing from top, however slightly
tilted by 22◦ with respect to the vertical direction. Camera
calibration and epipolar-line particle reconstruction developed
by Himpel et al. [26–28] based on the work of Wenger et al.
[29] and Bouguet [30] has been applied to retrieve the 3D
particle position from the individual camera images.

To investigate the phase transition of the Yukawa ball
one needs to observe it at different temperatures. Established
experimental methods to induce phase transitions [22,31–33]
alter the neutral gas pressure, plasma power or particle number
in dusty plasmas. These methods affect more than a single
quantity in the coupling parameter. Furthermore they rely
partly on additional instabilities due to ion streaming [34,35]
which are not considered in the coupling parameter making
it difficult to evaluate their impact on the phase transition.
To overcome this we chose a pure laser heating setup to
raise the kinetic energy of the particles directly via radiation
pressure leaving the confining plasma system undisturbed
[22,25,36–38]. The focused light of two green (532 nm) laser
modules with up to 600 mW each is distributed over the cluster
by two galvanometer scanners using random scan patterns.
With the laser power the kinetic temperature of the particles is
controlled. Increasing the laser power leads to higher particle
temperatures, see [39] for details.

In the measurements, Yukawa balls with particle numbers
from 17 to 72 are trapped and heated at various laser power
settings. For each laser-driven temperature the motion of all
particles is recorded over 5000 frames at 100 fps. The 3D
particle positions have been reconstructed for all 5000 frames
at a fixed temperature. From that the particle correlation
functions and the corresponding configurational entropies are
calculated as described in the following.

IV. RESULTS

A. Structure of Yukawa balls

The typical structure of Yukawa balls that we investigate
in our experiment can be seen in Fig. 3(a) for an example
of a 39-particle cluster, consisting of two shells. It can
be seen that especially the particles of the inner shell are
located atop of each other. Obviously, in the experimental
environment streaming ions [34] lead to chain-like vertical
particle alignment. Hence, it seems that the particles arrange
in a cluster structure with a more cylindrical symmetry [35,40].

To illustrate this further, the particle density of the cluster
is shown in Fig. 3(b). The density has been calculated
from the particle positions as a mean over all frames. The
density is shown averaged over the azimuthal angle � in
cylindrical R − Z coordinates where R = √

X2 + Y 2 is the
radial coordinate and Z is the vertical direction (along gravity).
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FIG. 3. (a) Particle positions retrieved from experimental data
with indicated viewpoints and colored inner (magenta squares) and
outer (blue diamonds) cylindrical shells. (b) Particle density as a
function of radial and vertical coordinates R,Z averaged over the
azimuthal angle � over 5000 frames. The lines indicate the projection
of the spherical (solid gray) and cylindrical shells (inner: dashed
magenta, outer: dotted blue).

For comparison, the circular solid lines indicate the expected
positions when the particles would sit on two spherical shells.
In contrast, the dashed and dotted lines indicate the situation
for an arrangement on two cylinders. Obviously, none of the
two symmetries matches the measured distribution perfectly
since the cluster exhibits a chain-like structure in the center but
is still somewhat spherically shaped in the outer layer. But in
general, the cylindrical symmetry appears to be a much better
reproduction of the structure of the cluster.

For the analysis of phase transitions in such systems the
spherical C2P and TCF correlations seem not really adequate
(see below). Therefore we have developed modified cylindrical
versions of the C2P and TCF functions as shown in Fig. 1(b).
The C2P now uses the radial cylindrical distances RI,RII of two
particles and the azimuth � between them with respect to the
central Z-axis. Similar to the spherical version, the spherical
TCF also works with a particle triple 1-2-3 except that it is now
on a cylinder shell with the distances LI,LII between particles
2-1 and 2-3 and the bond angle � on the curved surfaces.
Due to the symmetry change the geometrical factors Vk need
to be recalculated as well [23]. For the cylindrical C2P we
find V2,cyl = 2πh2RIRII, where h is the overall vertical length
of the cluster. For the TCF we have chosen to sample this
geometrical factor numerically due to the complexity of the
Jacobi determinant.

To benchmark the modified correlations we computed the
spherical and cylindrical version for various cluster sizes and
temperatures. An exemplary visualization of the C2Ps can
be seen in Fig. 4. Since the distributions depend on three
coordinates, an integration over one coordinate is needed to
provide a two dimensional representation. We follow Thomsen
and Bonitz and integrate rI over one of the shells, as indicated
by black arrows in Fig. 4. Similarly for the cylindrical version
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FIG. 4. Comparison of C2Ps with (a) spherical symmetry and
(b) cylindrical symmetry computed for the 39-particle cluster shown
in Fig. 3 at moderate heating (� ≈ 440, solid state). To visualize
the 3D distribution functions, they have been integrated over rI and
RI, respectively, with borders in the range of the first shell (left
hemispheres) and the second shell (right hemispheres) as indicated
by the black arrows.

we chose to integrate RI over one cylindrical shell. This results
in as many 2D visualizations as there are shells where the
first of the two correlated particles is always chosen from this
particular shell.

We start with the discussion of the cylindrical C2P in
Fig. 4(b). In the left hemisphere the C2P was integrated over
the inner shell (where 0.2 mm < RI < 0.55 mm). This inner
shell of the 39-particle cluster features four equidistant vertical
particle chains (see Fig. 3), so an arbitrary particle on this
shell will see other particles on the same shell at an angle � of
about 0◦,90◦, or 180◦. Correspondingly the C2P shows distinct
islands of high correlation at these angles and a radius around
RII ≈ 0.3 mm. The outer shell on the other hand features a
nine-fold symmetry seen from above (see Fig. 3) which does
not share a common divisor with the four-fold inner shell.
This means the shells do not share a common symmetry and a
particle on the first shell can see a particle on the second shell at
various � resulting in the smeared out area at RII ≈ 0.8 mm.
When we now look into the right hemisphere of Fig. 4(b),
where the first particle was chosen to be in the outer shell
(0.55 mm < RI < 0.85 mm) we see high correlation in the
outer shell at angles � of 0◦,40◦,80◦,120◦ and 160◦ and at
a radius of RII ≈ 0.8 mm in agreement with the nine-fold
rotation symmetry. The inner shell now appears smeared out.

We conclude that the cylindrical C2P represents the structure
very well due to the rotational symmetry of the cluster seen
from above.

Now, how does this compare to the spherical C2P shown
in Fig. 4(a)? In both cases (where integrating over the inner
spherical shell in the left hemisphere or the outer spherical
shell in the right hemisphere) no clear correlations can be
identified. In order to observe distinct correlation islands the
cluster would need not only rotational symmetry around one
axis but 3D isotropy which it lacks. So if one would try to
analyze the evolution of a correlation island over a larger
temperature range the finely structured spherical correlations
would produce artifacts in the computed entropies. Similar
behavior can be observed for the triple correlation function
which will not be discussed in detail here. We therefore choose
to use the cylindrical C2P and TCF to derive heat capacities
and entropies for clusters of various particle numbers.

B. Correlation functions and heating

With the manipulation lasers, the cluster was heated in 26
steps from a kinetic temperature of 600 K up to 15000 K.
The average particle charge number has been determined
to be about Z ≈ 3400 by normal mode analysis [41]. The
Wigner-Seitz radius is measured as bWS = 0.28 mm calculated
from the static particle positions yielding a coupling parameter
range between 1168 and 44. Hence, one should expect a phase
transition happening inside that range.

At first the C2P and TCF distributions for a solid and a
liquid phase state will be discussed. Starting with the C2P
one can directly look into the changes due to the temperature
increase since the structural properties that can be deducted for
the solid case of � ≈ 440 [Fig. 5(a)] were already described
in Sec. IV A. The C2P for the heated cluster with � ≈ 130
is shown in Fig. 5(b). Again, the distribution was integrated
over RI in the range of the first shell (left hemisphere) or
second shell (right hemisphere). It is apparent that for � ≈ 130
the overall distribution is smeared out compared to the solid
case (� ≈ 440). More precisely on the one hand the space
between the two radial shells is now “filled” as well, which
means that it is now possible to find a particle between the
shells. Nevertheless, the individual shells are easily identified.
Moreover, correlation peaks can still be identified as in the
solid state, however less pronounced. On the other hand one
can see in the right hemisphere of Fig. 5(b) that the long range
angular order of the outer shell gets lost for � > 90◦. This
stepped heating behavior with earlier loss of orientational order
followed shortly by the loss of radial order is well known for
finite systems [22,42] and confirms the applicability of the C2P.

Moving on to the TCFs shown in Figs. 5(c) and 5(d) it
is important to mind the differences to the C2P. While the
C2P uses all particle pairs of the whole cluster and the plot
hemispheres are generated due to integrating over different
shells, the TCF uses particle triples on one specific shell.
Therefore the hemispheres in Figs. 5(c) and 5(d) show different
correlation functions for the two shells. Nevertheless it is still
necessary to integrate over one of the variables to generate a 2D
plot. Here we integrate over LI with the range chosen so that the
first and second particle are nearest neighbors. While the C2P
polar plots can be interpreted as correlations from a top view
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FIG. 5. Correlation functions for a 39-particle cluster in a solid state (� ≈ 440) and in a liquid state (� ≈ 440). (a),(b) Cylindrical C2P
plots with integration borders in the range of the first shell (left hemispheres) and the second shell (right hemispheres) as indicated by the black
arrows. (c),(d) Cylindrical TCF plots for the inner shell (left hemispheres) and the outer shell (right hemispheres). Integration borders for LI

have been chosen around the nearest neighbor distance as indicated by the black arrows.

on the clusters particle density the TCF show probable particle
triplets on the unrolled cylinder side surface. Consequently, it
is sufficient to have LII in the range from 0 to half the perimeter
of the cylindrical shell and � in the range of 0 to 180◦. Since
the perimeter is different for the two shells, we normalize LII

to the perimeter length. In view of the nine-fold symmetry
of the outer shell one would expect an arbitrary particle of
the outer shell to “see” eight other particle columns around the
perimeter of the cylinder. And that is exactly what one can find
in the right TCF hemisphere of Fig. 5(c), which corresponds to
the outer shell of the solid cluster. Since this plot only shows
half the perimeter, there are four areas of high correlation at
LII ≈ [0.11,0.22,0.33,0.44] perimeter fractions (p.f.) due to
the nine-fold symmetry. This being visible already in the C2P,
the TCF gives additional insight in the intrashell structure of
which some exemplary features will be described now.

The first one is the correlation gap in all TCFs in the range
of the nearest neighbor distance (dNN ≈ 0.25 p.f. for the first
shell and dNN ≈ 0.1 p.f. for the second shell) between � = 0◦
and � = 30◦. The existence of this area is evident because
the second particle is chosen by the integration to be a direct
neighbor so a third in the same distance at a bond angle around
0◦ is not possible in a strongly coupled system. Further, in the
outer shell of the solid cluster [right hemisphere of Fig. 5(c)]
the first high correlation areas appear in the nearest neighbor
region at � ≈ 45◦. This means the vertical particle columns
are not interlocked in a way that forms a hexagonal structure
on the cylinder surface, which would result in a bond angle
of � = 60◦, but are rather aligned in a square lattice. This
characteristic arises due to the final boundaries of the cluster,
the strong vertical confinement and the non-commensurate
number of particles to form a hexagonal lattice. In such a

square lattice an arbitrary particle with an arbitrary neighbor
will eventually “see” a third particle directly above, below or
at same height all around the cylinder perimeter. This leads to
the elongated islands of high correlation for larger LII which
have their center at bond angles of � ≈ 0◦,90◦,180◦.

Interestingly, the inner shell shown in the left hemisphere of
Fig. 5(c) does not show correlation islands at those positions.
Here, they start to form at � ≈ 60◦,120◦,180◦ for second and
third particles of the triplet in the nearest neighbor region. Thus
the inner shell does in opposition to the outer shell feature a
more hexagonal than square lattice. As the cluster heats up,
one can again observe the loss of long range order resulting in
the blurred correlation functions shown in Fig. 5(d).

In summary, the presented modified distribution functions
are well suited to investigate the intershell and intrashell cluster
structure.

C. Configurational entropies

The next step is to derive the configurational entropies for
each cluster temperature by using Eq. (4) and then look for
indicators of a phase transition. Figure 6 shows the thermal
progression of the configurational C2P entropies S(2) and
TCF entropies S(3) of the 39-particle cluster and will now
be described in more detail.

To compare the entropies from the different correlation
functions, the curves have been normalized to their respective
maximum value which is always the one at the lowest �. The
error bars indicate a rough estimation of the data consistency.
To generate them, every entropy has been calculated with only
half of the data set (frames) and the difference between that
and the entropy from the full data set is given as the error.
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FIG. 6. Configurational entropies calculated from the C2Ps and
TCFs of a 39-particle cluster. The dashed gray line indicates the
derived critical coupling parameter while the grayed area marks where
the cluster is in a metastable configuration.

Starting at low temperatures the entropies calculated from
the different correlation functions have their minimum at
� ≈ 1000. Then, upon heating, the entropies increase slowly.
The region between 410 > �crit > 320 features a steeper slope
after which a region with an again decreased slope follows. We
interpret the range of � ≈ 370 as the region of phase transition
due to the relatively sharp increase in entropy. The dashed
gray line indicate the middle point of that region and can be
identified as the critical coupling parameter �crit. For � < �crit

the fluid range is seen, whereas for � > �crit the solid phase is
found. Finally, the grey marked area above � ≈ 1000 indicates
a region where the entropy counterintuitively again increases
with �. This happens due to metastable configurations in which
the cluster is trapped [43–45]. At these high � values it is
difficult for the systems to reach the ground state. With enough
kinetic energy, the cluster is able to “fall down” into its ground
state, where the entropy is minimal. This is an effect that we
were able to observe multiple times for different clusters.

The overall trend of all three curves in Fig. 6 is generally
very similar. Thomsen and Bonitz however, have observed
distinct differences between the S(2) and S(3) for clusters well
below the melting temperature [23]. Their simulations featured
additional changes in the slope of the TCFs S(3) for the different
shells of a 80-particle cluster and identified them as the early
onset of intrashell disordering. If we were able to heat up the
cluster from much lower temperatures resulting in an entropy
curve that spans one or two orders more of magnitude on the
�-scale it should be possible to see this onset of intrashell-
disordering as well. With the experimental setup at hand this
is not possible and therefore it is well expected that the S(2)

and S(3) curves are very similar. Due to this fact and since its
curve features the highest dynamic range we will focus on the
C2P entropies in the following analysis of different clusters.

D. Size effect

To discuss the effect of different particle numbers Fig. 7
shows the C2Ps S(2) entropy curves for a 17-particle cluster
and the already discussed 39-particle cluster.
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FIG. 7. Configurational entropies calculated from the C2Ps of a
17-particle cluster (blue circles) and a 39-particle cluster (yellow
squares). The dashed gray lines indicate the critical coupling
parameters while the grayed area marks where the 17-particle cluster
is in a metastable configuration.

At the beginning (highest �, lowest Tkin) the smaller cluster
is trapped in a metastable configuration as already explained in
the last section. It stands out that the error bars in that area are
much larger than in other regions. It turns out, that there are
some particle rearrangements happening in the observation
time, which is typical for a cluster that is not in its ground
state. The repetition timescale for those rearrangements is
almost as large as the observation time. Thus, by bisecting
the frames for the error estimation they happen mainly in
one of the data halves resulting in much different derived
entropies. This shows that a much larger observation time
would be needed for a cold cluster to attenuate the effect of
metastable configurations. But since our main focus lies in the
identification of the phase transition this is a negligible effect.

Looking into the phase transition it is apparent that the
small cluster has a very distinct and sharp increase in entropy,
while the larger clusters transition is smoother and seems to
feature a two-staged melting indicated by the drop of entropy
at � ≈ 250. We assume that this is a side-effect of the cylindric
geometry assumed for the distribution. On the one hand, the
manipulation lasers are only heating along one axis resulting
in an anisotropic force that elongated the cluster horizontally
at higher laser powers. On the other hand a hotter cluster
tends to assume a more spherical shape because the force of
the ion wind forming the chains in the solid state becomes
less dominant. Nevertheless, the phase transition is clearly
identified for both clusters.

Figure 8 shows the critical temperature derived from the
experiments for four clusters with particle numbers of 17, 18,
39, and 72 particles. One can see, as a general trend, that
the critical temperature increases with the particle number.
This effect has already been seen by Schiffer [18] in his
simulations. He proposes a linear dependency between the
ratio of particles on the outer shell of a Coulomb cluster and
the transition temperature. This linear trend is drawn together
with our experimental data. The blue circles indicate the
transition temperatures of the four Yukawa balls with 16/17,
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FIG. 8. Cluster size effect on the transition temperature of four
different clusters (N = 17,18,39,72) compared to the predicted curve
for Coulomb clusters by Schiffer [18].

16/18, 32/39, and 50/72 particles on their outer shells. Our
experiments show a very similar linear trend but the absolute
transition temperatures are a factor of 1.5 above Schiffer’s
predicted curve. Including the effect of shielding would result
in even larger distance between our experimental data and
Schiffer’s line.

There are some reasons that we believe lead to the
rather large difference between Schiffer’s simulations and our
experiments. First, the calculated coupling parameters highly
depend on the particle charge [see Eq. (1)]. The particle charge
is determined as Z ≈ 3400 ± 530 from our normal mode
analysis. Hence, the �crit is uncertain to about 30% which
would just come close to Schiffer’s trend line. This error in
� is the absolute error for all four clusters, the relative error
between the experiments is much smaller since they have been
performed under identical conditions.

Another question is, whether Schiffer’s predicted linear
trend holds true towards very low particle numbers. The
smallest cluster Schiffer simulated had 100 particles and
was already somewhat above his linear approximation with
a larger error bar than the bigger clusters. It is possible that

the linear trend only holds true for particle numbers above
100. Our clusters are all below 100 particles. For such small
clusters effects of “magical numbers” (clusters with certain
particle numbers, that are more stable due to a symmetrical
particle configuration) come into play as well. Apolinario and
Peeters [46] showed that such “magical numbers” do exist
for spherical, two-shelled Yukawa balls and that the transition
temperature is much higher for those configurations compared
to non-magical clusters of similar size. The particle numbers
of our investigated cluster are different from Apolinario’s.
However due to the different geometry (cylindrical instead
of spherical and additional wake-field influence) certain very
stable configurations might exist for other particle numbers.
To evaluate this a finer variation of particle number would
be necessary which is beyond the scope of this article. Our
observed dependency between cluster size and transition
temperature does not hint toward very stable configurations
yet.

Summarizing, we observe a clear size dependence of the
phase transition using cylindrical correlation functions to
measure a statistical configurational entropy.

V. CONCLUSION

Our experiments showed that the usage of correlation
functions as proposed by Thomsen and Bonitz [23] are highly
suitable for evaluation of structural properties and determina-
tion of phase transitions of finite Yukawa balls. Furthermore,
it is possible to adapt the original spherical correlation
functions to anisotropic confinement properties leading to
symmetries like the cylindrical we presented, which confirms
the robustness of the approach. Using multiple cluster sizes
we were able to find a clear dependence between cluster size
and melting temperature. Larger clusters need more kinetic
energy thus a higher temperature to break up the inner bonds
and change into another phase state which is in agreement with
the findings of Schiffer [18] for Coulomb clusters.
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