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Exact relations for energy transfer in self-gravitating isothermal turbulence
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Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds
numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not
necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to
comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous
relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011); S. Banerjee and S. Galtier, Phys. Rev.
E 87, 013019 (2013)), the current exact relation shows that the pressure dilatation terms play practically no role
in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter
the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential
energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic
case, the correlation between density and gravitational acceleration may play an important role in modifying the
energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of
two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.
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I. INTRODUCTION

The formation of stars in giant molecular clouds is one
of the most intriguing subjects in astrophysics (see, e.g.,
Ref. [1]). Indeed, the star formation rate is surprisingly low
in present-day spirals in the sense that only about 1%–10%
of the gas forms stars every free-fall time [2–4]. How (and
if) the global collapse of self-gravitating molecular clouds is
prevented is a subject of controversy. Many factors, including
the hydrostatic pressure, rotation, and magnetic field, are
likely to play a significant role in this process (see, e.g.,
Refs. [5,6]). However, these clouds exhibit strong density
and velocity fluctuations which make supersonic turbulence
a potential candidate in supporting a self-gravitating cloud
against the collapse. Despite early attention by theorists [7–9],
the subject of turbulence was subsided by the intermediate
interest on studying more tractable effects of rotation [10–13]
and magnetic field [14–16]. It is only relatively recently that
a number of observational and numerical evidence indicated
that the collapse of a self-gravitating cloud is mainly regulated
by supersonic turbulence [17–20, and references therein] and
so is the mass and the star formation rate. In this framework,
several statistical studies (mainly numerical) have also been
performed on supersonic turbulence [21–27]. The role of
turbulence is basically two-fold, i.e., to provide stability at
large scales and to initiate collapse at smaller scales by
local density enhancements [28,29]. Therefore the presence
of turbulent support basically hinders the star formation
process. Unfortunately, to date, neither any clear analytical
explanation nor a satisfactory quantitative estimation exists
to properly understand the corresponding physics: existing
analytical works are mostly based on incompressible or
weakly compressible turbulence [30,31], whereas interstellar
turbulence can be highly supersonic with turbulent Mach
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numbers in excess of 10 (see, e.g., Ref. [32]). It is worth
noting that weakly compressible turbulence, which allows a
Kolmogorov spectrum, can be shown to bring about collapse
approximately at the Jeans scale [33,34].

A number of numerical studies of self-gravitating super-
sonic turbulence ranging from one to three dimensions have
been reported starting from the mid-1990s [24,27,35–41]. Both
the early low resolution spectral simulations and more recent
high resolution three-dimensional (3D) simulations conclude
that turbulence generated by the gravity alone (with or without
additional support by a magnetic field) is insufficient to slow
down significantly the star formation rate, and the turbulent
regulation against gravitational collapse is nothing but a global
effect whereas locally turbulence can promote collapse by
increasing the density [42]. Current global star formation
models invoke an energy feedback loop, effectively reducing
the mean gas density in response to elevated star formation
activity levels [43–45]. As far as the structure of turbulent
self-gravitating clouds is concerned, there is no comprehensive
theory available to describe it or predict rigorously any sort of
energy equipartition or quasivirialization across scales, even
though recent observations and numerical simulations seem
to indicate that certain patterns are ubiquitously present in the
data [46–49].

In this paper, we study analytically the role of self-gravity
in fully developed isothermal supersonic turbulence, which
is a valid model for the star-forming interstellar clouds.
Using two-point statistics, we derive an exact relation for
homogeneous and statistically stationary turbulence whereas
no prior assumption of isotropy is made. The motivation of this
paper is two-fold. The derivation of the exact relation relates to
general compressible turbulence whereas the principal physi-
cal motivation lies in understanding the role of gravity in cold
star-forming clouds where the turbulence is usually supersonic.
The derivation follows the methodology previously outlined
by Galtier and Banerjee in Refs. [50–52]. However, this work
revisits the definition of two-point correlation functions which
renders the final exact relation simpler and entirely expressible
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in terms of two-point fluctuations. The paper is structured
as follows. In Sec. II we discuss the energy conservation.
The following section explains the contruction of correlation
functions in details. The derivation of the exact relation is given
in Sec, IV where three alternative forms of the exact relations
are discussed. Finally Sec. V presents a summary of the paper.

II. ENERGY CONSERVATION

We start our analysis with the following equations describ-
ing a self-gravitating compressible fluid in three dimensions

∂tρ + ∇ · (ρu) = 0, (1)

∂t (ρu) + ∇ · (ρu ⊗ u) = −∇p + ρg + d + f , (2)

∇ · g = −�ψ = −4πG(ρ − ρ0), (3)

where ρ is the density, u the velocity, p the pressure, ψ

the gravitational potential, g = −∇ψ the gravitational ac-
celeration, G the gravitational constant, d ≡ (ζ + μ/3)∇(∇ ·
u) + μ�u stands for the viscous terms (ζ and μ being,
respectively, the bulk and dynamic viscosity which are
constants under isothermal assumption), and f is the random
stationary homogeneous external force. The system is closed
with an isothermal equation of state p = c2

s ρ, where cs is
the Newtonian sound speed. In the Poisson equation (3),
we use the density fluctuation with respect to the spatial
average ρ0 rather than the local density ρ, assuming periodic
boundary conditions often used in simulations of turbulence
in astrophysical systems. The total energy density at any point
of the flow field is the sum of kinetic, thermodynamic, and
gravitational potential energy densities at that point and can
thus be written as

E = ρu2/2 + ρe − αg2/2, (4)

where α = 1/(4πG) and e ≡ c2
s ln (ρ/ρ0) is the isothermal

thermodynamic energy per unit mass. The minus sign accounts
for the fact that gravitational potential energy is always due to
attractive interactions. Now for an isothermal fluid

∇ p/ρ = c2
s ∇ρ/ρ = c2

s ∇ (ln ρ) = ∇ e. (5)

The second law of thermodynamics states that on a closed
system (where the mass is conserved), the work done, which
will be stored in the system as potential energy, can be obtained
from the change in temperature (the internal energy) and
from the change in entropy. Unlike nonisothermal polytropic
flows, for isothermal system, the thermodynamic energy is
not contributed by the internal energy as the temperature is
constant. Using equation (5), equation (2) can therefore be
rewritten as

∂t u + (u · ∇)u = −∇e + g + ρ−1(d + f ). (6)

To derive the evolution equation for g, we take the partial
time derivative to both sides of the momentum conservation
equation and then, using the continuity equation, we get

∇ · ∂t g = 4πG∇ · (ρu) => ∂t g − 4πGρu = ∇ × AG,

(7)

where AG is the vector potential related to gravitation. To
show the conservation of energy when the viscous and forcing
terms are neglected, we evaluate the time derivative of each
term of the total energy. We have (assuming periodic boundary
conditions or zero velocity on the boundary surface)

1

2

∫
V

∂t (ρu2)dx =
∫

V

(ρu · g − u · ∇p)dx, (8)∫
V

∂t (ρe)dx =
∫

V

u · ∇p dx, (9)

− α

2

∫
V

∂t g2dx =
∫

V

[∇ ·(g×aG) − ρu·g]dx, (10)

where aG = α AG/2. Adding up the three above expressions
and assuming additionally that the boundary surface is either
periodic or gravitationally equipotential (g = −∇ψ = 0), we
can prove the total energy conservation for a nonviscous
system without external forcing.

III. CONSTRUCTION OF CORRELATORS

Although, it is the average total energy which is shown
to be a constant in volume, we are basically interested in
the behavior of the turbulent energy. To understand turbulent
energy, we decompose every scalar and vector field at every
point in space as a summation of the statistical average and the
fluctuation field (i.e., Reynolds decomposition). So we have

ρ = 〈ρ〉 + ρ̃, e = 〈e〉 + ẽ, u = 〈u〉 + ũ and

ρu = 〈ρu〉 + ρ̃u, (11)

where 〈·〉 denotes the statistical average and the ξ̃ denotes
the fluctuation of ξ . Since we are assuming homogeneous
turbulence, the statistical average is equivalent to the spatial
average.

For an incompressible system, the only component, which
is called the average turbulent kinetic energy, is traditionally
defined as the average of the square of the velocity fluctuations
with respect to the statistical average of velocity [53,54]. For a
compressible system, we do not have any strict recipe to define
turbulent energy. One can then define the turbulent energy
density to be

Ef = ρ̃u · ũ
2

+ ρ̃ẽ − α

2
g̃2. (12)

According to the above definition, turbulent energy is purely
produced by the field fluctuations. In the case of compressible
turbulence, this definition causes a problem. Like incompress-
ible Navier-Stokes equations, compressible Navier-Stokes
equations also remain invariant under Galilean transformation.
Unlike the mean velocity field, this transformation cannot
eliminate the mean density and mean thermodynamic energy
field. In other words, the fluctuating total energy is not an
inviscid invariant of compressible Navier-Stokes equations.
For a quantity, which is not an inviscid invariant of the flow,
the scaling relation and the plausibility of a cascade is not
obvious. Hence, we define the turbulent energy density as the
total energy density perceived with respect to a reference frame
at which the mean velocity is zero. One can readily show that
in such a reference frame, the velocity field is given by the
fluctuations, while the density and the thermodynamic energy
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fields are expressed as the total value (mean + fluctuation).
Just by observation, it is also easy to understand that under
Galilean transformation, the gravitational acceleration g also
behaves like density and thermodynamic energy. Thus, the
average total energy

〈E〉 =
〈
ρ ũ · ũ

2
+ ρe − α

2
g2

〉
=

〈
EH − α

2
g2

〉
, (13)

is an inviscid invariant of self-gravitating compressible isother-
mal turbulence where EH is the hydrodynamic part. So, in
the current case, the turbulent energy is the total energy of
the flow with respect to a reference frame where the mean
velocity of the flow is zero. The next step is the construction
of the correlators, which can be done simply by defining the
symmetric two-point correlation functions as (note that u ≡ ũ
as 〈u〉 = 0)

R(r) =
〈
RE + R′

E
2

〉
(14)

with

RE ≡ 1

2
j · u′ + ρe′ − α

2
g · g′, (15)

R′
E ≡ 1

2
j ′ · u + ρ ′e − α

2
g′ · g, (16)

where the unprimed and the primed quantities correspond
to the variables of the points situated at x and (x + r),
respectively, and j ≡ ρu. It is noteworthy that the defini-
tion of the kinetic energy correlator is not unique in the
compressible case. Our choice is particularly inspired by the
nonlinear term of Navier-Stokes equation which is written
as ∇ · ( j ⊗ u) where both j and u carry physical meaning
(momentum and velocity). The same form has also been
used in Refs. [50,57,58]. Another possibility is to express the
kinetic energy density as the square of the variable w ≡ √

ρu
and to define the correlator as 〈w · w′〉/2 to guarantee the
positive definiteness of the kinetic energy density in the
spectral space [55,56]. However,

√
ρu does not have a clear

physical meaning. In fact, unlike the incompressible case, in
compressible turbulence, one should, in general, investigate
the cospectral density of various pairs of physically meaningful
variables, e.g., the momentum and the velocity, and a priori
there should be no constraint on the positivity of the cospectral
density.

However, we must be careful to make sure it satisfies certain
restrictions. In the single-point limit R(0) = 〈E〉, but this is
not the only constraint that matters. To understand that, we
write the the correlation function as a linear combination
of correlators of kinetic energy (RK ), gravitational potential
energy (RW ) and compressive potential energy (RU ) as

R(r) = RK (r) + RU (r) + RW (r). (17)

Let us concentrate on the compressive energy part RU (r) =
〈ρe′ + ρ ′e〉/2 (the gravitational and kinetic parts are already
well defined). One can easily show that our RU (r) is a
particular case of a more general definition RU (n; r) = (n −
1)〈ρe〉/n + 〈ρe′ + ρ ′e〉/2n, corresponding to n = 1. Note
that the single-point limit is still the same at any n 	= 0,
RU (n; 0) = 〈ρe〉, but the scale-dependent part 〈ρe′ + ρ ′e〉/2n

vanishes at n → ∞. We need to find a way to restrict n based
on the structure of Navier-Stokes equations or using some
relevant exact solution. Since RU (n; r) is ultimately a linear
combination of single-point and two-point constituents, we
will look for the value of n that would give us the correct
density of sound energy. This known linear solution will be
sufficient to constrain the linear combination. One can readily
show, for an isothermal or polytropic fluid, that the total energy
density of the acoustic mode (Es) is given by (ignoring gravity)

Es = 1

2
ρ0u2 + c2

s

2ρ0
ρ2, (18)

where the corresponding energy correlation function can be
written as

Rs(r) = 1

2
ρ0〈u · u′〉 + c2

s

2ρ0
〈ρρ ′〉 (19)

so that Rs(0) = 〈Es〉, Rs(∞) = 0, and the Fourier transform
R̂s(k) would give us the energy spectral density of sound.
In the acoustic limit, the kinetic and the potential energy
follow detailed equipartition [59,60]. The equipartition is
also supported by recent numerical work [61]. With our old
expression of thermodynamic energy correlator, i.e., at n = 1

[50], we get at acoustic limit, RU (1; r) = c2
s

ρ0
(〈ρρ ′〉 − 〈ρ2〉/2).

After Fourier transform, it gives thermodynamic energy
spectral density which is two times the required energy spectral
density. This problem can be solved by choosing n = 2 whence

RU (2; r) = c2
s

2ρ0
〈ρρ ′〉, as needed. In that case, the general

thermodynamic potential energy correlator looks like

RU (2; r) = 〈ρe〉
2

+ 〈ρe′ + ρ ′e〉
4

. (20)

Taking the new modifications into account, the hydrodynamic
energy correlation functions can be expressed as

RH ≡ ( j · u′ + ρe′ + ρe)/2,

R′
H ≡ ( j ′ · u + ρ ′e + ρ ′e′)/2, (21)

and therefore the total energy correlation (including the
gravitational energy) can be defined by

RE ≡ ( j · u′ + ρe′ + ρe − αg · g′)/2,

R′
E ≡ ( j ′ · u + ρ ′e + ρ ′e′ − αg′ · g)/2. (22)

IV. DERIVATION OF THE EXACT RELATION

The next step is to derive the evolution equations for R(r).
Using equations (1), (2), (3), (6), and (7), we can write (without
the forcing and the viscous terms)

∂t 〈 j · u′〉 =〈 j · ∂t u′ + u′ · ∂t j〉
= − 〈 j · [(u′ · ∇′)u′ + ∇′e′ − g′]

+ u′ · [∇ · ( j ⊗ u) + ∇p − ρg]〉
= − 〈 j · [(u′ · ∇′)u′ + ∇′e′ − g′]

+ u′ · [u(∇ · j ) + ( j · ∇)u + ∇p − ρg]〉
= − 〈 j · ∇′e′ − pθ ′ + j · [(u′ · ∇′)u′ − g′]

+ u′ · [u(∇ · j ) + ( j · ∇)u − ρg]〉, (23)

053116-3



SUPRATIK BANERJEE AND ALEXEI G. KRITSUK PHYSICAL REVIEW E 96, 053116 (2017)

∂t 〈ρe′〉 = 〈ρ ∂te
′ + e′ ∂tρ〉

= −〈∇ · ( je′) + ∇′ · ( j ′e′) − ρe′θ ′ + pθ ′〉
= −〈− j · ∇′e′ + pθ ′ + ρ[∇′ · (u′e′) − e′θ ′]〉
= −〈− j · ∇′e′ + pθ ′ + ρu′ · ∇′e′〉, (24)

∂t 〈ρe〉 = ∂t 〈ρ ′e′〉 = 〈ρ ∂te + e ∂tρ〉
= −〈pθ〉, (25)

∂t 〈g · g′〉 = ∂t 〈g · g′〉 − ∂t (g · g) = 〈g · ∂t g′ + g′ · ∂t g〉
= 〈g′ · [4πG j + ∇ × AG]

+ g · [4πG j ′ + ∇′ × AG
′]〉

= 〈∇ · (AG × g′) + ∇′(AG
′ × g)〉

+ 4πG〈 j · g′ + j ′ · g〉
= α−1〈 j · g′ + j ′ · g〉, (26)

where θ ≡ ∇ · u and we used the statistical homogene-
ity to obtain 〈∇ · (AG × g′)〉 = −〈∇′ · (AG × g′)〉 = 〈AG ·
(∇′ × g′)〉 = 0. In the following, we derive two different forms
of the exact relation.

A. In terms of two-point differences

This form looks nearly similar to the previously derived
exact relations for compressible turbulence [50–52]. To obtain
the concerned form, we combine the above expressions and
obtain for RH (and similarly for R′

H)

∂〈RH〉
∂t

= −∇r ·
〈

1

2
[ j · u′ + ρe′]δu + je′

2

〉
+ 1

2
〈θ ′( j · u′ + ρe′) − pθ + j · g′ + u′ · ρg〉, (27)

∂〈R′
H〉

∂t
= −∇r ·

〈
1

2
[ j ′ · u + ρ ′e]δu − j ′e

2

〉
+ 1

2
〈θ ( j ′ · u + ρ ′e) − p′θ ′ + j ′ · g + u · ρ ′ g′〉. (28)

After some manipulations and reinserting the forcing and viscous terms, we get

∂〈RE + R′
E 〉

∂t
= −∇r · 〈(RH + R′

H)δu〉 + 1

2
〈ρg · u′ + ρ ′ g′ · u − j · g′ − j ′ · g〉 + 2D + 2F

+
〈
θ
[
R′

H − p

2

]
+ θ ′

[
RH − p′

2

]
− 1

2
( j · ∇′e′ + j ′ · ∇e)

〉

= 1

2
∇r · 〈[δ j · δu + δρδe]δu〉 + 1

2
〈δ j · δg − δ(ρg) · δu〉 + 2D + 2F

+ 〈θ (R′
H − E ′

H) + θ ′(RH − EH)〉 + 1

2
〈(∇ · j )e′ + (∇′ · j ′)e − (θp + θ ′p′)〉

= 1

2
∇r · 〈[δ j · δu + δρδe]δu〉 + 1

2
〈δ j · δg − δ(ρg) · δu〉 + 2D + 2F

+ 1

2
〈δθδ( j · u + ρe) − δ(θu) · δ j − δ(θe) · δρ + δ j · δ(∇e)〉 − 〈∇ · (pu)〉, (29)

where for any variable X, δX ≡ X(x + r) − X(x) = X′ − X,
and D and F denote the viscous contribution and the forcing
term, respectively. The algebraic expressions for D and F are
given as

D = 1
4 〈 j · d ′/ρ ′ + u′ · d + j ′ · d/ρ + u · d ′〉, (30)

F = 1
4 〈 j · f ′/ρ ′ + u′ · f + j ′ · f /ρ + u · f ′〉. (31)

In addition, to obtain the final step, we used the relation

(RH + R′
H) − (E ′

H + EH) = − 1
2 (δ j · δu + δρδe). (32)

Now for a state, where the average energy and its correlator
vanish by the balance between forcing and the viscous
dissipation (weaker approximation than a stationary state),
the left-hand side of equation (29) vanishes. In addition, we
concentrate on the inertial zone (which is assumed to exist for
compressible turbulence [62,63]), where the viscous effects
can be neglected and the external forcing is assumed to be the

only source of the energy input

− 4ε = ∇r · 〈(δ j · δu + δρδe)δu〉 + 〈δ( j · u + ρe)δθ

+ δ j · δ(∇e − uθ ) − δρδ(eθ )〉
+ 〈δ j · δg − δu · δ(ρg)〉, (33)

where ε = F represents the (generally, scale-dependent) mean
rate of energy injection by the external force and the term
〈∇ · (pu)〉 vanishes by the application of Gauss’ divergence
theorem.

Equation (33) is the main result of the paper. This is an
exact relation for three-dimensional, homogeneous, isothermal
self-gravitating turbulence valid in the limit of asymptotically
large Reynolds numbers. Unlike the relationships obtained in
previous papers [50,51], the current form is expressed solely
in terms of two-point differences. Due to the modification in
the definition of the correlation functions, the nongravitational
part of (33) differs from that obtained in Galtier and Banerjee
[50]. Interestingly, one can show that the velocity–pressure-
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dilatation correlation does not appear in this exact relation
which was claimed previously [63].

We now rewrite (33) in a slightly different form

−4ε = ∇r · 〈(δ j · δu)δu〉 + 〈δ( j · u)δθ − δ j · δ(uθ )〉
+ ∇r · 〈δρδeδu〉+〈δ(ρe)δθ + δ j · δ(∇e)−δρδ(eθ )〉
+ 〈δ j · δg − δu · δ(ρg)〉, (34)

which is convenient for the discussion that follows. Here, the
right-hand side (rhs) is divided across three lines based on
the energies involved: kinetic, thermodynamic, gravitational,
respectively. The ∇r · 〈. . .〉 terms on lines 1 and 2 represent
the divergence of kinetic and thermodynamic energy fluxes.
The last line of (34) describes a scale-dependent net energy
input due to self-gravity. Interestingly, this new contribution
can neither be expressed as a flux term nor a usual source term.
However, under the assumption of isotropy, the gravitational
energy source in equation (29) can be written as

S(r) = 〈ρg · u′ + ρ ′ g′ · u − g′ · j − g · j ′〉/2

= 〈ρg · u′ − g′ · j〉. (35)

Consider correlation lengths Lρ , Lg , Lu associated with the
density, gravitational acceleration, and velocity, respectively.
In supersonic turbulence, density is very short-correlated
compared to the velocity Lρ � Lu [64]. This is reflected,
for instance, in shallow density spectra (P (ρ,k) ∝ k−1 at
Mach 6 or even shallower at higher Mach numbers), while
the velocity spectra scale ∝k−2 [21]. As one can expect that
Lρ ∼ Lg � Lu and so the density strongly correlates with the
acceleration g, at r � Lu the first term will dominate as small-
scale momentum decorrelates from small-scale acceleration

S(r) = 〈ρg · u′ − j · g′〉 ≈ 〈ρg · u〉 − 〈 j〉 · 〈g′〉 ≈ 〈ρg · u〉.
(36)

Case (36) represents the gravitational forcing of the turbulence
at relatively large scales and thus S(r) can be moved to the
left-hand side of (33), which includes contributions from an
external large-scale acceleration of the form similar to (36).

A special case when gravitational terms in (33) may
cancel exactly relates to the so-called Zeldovich approxima-
tion Zel’dovich [65] that assumes a predominantly potential
velocity field (∇×u = 0) such that u = λg, where λ is a
constant [66]. Its generalization known as the adhesion model
[67,68] relies on multidimensional Burgers’ equation in the
limit of vanishing viscosity to describe structure formation in
a uniform cold gravitationally unstable gas with random initial
velocity perturbations (e.g., Refs. [69,70]). The cancellation
stems from the “minimization” of nonlinear terms, which
implies enslaving of the velocity by the density through
the gravitational potential. If relaxation (with quite different
initial conditions in our case) would indeed favor depleted
nonlinearity in some regime (e.g., in shock-compressed layers
prone to collapse), the cancellation of gravitational terms
would be selected naturally. The cancellation works whenever
one of the eigenvalues of the rate-of-strain matrix ∂iuj =
∂i∂jφ dominates over the other two; here φ is the velocity
potential and u = −∇φ. This is the case for pancake-like
structures (such as shock-compressed layers), but not for

(cylinder-like) filaments in 3D, which have two dominating
eigenvalues.

B. In terms of two-point correlation functions

An alternative way to express the obtained exact relation
is in terms of two-point correlation functions. Hereafter, we
use the suffixes K, U, and W to denote quantities related to the
kinetic, the thermodynamic, and the gravitational energies,
respectively. These correlation functions are grossly classified
into three parts: (i) the transfer terms TK,U,W ; (ii) the exchange
(or cross) terms XK→U , and XK→W ; and (iii) the source term
SU . The transfer terms represent the net energy correlation
flux of a given type (kinetic, thermodynamic, or gravitational),
which gets transferred from one scale to other whereas the
exchange terms represent the energy which gets converted to
another form at a given scale r (kinetic to thermodynamic
and vice versa, for example). The source term represents the
single-point contribution in RU (r), see (20). The exchange
terms cancel out in the evolution equation for the correlator of
the total energy R, but appear in the evolution equations for
RK , RU , and RW ,

∂tR(r,t) = TK (r,t) + TU (r,t) + TW (r,t) + D(r,t)

+F(r,t) + SU (t), (37)

∂tRK (r,t) = TK (r,t) − XK→U (r,t) − XK→W (r,t)

+D(r,t) + F(r,t), (38)

∂tRU (r,t) = TU (r,t) + XK→U (r,t) + SU (t), (39)

∂tRW (r,t) = TW (r,t) + XK→W (r,t), (40)

where the various transfer, exchange, and source functions
from the above conservation laws are defined as

TK = − 1
4 〈 j · (u′ · ∇′)u′ + j ′ · (u · ∇)u

+ u · [(∇′ · j ′)u′ + ( j ′ · ∇′)u′]

+ u′ · [(∇ · j )u + ( j · ∇)u]〉, (41)

XK→U = + 1
4 〈 j · ∇′e′ + j ′ · ∇e − p′θ − pθ ′ 〉, (42)

TU = − 1
4 〈ρu′ · ∇′e′ + ρ ′u · ∇e〉〉, (43)

SU = + 1
2 〈pθ〉, (44)

TW = − 1
4 〈 j · g′ + j ′ · g − ρg · u′ − ρ ′ g′ · u〉, (45)

XK→W = − 1
4 〈ρg · u′ + ρ ′ g′ · u + j · g′ + j ′ · g 〉. (46)

Now for a state where the time derivative of the average total
energy correlator vanishes due to the balance between forcing
and dissipation, we can write

TK (r) + TU (r) + TW (r) + SU (r) = −F(r) − D(r). (47)
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For the so-called inertial zone, we can neglect the dissipative
terms and finally have

TK (r) + TU (r) + TW (r) + SU (r) = −ε(r), (48)

which is equivalent to the equation (33).
We note by looking at (45) and (46) that, unlike in other

cases, the transfer and cross-terms in (40) partly overlap, that
is, the evolution equation for RW can be written in a very
simple form with a symmetric part of the cross-covariance of
j and g on the rhs,

∂tRW (r,t) = − 1
2 〈 j · g′ + j ′ · g〉, (49)

which would statistically vanish in stationary conditions. At
the same time, XW→K = −XK→W describes nothing but the
broadband gravitational forcing Fg(r), which has the same
functional form as (31). Hence, we can interpret the transfer of
the gravitational potential energy TW (r) = Fg(r) + ∂tRW (r)
as a result of imbalance (across scales) between gravitational
forcing and the rate of accumulation of potential energy.
In stationary conditions (e.g., when gravity is uniformly
bounded and turbulence is fully developed), one obtains
〈 j · g′ + j ′ · g〉 = 0 and thus TW (r) = Fg(r), so that the
transfer function simply represents forcing due to self-gravity,
see also (36). If instead stationarity is broken (due, e.g., to
an ongoing gravitational phase transition) one can think of a
scenario discussed at the end of previous section, where the
transfer would vanish due to the cancellation of gravitational
terms on the rhs of (45). This would correspond to a balanced
case of production and storage of the potential energy.

Now, focusing on a statistically stationary state, we can
finally obtain

TK (r) + TU (r) + T̃W (r) = −F(r) − D(r), (50)

where we assumed that ∂tR, the source SU = −∂t 〈ρe〉/2, and
∂tRW statistically vanish, and introduced new notation for the
stationary transfer function

T̃W = 〈ρg · u′ + ρ ′ g′ · u〉/4. (51)

C. Energy transfer in spectral space

We shall now use the correlation form (50) of the exact
relation to study the energy budget in spectral space. Taking
Fourier transform of (47) and integrating over spherical shells
in k space, we obtain

T (k) ≡ TK (k) + TU (k) + T̃W (k) = −F (k) − D(k), (52)

where T (k) = ∫
T̂ (κ)δ(k − |κ |)dκ is the total energy spectral

transfer function, F (k) = ∫
F̂(κ)δ(k − |κ |)dκ is the energy

injection spectrum, and D(k) = ∫
D̂(κ)δ(k − |κ |)dκ is the

energy dissipation [here Â(κ) denotes the Fourier transform
of A(r)]. Finally, spectral energy fluxes through wave number
k can be defined in a standard form

�(k) ≡ �K (k) + �U (k) + �̃W (k) =
∫ ∞

k

T (κ)dκ, (53)

or, equivalently,

T (k,t) = −∂�(k,t)

∂k
. (54)

Under stationary conditions, steady energy injection by the
forcing balances viscous dissipation,

∫ ∞
0 [F (k) + D(k)]dk =

0, which implies
∫ ∞

0 T (k)dk = 0, and hence the flux can also

be computed as �(k) = − ∫ k

0 T (κ)dκ . In the limit of vanishing
viscosity, in the inertial range, the spectral energy flux is
constant,

�(k) = ε ≡
∫ ∞

0
F (k)dk =

∫
F̂(κ)dκ =

∫
ε(r)d r, (55)

and the spectral energy transfer function T (k) = 0. Thus (55)
is a spectral-space analog of our main result (33).

Finally, we define relevant spectral energy densities sim-
ilar to F (k) above, namely, K(k) ≡ ∫

R̂K (κ)δ(k − |κ |)dκ ,
U (k) ≡ ∫

R̂U (κ)δ(k − |κ |)dκ , and W (k) ≡ ∫
R̂W (κ)δ(k −

|κ |)dκ . The Fourier transforms involved are real by construc-
tion of cross-covariances in (14). Moreover, these (co)spectral
densities satisfy Parseval’s theorem [42,61]. Also note that
K(0) = 0 if 〈u〉 = 0 and W (0) = 0 since 〈ρ〉 = ρ0, but U (0) =
〈ρe〉/2 according to (20). Since α ̂〈g · g′〉 = α|̂g(k)|2 =
α−1k−2|ρ̂(k)|2, the gravitational energy spectral density can
be readily expressed in terms of the density power spectrum
as W (k) = −2πGk−2

∫ |ρ̂(κ)|2δ(k − |κ |)dκ .

V. SUMMARY AND DISCUSSION

In this work, we clarify the definition of turbulent energy
as it is used in the framework of the derivation of exact
relations for homogeneous turbulence. With respect to the
previously derived relations of compressible hydrodynamic
and magnetohydrodynamic turbulence [50–52], here we mod-
ify the definition of the two-point energy correlation function
by putting an additional constraint of detailed equipartition
(in spectral space) between dilatational kinetic and thermody-
namic potential energy in the acoustic limit. Using the modified
correlation function, we show that the resulting relation is
indeed much simpler and is free from any pressure-dilatation–
velocity correlation. In addition, both flux and source terms
are now expressed in terms of two-point fluctuations. We also
derive an alternative form of the relation formulated solely
in terms of correlation functions. We then use the correlation
form to derive the scale-by-scale energy budget in spectral
space. The current work includes the effects of self-gravity
which, presumably, contributes as a forcing term acting across
scales in statistically stationary conditions. However, the
gravitational part does not contribute to the two-point energy
flux. The total gravitational contribution is shown to vanish
under Zeldovich approximation.

The obtained exact relations can be verified using nu-
merical data for both subsonic and supersonic isothermal
turbulence. The present work can be generalized in the case
of compressible magnetohydrodynamic turbulence. Another
nontrivial extension will be to use nonisothermal closures.
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