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Kinetic-contact-driven gigantic energy transfer in a two-dimensional Lennard-Jones
fluid confined to a rotating pore
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A two-dimensional Lennard-Jones system in a circular and rotating container has been studied by means of
molecular dynamics technique. A nonequilibrium transition to the rotating stage has been detected in a delayed
time since an instant switching of the frame rotation. This transition is attributed to the increase of the density at
the wall because of the centrifugal force. At the same time the phase transition occurs, the inner system changes
its configuration of the solid-state type into the liquid type. Impact of angular frequency and molecular roughness
on the transport properties of the nonrotating and rotating systems is analyzed.
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I. INTRODUCTION

In recent years one observes an increased interest in proper-
ties of confined fluids, liquids, and granular matter. Importance
of such systems comes not only from the fact that they exhibit
new features as compared to the bulk systems, but also because
of their practical applications. First of all, the phase diagram
of a fluid confined in a porous medium can be distinctively
different from the one in the bulk due to the interaction with
the walls of the pores and geometrical constraints. In the
liquid phase, for instance, confinement induces layering of the
particles at the wall and can completely change the freezing
scenario, which becomes dependent mainly on the strength
of the interaction between the wall and the inner system
particles [1,2]. Interesting aspects of confinement include also,
besides nonuniform density distribution [3–7], preferential
adsorption in mixtures [8–12], surface phase transitions in
thin liquid films [13,14], phase transitions in self-assembled
monolayers [15,16], novel structures in liquid crystals [17] and
lubrication films [18], and even possibility of glass transition
[19]. Understanding the structure and transport properties of
confined matter is also important for processes such as melting
[20], wetting, adsorption, nucleation, and phase separation
[21]. From the technological point of view, porous materials
are important since they have many applications in chemistry
and pharmaceutical industry [22,23].

The first theoretical description of fluids under confinement
has been proposed by Henderson, Abraham, and Barker [24].
In this work the authors obtained and presented the density
profile of a hard-sphere fluid in contact with a structureless wall
by solving the Ornstein-Zernike equation. These investigations
have been followed by Abraham and Singh perturbation
theory [25], in which the structureless walls were treated
as soft and cohesive (or repulsive). The problem of the
wall interactions was a focus of a sequence of next works
[26–30], whose aim was rather to find an effective form
of the surface potential instead of considering the explicit
intermolecular contributions. A detailed review of the research
on the effects of confinement like layering or gas-liquid
transition of different confined fluid systems by the use of
both theoretical and simulation techniques has been given in
the work of Gelb et al. [21].

Naturally, the interest in confined systems was quickly
extended to nanofluidic transport properties like mass flow
and heat transfer (see, for example, Refs. [31–34]). In addition

to the confinement conditions, additional energy transfer can
induce even more interesting effects. For example, recent
studies [35] have proven that driven granular matter can
have non-Maxwellian velocity distribution. Many aspects of
molecular flow have been investigated theoretically mostly
using nonequilibrium molecular dynamics, introduced by
Hoover and Ashurst [36]. It has been shown that channel
width, wettability, heat transfer, external forces, and geometry
of confinement significantly influence the behavior of the
above-mentioned flow and transport properties.

In studying properties of confined systems there are two
distinct types of the approach. The first type concerns the case
when the wall is smooth and structureless and the second type
when the wall is rough. The inner system in confinement can be
also treated as continuous medium (by the use of the Navier-
Stokes description) or as a set of individual particles. Fully
continuous models turn out, however, inefficient. Moreover,
they fail at the level of few molecular diameters from the
wall, where the influence of the wall becomes particularly
strong [37,38]. Structureless models cannot describe then
all the physical processes that might occur in microporous
structures. When a flat wall is changed into even a slightly
corrugated wall, then the dynamic behavior of a confined
liquid can be drastically modified [39–41]. Being motivated
by this conclusion, we already studied the influence of the
wall particle size on the density profiles of the Lennard-Jones
system confined in a structured circular geometry [42].

The current work extends our previous studies for the case
of nonequilibrium and dynamical conditions. In particular, it
presents a detailed description of a molecular system behavior
in a two-dimensional rotating micropore. Section II presents
the details of the atomistic model and computational aspects.
Section III presents a nonequilibrium transition with a gigantic
energy transfer from the rotating wall to the inner system
that results in the global system rotation. A simple model
describing this behavior has been proposed in Sec. IV. Energy
transfer and influence of the system size on the transition to
the rotating mode have been given in Sec. V. In Sec. VI we
summarize our results.

II. MODEL AND COMPUTATIONAL DETAILS

We consider a two-dimensional circular container con-
structed from the Lennard-Jones particles with the linear
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FIG. 1. Visualization of the studied system.

particle density equal to 1. The particles are placed inside.
We assume that the edge particles are immobile in relation to
each other, but they do interact with the internal system. The
N confined particles interact via the Lennard-Jones potential
[43], describing the interaction between a pair of neutral
molecules:

Uinner(r) = 4ε11

[(σ11

r

)12
−

(σ11

r

)6
]
, (1)

where ε11 and σ11 are the potential well depth and diameter of
the inner system particles. In reality, walls and edges always
influence molecular system in their vicinity, therefore we also
assume an interaction describing such influence. In general,
there are several known rules for choosing parameters of
interaction; however, three of them are the most popular:
the Lorentz-Berthelot [44,45], the Waldman-Hagler [46], and
the Kong [47] one. In this paper, we use the Lennard-Jones
potential, in which the interaction parameters fulfill the
generally accepted Lorenz-Berthelot rules:

σ12 = σ11 + σ22

2
(2)

and

ε12 = √
ε11ε22, (3)

where ε22 and σ22 are the parameters of the potential describing
the edge particles.

In Fig. 1 an example of typical configuration of the particle
system is presented. The potential field originating from
the assumed circular geometry at the point z = (zx,zy) is
calculated as

Uf (z,t) =
M∑
i=1

Ui(z − zi(t)), (4)

where M is the number of particles constructing the circular
container and zi(t) are the positions of the edge particles at
the time t . Since we focus on the influence of the container
rotating with the angular frequency ω, the effective potential
field will also depend on ω:

Uf (z,t) =
M∑
i=1

4ε12

[(
σ12

ζi(z,t)

)12

−
(

σ12

ζi(z,t)

)6
]
, (5)

with

ζi(z,t) =
√√√√ [

zx − Zcos
(

2πi
M

+ ωt
)]2

+[
zy − Zsin

(
2πi
M

+ ωt
)]2 , (6)

where Z is the radius of the container. The origin of the
Cartesian coordinates is chosen at the geometrical center
of the molecular system. The wall particles have infinite
mass and move only collectively as a rotating frame. This
model takes into account only a single layer of the edge
particles, yet it still serves as a realistic representation of the
physical systems. In a general case, one can take into account
more edge layers and consider corrections resulting from
them.

The simulation performed is divided into two parts. In
the first part an equilibrated initial configuration is prepared
under assumption of periodic boundary conditions mimicking
the bulk unlimited system. From such configuration a part
conforming the size of the container is cut out and, then,
placed inside the container. Simulation is further performed
until the system reaches thermodynamic equilibrium. At the
second stage of simulation the angular velocity of the container
is abruptly turned on. The total energy of the inner system
will be increasing now due to the interaction with the wall.
Since the rotating container is assumed to maintain its angular
frequency, the total energy will be not conserved and we will
deal with the nonequilibrium NV system. All the simulations
were performed using the velocity Verlet integration scheme
[48,49] with the time step as small as �t = 0.0002 to ensure
the highest quality of the results in nonequilibrium conditions.
The whole simulations were carried out for 5 × 105 time
steps. Note that in our calculations we assumed the standard
shifted-potential with a cutoff of 2.5σ , dimensionless reduced
units, and equations simplified to relevant variables.

III. GIGANTIC ENERGY TRANSFER

As the first case we will consider the following conditions:
the angular velocity of the nanopore is assumed as ω = 1, its
radius as Z = 15σ11 (where σ11 is the inner system particle
diameter), and the density of the inner system as ρ = 0.95.
The particles of the inner system are of the same kind as
the particles constituting the edge of the nanopore (σ11 =
σ22 = 1, ε11 = ε22 = 1). At the beginning of the simulation the
particles inside the nanopore are being initially equilibrated
within the time equal to 10 to economize the whole space
of the nanopore. Then, suddenly, the angular velocity of the
container is turned on. Interaction with the edge particles
will cause now an increase of the kinetic energy of the inner
particles. Figure 2 presents all energy curves that characterize
this process. During the simulation the kinetic energy increases
very slowly until a certain value of time denoted as τ , above
which one observes a sudden large jump. At this point the
system enters a new dynamical stage in which all particles
are moving in a collective manner. We will call it the rotating
stage. Transition to this stage depends on the density of the
system, the Lennard Jones interaction parameters, and the type
of the edge particles. During the time τ from Fig. 2 the circular
container underwent about three full rotations. Within this
time the total potential energy of the system is negative which
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FIG. 2. Total energy E, kinetic energy Ek , and potential energy
Ep time dependencies of the simulated particles in a container with
the radius Z = 15 for σ22/σ11 = 1, ρ = 0.95, and ω = 1. Gigantic
energy transfer occurs at the transition to the rotating stage. Note that
the initial total energy is equal to −0.9.

denotes that on average the particles find themselves in the
potential wells close to their minimums. In the rotating stage
the potential energy is positive, which indicates that particles
much departed from these positions.

From Fig. 2 it is also seen that the rotating stage comprises
three characteristic regions. At the time of t = τ = 20 one
observes a very strong increase of all energies until about the
time t = 25, then, in the next time region, increases are still
strong until t = 40, when the energies attain almost constant
levels. A the same time one observes strong fluctuations as
well in the second as in the third part of the rotating stage.
The total kinetic energy is about four times larger than the
potential energy. The level of the potential energy seems to
be preserved, whereas a small increase of the kinetic energy
is noticeable, which is symptomatic for continuous heating of
the system.

Figure 3 presents changes in the radial density profile. The
initial crystal-like structure that manifests itself in well-defined

FIG. 3. Density as a function of distance from the center of the
container of size Z = 15 obtained at the times: t = 0, t = 20 = τ

(the beginning of the rapid increase of energy), t = 100 (the end of the
simulation). Simulations were performed for σ22/σ11 = 1, ρ = 0.95,
and ω = 1. The curves are smoothed over 104 time steps near a given
point in time. The effect of centrifugal force is indicated by arrows
showing small shift of the density peaks towards the edge of the
geometry.

FIG. 4. Change of the profile of the kinetic energy as a function
of distance from the center of the container obtained at different
simulation times for Z = 15, σ22/σ11 = 1, ρ = 0.95, and ω = 1. The
final kinetic energy profile is parabolic.

peaks (black solid line) is melting slowly. In the transition
region there is no global structure in the density profile
observed, there are only three fluid layers at the wall (blue
solid line). After the transition to the rotating stage the density
profile (red solid line) increases near the edge and decreases
in the middle of the nanopore. Also the density peaks become
lower and shift toward the edge of the geometry. The density
peak shift near the wall is equal to about a dozen or so percent
of the size of a particle after the transition, which is a big value
when we take into account high packing of particles. These
two effects are associated with the centrifugal force. It is an
interesting observation that in the rotating stage one can still
observe three visible layers of the fluid at the wall, whereas in
the middle of the nanopore the density is uniform, indicating
the liquid state.

Figure 4 shows changes of the profile of the kinetic energy
as a function of distance from the center of the nanopore
obtained at different simulation times. At the beginning the
distribution is uniform (black solid line). At the transition to
the rotating stage one observes a big increase of the kinetic
energy at the wall that is propagating toward the center of
the nanopore due to the transfer of the energy from the edge
to the outer parts of the inner system. At the end of the
simulation the kinetic energy profile calculated in a laboratory
reference frame is parabolic. Note that since the kinetic energy
profile is parabolic, the transverse velocity profile is linear. In
this state, the particles rotate in accordance with the rotating
container.

IV. MODELS OF THE ROTATING PLATES

To explain theoretically the behavior of the above kinetic
energy two models will be considered, which form ideal
reference models: hard rotating plate model and soft rotating
plate model.
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FIG. 5. Change of the kinetic energy for the roughness σ22/σ11 = 1. The radius of the container is Z = 15. The angular frequency of the
rotation ω varies from 0.05 to 2.00 with the step 0.05. Theoretical curve is due to the soft rotating plate model calculated using Eq. (10). Each
panel shows the results for a different density: (a) ρ = 0.95, (b) ρ = 0.85, (c) ρ = 0.75, (d) ρ = 0.65.

A. Hard rotating plate

Let us consider a simplified rotating disk composed of N

densely packed hard interacting particles (hard disks or hard
spheres) of the diameter σHD and the mass m = 1. The last
layer of the particles forms the edge of the container, where
the radius of the container is Z. The moment of inertia of the
inner system is

I � 1
2mN (Z − σHD)2. (7)

The average rotational kinetic energy of the inner system
particle is then equal to

Ek = Iω2

2N
= 1

4
mω2(Z − σHD)2 = 1

4
ω2(Z − σHD)2. (8)

Densely packed particles can only move around the main axis
of rotation as their thermal motions are much smaller than the
overall rotational movement. As a consequence, the kinetic
energy increase is associated mainly with the rotational term.
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FIG. 6. Change of the potential energy for the roughness equal to σ22/σ11 = 1. The radius of the container is Z = 15. The angular frequency
of the rotation ω varies from 0.05 to 2.00 with the step 0.05. Each panel shows the results for a different density: (a) ρ = 0.95, (b) ρ = 0.85,
(c) ρ = 0.75, (d) ρ = 0.65.

Let us call this model the hard rotating plate. This is an ideal
situation, where the entire mass is rotating as a rigid body with
no sliding of the particle layer over the another one.

B. Soft rotating plate

The soft rotating plate model refers to the system, when
molecular motions become significant. For soft interacting
particles, like in the Lennard-Jones case, we expect that the

energy will increase twice:

Ek = 1
2ω2(Z − σ12)2, (9)

because particles can move freely in the radial direction.
Energy will be transferred from the wall to both rotational and
radial degrees of freedom through thermalization process. In
our work we have found out that the energy transfer is density,
container size and edge particle size dependent. It might also be
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FIG. 7. Change of the kinetic energy for the roughness equal to σ22/σ11 = 2. The radius of the container is Z = 15. The angular frequency
of the rotation ω varies from 0.10 to 4.00 with the step 0.10. Theoretical curve is due to the soft rotating plate model. Each panel shows the
results for a different density: (a) ρ = 0.95, (b) ρ = 0.85, (c) ρ = 0.75, (d) ρ = 0.65.

affected by nonuniformity in the density distribution due to the
centrifugal force. Using this information we assumed a simple
semiphenomenological equation, in which the amount of the
kinetic energy transferred to the inner system is proportional
to the dimensionless density:

Ek = 1

2

ρ

ρ0
ω2(Z − σ12)2 = 1

2
ρω2(Z − σ12)2, (10)

which properly reproduced the data from simulations at least
for small particles forming the edge of the geometry over the
studied density range.

Note that while using a concept of temperature a need
arises to consider the effective radius of the geometry Z − σ12.
This can be done using the Barker-Henderson theory for the
effective hard disk diameter [50,51], which depends on the
temperature of a molecular system. As a result the expected ki-
netic energy per particle in the soft rotating plate model would
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be proportional to (Z − ∫ σ12

0 {1 − exp[−βUinter(r)]}dr)
2
. In

our case, however, change of the effective diameter of the edge
particle is negligible, when compared to the whole system size
(see Fig. 3).

V. KINETIC CONTACT BREAKUP

Here, we analyze gigantic energy transfer and kinetic
contact breakup. By the contact condition we understand a
situation in which particles find themselves in or close to the
their most preferred positions within the potential wells. This
manifests itself in the negative value of the potential energy. If
such a contact is broken (kinetic contact breakup) according to
the kinetic conditions, the potential energy becomes positive,
which means that the positions of the particles moved toward
the steep and repulsive walls of the potential. Such understood
a contact should be distinguished from the no-slip condition
for a part of the system at the wall. It is possible that what really
takes place is that one observes the no-slip condition at the wall
but the particles are out of their equilibrium preferred positions.
The strong increase of the potential energy and the kinetic
contact breakup we observed are associated with the transition
to the rotating stage. These properties will depend on several
conditions. First of all, they are influenced by the angular
velocity of the container. Besides this influence, the properties
of the nanopore wall play a decisive role here: the size of
the constituent particles and the potential parameters of the
interaction between the inner system and the wall particles.

A. Kinetic and potential energies

First, we study the impact of the edge particle size
on the inner system properties. For this purpose, simula-
tions were carried out for the container of the radius equal
to 15. The most important parameter here is the ratio of the
edge particle size to the inner particle size σ22/σ11, which
will be referred to as roughness. We used such an idea,
because roughness at the atomistic scale is often modeled by
varying the size and spacing between solid atoms [52–54].
Note that roughness modeled in that way is proportional to
the wall potential field curvature [55]. When the roughness
σ22/σ11 attains the unity value, then the particles of the inner
system have the same size as the edge particles. We kept
the inner particle size as σ11 = 1 and varied the size of
the nanopore particles so that the parameters of roughness
were equal to 1/2, 1, and 2. It should be noted here that
the smaller the edge nanopore particles are, the smaller the
area is, when the potential field is significant and, also, the
effective potential field becomes more uniform. Simulations
were also carried out for different densities of the inner system:
ρ = 0.65, 0.75, 0.85, and 0.95.

In Figs. 5–8, changes of the kinetic and potential energy
observed with respect to the angular frequency are shown for
different roughnesses. These energies are averages calculated
from the values of the data at the last parts of the rotating
stage (see Fig. 2). In all cases, the gain of the energy is very
strong.

In Fig. 5, one notices that for larger densities the simple
theoretical formulas emerging from the soft rotating plate
model seems to hold the best. The deviation from the soft

rotating plate increases while decreasing density. Another
characteristic feature is that upon decreasing density of the
system, the angular velocity, at which the rotating stage is
obtained, gradually diminishes. This can be attributed to the
fact that less dense systems have smaller inertia and smaller
potential energy due to larger distances among particles.
Figure 6 presents the behavior of the potential energies for
the same cases as in Fig. 5. Analyzing Figs. 5–8, one can
also deduce that the particles gain larger amounts of energy
for larger roughnesses, i.e., in the case when the effective
potential field is nonuniform and acts at larger areas.

The presented error bars are determined by big fluctuations
present at the rotating stage. When the angular velocity
considered is so large that our time of the simulations happens
to be within the transition point then error bars can be very
big like in Figs. 5(a) and 5(b). If the angular velocity is even
larger then we are not entering the rotating stage within our
maximal simulation time; hence, in the above figures energy
increases are at zero level. This fact, however, only means that
the simulation times should be much longer if we would like
to encounter the rotating stage.

Figure 7 presents energies for the case when edge particles
are twice the size of the particles inside the nanopore. Here
the gain of energy is larger than in the previous case within
the same time of the simulations. This is attributed to the
fact that the well of the potential covers a much larger area
so the effective interaction at the nanopore wall is stronger.
Here again one observes for dense system that the soft plate
applies. For less dense systems there are strong differences,
which indicate that such systems are much warmer.

For roughness equal to 1/2 the edge is smoother, but in this
case, shown in Fig. 8, the transfer of the energy from the edge
into the system is a much weaker process. It is an interesting
thing here that Eq. (10) fits the data well for all densities used.
Another observation is that for this roughness it takes much
longer simulation time to achieve the rotating stage in this
case.

B. Time of the transition and surplus kinetic energy

In Fig. 9 we present times of rapid transition for the system
of the size Z = 15, the roughness 1, and the density 0.95.
The main outcome here is observation that the time required
for this transition grows exponentially with angular frequency.
In practice it means that much larger times are needed in
simulation to observe the discovered effect.

The initial data points for the kinetic energy changes
presented in Figs. 5, 7, and 8 can be well fitted to a parabolic
curve:

�Ek = Aω2, (11)

where A is a proportionality constant. In general, this kinetic
energy change �Ek consists of the rotational part and the
surplus part. In Eq. (9) they are equal to ω2(Z − σ12)2/4
and αω2(Z − σ12)2/4. When α = 0 then we have the ideal
hard rotating plate and when α = 1 then we have the ideal
soft rotating plate. Using Eq. (10) the kinetic energy can be
decomposed similarly into ρω2(Z − σ12)2/4 and aρω2(Z −
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FIG. 8. Change of the kinetic energy for the roughness equal to σ22/σ11 = 1/2. The radius of the container is Z = 15. The angular frequency
of the rotation ω varies from 0.025 to 1.000 with the step 0.025. Theoretical curve is due to the soft rotating plate model. Each panel shows the
results for a different density: (a) ρ = 0.95, (b) ρ = 0.85, (c) ρ = 0.75, (d) ρ = 0.65.

σ12)2/4, where

a = 4A

ρ(Z − σ12)2
− 1. (12)

We present the results of a parameters since Eq. (10) holds
better for all densities used for one type of the edge particles.
All the results can be, however, scaled using different equations
used to fit the data. Here, for example, α = ρ(1 + a) − 1.
Therefore, Eq. (12) gives information about the type of

the additional kinetic energy transfer. Figure 10 shows a

coefficient calculated on the basis of Figs. 5, 7, and 8.
Additional blue and red lines represent the ideal hard and soft
plate models. For the roughnesses 1 and 2 and higher densities,
one can see almost the ideal soft rotating plate character. The
surplus kinetic energy increases with decreasing density and it
is bigger than the ideal soft plate model. Within the simulation
time the energy gain for roughness equal to 1/2 is very slow
and, therefore, the a parameter differs significantly from the
cases with bigger roughnesses. For longer simulations, we
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FIG. 9. Times of the rapid transition for the system of the size
Z = 15, the roughness σ22/σ11 = 1 and the density ρ = 0.95.

expect that the surplus kinetic energy for a case with roughness
of 1/2 will be approaching slowly the value characteristic for
the ideal soft plate.

C. Influence of the system size on the transition
time to the rotating stage

Detailed simulations have been also performed to investi-
gate the a parameter change for different sizes of the container
(see Fig. 11). In these studies the roughness was equal to 1 and
the density was equal to 0.95. The simulations revealed that the
larger the system is, the more time is needed for the transition
to the rotating stage. This effect comes from the fact that for
greater values of the angular frequency the outside particles
need more time to transfer energy to the system, while the
transmission rate is hindered by the geometry. Figure 12, based
on results from Fig. 11, shows a decrease of the a parameter
with enlarging the system and the container. Observed values
agree with the expectations for the macroscopic systems,
where the surplus kinetic energy is expected to be equal to

FIG. 10. a parameter obtained for the time t = 100. The lines
indicating the ideal hard and soft plates are presented in blue and red
colors.

0, which means that the whole system starts to rotate without
destruction of a crystalline structure.

VI. SUMMARY

The dynamical transition of the solid system of Lennard-
Joners two-dimensional particles confined to a rotating circular
nanopore to the rotating stage accompanied by a gigantic
energy transfer from the nanopore walls to the inner system
and the breakup of the particles contact was observed. The
transition process has two stages. In the first stage one observes
melting of the solid structure that is accompanied by a slow
energy gain. The second stage is the fast transition to the
rotating state, at which the above-mentioned large increase of
the inner system energy occurs. The molecular mechanism is as
follows. Initially, upon switching circulation of the nanopore,
only the first fluid layer close to the wall is pulled by the
edge particles resulting in the energy increase proportional
to ω2(Z − σ12)2, similarly as for the edge particles. The first
layer interacts with the next one, thus one observes energy
transmission toward the center of the system. At this stage,
strong layering at the wall was observed together with the
destruction of the positional order in the center of the system.
At a certain time a very fast energy transfer occurs. The
potential energy of the particles becomes positive, which
means that the particles are no longer situated within local
potential wells. Because of the gigantic kinetic energy transfer
the whole system starts to rotate. The final effect (movement
of the internal system in accordance with the wall) is similar to
the experiments in a planar geometry, in which the shear rate
(counterpart of our angular frequency) disrupts the change of
the density peaks and flow behavior of the inner system (see,
for example, Ref. [56]). However, due to the adopted geometry,
the impact of centrifugal force seems to play a decisive role
in driving the system into the rotating stage. Increase of the
density peaks and the shift of their position close to the walls as
the effect of the centrifugal force is, of course, determined by
the curvature of the particles trajectory. As a result, a fraction
of the particles have been pushed toward steep walls of the
potential wells and the interaction of the inner particles and
the wall particles is enhanced, as is the transfer of the energy to
the inner system. This effect will not be present if the particles
are considered in the slit geometry. In the papers published
so far on the confined systems in a slit geometry, no gigantic
energy transfer has been observed [15,18,41,56]. These works,
however, consider flows of fluids or liquids, no solids under
shear.

We studied the transition to the rotating stage with respect
to different molecular and geometrical factors. One of the
most important factors is the parameter of roughness that was
defined as the ratio of the edge particle size to the inner system
particle size. We confirmed importance of roughness in a
surface driving transitions in molecular systems. The value
of roughness influences the potential energy field close to
the nanopore edge, hence the geometry and the size of the
wall particles matters. For the smaller edge particles there
is observed a lower energy transfer in the same time unit
as in the case of larger edge particles. The influence of the
system size, its density, and angular frequency on the kinetic
and potential energy of the system have been also studied for
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FIG. 11. Change of the kinetic energy for the roughness σ22/σ11 equal to 1 and the density ρ = 0.95. The radius of the container Z varies
from 10 (panel (a)) to 25 (panel (d)) with the step 5. The angular frequency of the rotation ω varies from 0.05 to 2.00 with the step 0.05.

several sets of exemplary values. At the first place one can
point here at the dependence of the observed effect on the
size of the system, which suggests that this transition can be
a nanoscopic effect. If it is so, such a breaking of the solid
structure by the motion of the container walls and putting the
system in the rotating stage would be not only a very interesting
and intriguing phenomenon but also of great importance for
nanotechnological applications.

In our simulations, initially equilibrated NVE system was
placed inside the container and then it was driven out of
equilibrium by the energy transfer from the rotating walls. The

potential and the kinetic energy transfers were not restricted.
The simulations were performed without considering any
outflux of the thermal energy and, also, without even using
the concept of the temperature; hence, the presented results
show the pure effect of the influence of the rotating wall
on the inner system in terms of the kinetic and potential
energies. The concept of the temperature in small systems is
not well defined—it is not possible to take the thermodynamic
limit, which is required by the statistical definition of the
temperature. The temperature concept becomes even more
problematic if the system is in a nonequilibrium state (see
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FIG. 12. Surplus kinetic energy parameter a changes with differ-
ent container radius.

the discussion in the overview paper about the temperature
concept in nonequilibrium states [57]). There is, of course, the
possibility to propose a new definition of the small systems
temperature, similarly as the attempts have been made to
propose granular temperature in granular media [57], yet this
problem we leave for future considerations. We also realize

that in more realistic systems an outflux of the thermal energy
to a greater or a lesser degree is always present. This would
be an interesting task to extend the above results for the cases
with an energy outflux. Considering such an effect requires an
adoption of numerical thermostat. In principle, there are many
ways to apply thermostats in confined matter [58,59] and, in
fact, each reasonable method should be checked and analyzed
in detail. Nevertheless, the results presented so far for the pure
effect of an influence of the wall movement on the confined
system can be a good springboard for further analysis.

Our predictions require confirmation from the experimental
works. Whereas the nano-scale experiments with the rotating
container can be hard to perform, one can see a real chance
to observe them in colloidal systems, which are more con-
trollable. Although most of the colloids tend to interact via
the hard core rather than the Lennard Jones potential rules,
one can still find some works where the Lennard-Jones [60]
or Yukawa [61] potentials are being applied. Experiments,
like the one presented in the paper, can be easily performed
in two-dimensional colloidal science whether in a planar
geometry or for a thin film confined between two walls.
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