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We present a computational study of a simple one-dimensional map with dynamics composed of stretching,
permutations of equally sized cells, and diffusion. We observe that the combination of the aforementioned
dynamics results in eigenmodes with long-time exponential decay rates. The decay rate of the eigenmodes is
shown to be dependent on the choice of permutation and changes nonmonotonically with the diffusion coefficient
for many of the permutations. The global mixing rate of the map M in the limit of vanishing diffusivity
approximates well the decay rates of the eigenmodes for small diffusivity, however this global mixing rate does
not bound the rates for all values of the diffusion coefficient. This counterintuitively predicts a deceleration in the
asymptotic mixing rate with an increasing diffusivity rate. The implications of the results on finite time mixing

are discussed.
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I. INTRODUCTION

Mixing processes occur in a variety of industrial and natural
applications with large variations in time and length scales,
however the outcomes of mixing are typically the same; there
is a reduction of length scales, an increase in the material
interface, and an approach to uniformity. Good mixing can
be accomplished in fluids by the action of stretching and
folding (SF) fluid elements either through a cascade to small
scales via turbulent eddies or stirring protocols which consider
chaotic trajectories in highly viscous fluids [1]. The kinematic
behavior of SF systems is captured well by the language of
dynamical systems [2]. However, cutting and shuffling (CS),
another mixing process, can increase the number of interfaces
and can increase segregation but does not involve material
deformation. Discontinuous transformations, such as cutting
and shuffling, have more subtle dynamics and are not well
understood. Once there is a reduction in length scales by
an advective process, molecular diffusion will blur any large
gradients achieving uniformity of a scalar field in the long-time
limit.

There are many instances in mechanical mixing in which
discontinuities arise, although there is comparatively little
understanding in their implication on mixing. Split-and-
recombine micromixers adopt the action of cutting and shuf-
fling to increase the number of lamellae between substances
[3]. Sink-source flows, which may be configured to generate
chaotic velocity profiles via pressure differences from fluid
subtraction and reinjection, can introduce discontinuities by
the closing and opening of valves during syringe reorientation
[4,5]. Streamline jumping, which occurs during reorientation,
has been known to destroy dynamical features [6] or in the cut-
dominated limit create pseudoelliptic and pseudohyperbolic
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periodic points [7]. Additionally, underlying properties of
the material may introduce discontinuities. High strain in
polymeric, plastic, or metallic materials may cause slip
deformations due to shear banding [8]. Granular materials
also exhibit the mechanisms of both stretching and folding and
cutting and shuffling. In tumbler flows, a flowing layer at the
surface introduces shearlike behavior while the bulk material
undergoes solid body rotation. Piecewise isometries have been
shown to capture the underlying structure in spherical tumbler
flows [9,10] with deviations in experimental models occurring
due to the material passing through the flowing layer or
diffusivelike effects from particle-particle interaction.

In applications of mixing, whether industrial or natural,
it is a primary interest to quantify the rate of mixing to a
certain condition. Molecular diffusion acting alone will cause
a concentration field to tend to uniformity at an exponential
rate, although this rate is generally very slow. Good stirring
protocols can increase the rate to uniformity. In fully chaotic
flows exponential stretching and compression of a fluid
parcels produce an exponential rate in the reduction of length
scales and an increase in the material interface. However,
Kolmogorov-Arnold-Moser surfaces and islands, boundaries
surrounding fully chaotic domains, or parabolic points can
contaminate this exponential mixing rate [11,12]. The process
of cutting and shuffling increases the number of interfaces
linearly [13] and has been proven to be weak mixing in the
asymptotic limit even in the absence of material stretching
[14], but the mixing rate is at most polynomial [15]. Piecewise
isometries on the unit interval or on a hemispherical shell
have been shown to achieve good mixing even in finite time
[16-18]. However, these mixing processes are unlikely to arise
in isolation in real life applications.

There is an extensive literature studying the combination
of stretching and folding from chaotic advection and diffusion
and the underling mechanisms which drive the mixing rates.
Uniform stretching with diffusion predicts an unrealistic
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superexponential mixing rate, however nonuniformity in the
underlying flow field produces exponential mixing rates
overall. This rate is governed either through the misalignment
of concentration field gradients with local stretching directions
[19] or the global transport rate of the underlying flow field
[20-23]. The global regime leads to the emergence of “strange
eigenmodes” [24], persistent patterns with a fixed exponential
decay rate. The decay rate of the dominant eigenmode
becomes independent of diffusivity in the zero-diffusivity limit
[20,22,24].

Permutations of equally sized cells on the unit interval, a
subset of interval exchange transformations (IETs), have been
shown to accelerate the asymptotic mixing rate of diffusion
acting alone [25]. IETs with diffusion have been used as
simple mappings to investigate optimizing diffusion [26] and
comparing measures of mixing [27]. Bounds have been found
on the mixing rates for permutations composed with expanding
maps on the unit interval with the conclusion that permutations
do not improve the mixing rate and typically make it worse
[28]. It similarly is reported for shears composed with a slip
deformation that the combined mechanisms can slow the rate
of mixing of material segregation [29].

In this paper we investigate the composition of the three
dynamics of SF, CS, and diffusion and the resulting mixing
rates. We begin to address this here by studying a simple
map on the unit interval of an idealized time-periodic and
laminar fluid flow. In Sec. II we construct the problem and
introduce the hyperbolic and discontinuous maps. In Sec. III
we present the numerical results, and in Sec. IV we discuss
the relationships to previously published results on expanding
maps with permutations. In Sec. V we consider the results in
physical finite time mixing, and the implications of the results
are discussed in Sec. VI.

II. FORMULATION OF THE PROBLEM

A. Iterative advection-diffusion map

We study the evolution of a passive scalar c(x,#) in a viscous
fluid flow by the advection-diffusion equation,

dc(x,t) + u(x,t) - Ve(x,t) = kVie(x,1), (1)

over a domain 2. The velocity field u(x,t) is taken to
be incompressible, V - u =0, and time periodic such that
u(x,t + T) = u(x,t). The diffusion coefficient « is the inverse
of the Péclet number ¥ = Pe~!, a nondimensional number
representing the ratio of diffusive to advective time scales.
We simplify the evolution of the advection-diffusion equa-
tion by separating the processes of advection and diffusion
in time. This iterative approach has been used previously
to study mixing rates in one- and two-dimensional chaotic
maps [20-22]. First we evolve the scalar field according
to (1) with k =0 for a time 7. Since we are considering
laminar time-periodic flows, we consider the advective step
as a map M:Q — Q acting on fluid particles within the
domain €2 as an iterative step in time ¢t — ¢t 4+ 7 along the
streamlines of the underlying flow field. Then the evolution of
c(x,t) = c(x,t + T) can be represented by a linear operator
acting on the space of functions Py: X — X, c e X. We
consider the function class of piecewise smooth functions on
the unit interval X = C°[0,1) as we are interested in studying
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transformations with discontinuities. The operator for the map
is known as the Frobenius-Perron operator in the dynamics
literature capturing the evolution of densities.

Following the advective time step, we then include diffusion
by evolving the scalar field according to (1) with u = 0 via
the operator Pp: X — X, Pp = exp(t;cVz) for atime T'. The
operator for the full advective-diffusive time step then is
considered as a composition of the operators P = Pp o Py
such that cV*+D(x) = (PcY)(x) with j = 0,1,2, ... denoting
the discrete steps. The operator P is linear due to the linearity
of the advection-diffusion equation (1).

The eigenvalues A; of the operator P and their respective
eigenfunctions vy satisfy Pvy = A, vy, and the eigenvalues can
be ordered according to their absolute values by [A{]| = |Az] =
--- > 0. The trivial eigenvalue A; =1 and the respective
invariant eigenfunction is the mean field of the scalar ¢. All
other eigenvalues will have the value of [A;| < 1 when the
diffusion coefficient is nonzero.

We take a one-dimensional concentration field and the
domain 2 to be the unit interval T = [0,1) with periodic
boundary conditions. Then the concentration field can be
represented by the discrete Fourier expansion,

)
c(-i)(x): Z 6,(1j)82ninx’

n=—0oo

The action of the operator P then is represented by the transfer
of amplitude between the Fourier coefficients ¢,, given by

00
6,(«,j+1) = Z danmkéj((])a (2)

k=—00

where the transfer matrix due to the advective map M is
1
M P = / 6‘27n'mx72711'kM()c)dx (3)
mk — ’
0

and the diffusive step is defined via the transfer matrix,
dyn = Snmp"z, p = exp(—4n’kT). 4)

The time period for the diffusive step is normalized (T = 1)
so that the effect of diffusion is parametrized by « only.

B. Maps of interest

The two-dimensional incompressible baker’s map is a
paradigm example of a hyperbolic chaotic map, which is
mixing, given by the map,

_[(x/2.2y) for y € [0,1/2),
Mp(x,y) = {([x F11/22y —1) forye[l/21). ©

By considering a y independent initial condition, the baker’s
map reduces to a one-dimensional map which is one-to-two
and represented acting on the concentration field by

(j+1)( )_ c(’)(2x) for x € [0,1/2),
TN D@ — 1)) for x € [1/2,1).

Figure 1 depicts the action of the baker’s map and its reduction
to one dimension.

We compose the baker’s map with the simplest nontrivial
piecewise isometry on the unit interval, a permutation of

053112-2



DECELERATION OF ONE-DIMENSIONAL MIXING BY ...

1 1P -1---1 1

X x X
0 1 0 1 0 1

FIG. 1. The action of the baker’s map (5) is to contract the x
direction, stretch the y direction, and reassemble onto the unit torus.
Taking a y independent initial condition, here c(x,y) = gray for x <
1/2 and c(x,y) = white for x > 1/2, the baker’s map is reduced to a
one-dimensional map on the unit interval.

equally sized cells. The permutation map is applied by first
dividing the unit interval into N equally sized intervals and
numbering them according to their position within the interval.
Consider a permutation o € Sy, where Sy is the group of all
permutations on the set of symbols {1,2,...,N}. Then the
action of the map on a point x € [(l — 1)/N,I/N) is given by

o(l)y—1
N

The action on the concentration field is ¢YTD(x) =
(M '(x)). The permutations are represented in disjoint
cycle notation, see Ref. [25], for example.

The composition of the maps M and M,, will be denoted as
asingle map o o Mp. The advantage of the chosen maps is that
they are simple to implement in the transfer between Fourier
coefficients. The advection-diffusion operator is represented
as a single matrix by the product of matrices,

My(x) =x+ (6)

& = Pudd)

n

P = danmka

where the diffusive step matrix is taken as in (4) and the
advective step,

1
Mmk :/ e2mmx—2mk[aoMB(x)]dx
0

Zmn N
_ (1 — @=m) Zwm(r(i)—ZkE
2mi(2k —m) =

when m # 2k with the primitive Nth root of unity w =
e 2"/N When m = 2k,

N
1

— mlo(6)—L]

M,y = N ;_1 w .

The computational process is then to truncate the Fourier
modes to deal with finite matrices. Here we take — K < k < K
with K = 1000, which was sufficient for « > 107°. Larger
values of K showed no change in computational results. K
can be increased accordingly for smaller values of «.

We measure the decay of variance from the uniform
distribution,

1 .
v(j) = f D) — ePdx = 3 fe
0 k

2

; (7
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FIG. 2. The initial stages of variance decay for representative
permutations. Permutations which introduce new interface Ss\S¥ de-
plete the variance quicker than the identity of rotational permutations
S® in the initial three iterations. The diffusion coefficient is k = 107
with the initial condition c¢®(x) = cos(27x).

to quantify the mixing rate. Subtracting the mean value ¢ as
a constant, the rate of decay of variance is calculated in its
approach to zero. A map which has good mixing will ensure
that c(x) — ¢ quickly.

In the interest of the discussion here we only present results
for o € S5. For ease of discussion we define the rotation
subgroup of Sy as the permutations o which satisfy

oc)=l+m mod N

for m € {0,1,... N — 1}. Note that we have included the
identity permutation in this group, which we denote S¥.

III. NUMERICAL RESULTS
A. Initial transient

Figure 2 shows the decay of variance for a selection of
permutations with ¥ = 107 and the initial condition ¢©(x) =
cos(2rx). For a permutation o € SX, the map reduces to
M(x) =2x +m/N mod 1. Then M, = o™ for m = 2k
with 0" | =1 and M, =0 when m # 2k. Hence the
resulting variance equation can be calculated analytically for
allo € § ﬁ, and for the initial condition cos(2w x) we have

V(j) = ¥(0)exp( — Zn’k(@’ — 1)). (8)

This result is the same as discussed in Ref. [21]. There is an
exponential cascade to large wave numbers where the action of
diffusion is more effective, leading to superexponential decay
in the variance. This is observed in the linear-log plot in Fig. 3
for a representative permutation (12 345).

For all other permutations o € S5\S5R the permutations
create additional interfaces, transferring concentrations to
large wave numbers in the Fourier expansion immediately.
These additional sharp interfaces are not captured by stretching
histories which implies that any local Lagrangian arguments
will break down in predicting the mixing rate of such a system.
However, once there is a significant depletion of variance, the
incompressible baker’s map composed with o € SSR depletes
the variance quicker than any o € S5\S5R.
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FIG. 3. Variance decay profiles for representative permutations
on a linear-log plot. The dashed lines show the variance decay
predicted by the second leading eigenvalues A,. The diffusion
coefficient is k = 10> with the initial condition ¢@(x) = cos(27x).

B. Exponential decay

For all o € S5\SF the decay in concentration variance
in the long-time limit is exponential. A sample of the
variance profiles is seen in Fig. 3 for the initial condition
c©(x) = cos(2x) and k = 107>, The variance profiles show
significant variation in the exponential rates of decay for
different permutations. Similar variation is also seen across
a range of diffusivity coefficients.

The decay rates are predicted from the transfer matrices
of the composed advection-diffusion iterative map P,;. After
a number of initial iterations the eigenfunctions v, decay
at the rate of their respective eigenvalues until the slowest
decaying eigenfunction with the slowest decay rate, which
is the second leading eigenvalue A,, dominates the evolution
of the concentration field. Hence the long-time exponential
decay rate of the variance is given by ¥ (j) ~ |A2|%/, intuitive
from (7). If |X| ~ 1, then the decay rate of the dominant
eigenfunction v, would be slow, whereas |A;| < 1 predicts a
fast mixing rate.

The predicted decay rates from the eigenvalues are plotted
as dashed lines in Fig. 3 to show the precise agreement with the
respective profiles. Oscillations arise due to the complex value
of the eigenvalues and eigenfunctions [30]. The eigenfunctions
are either static or spatially evolve on further applications of
the operator P,;. Figure 4 shows the emergence of a static
eigenfunction for the permutation o = (34) after a number
of initial iterations. Randomizing the amplitudes of the first
four modes for the initial condition [30] results in the same
eventual exponential decay rate. Hence we conclude that these
are persistent patterns with decay rates irrespective of the initial
condition, similar to those seen in chaotic advective systems
with nonuniformity in the stretching rates of the flow field.

This is the well known global mechanism for mixing in
smoothly deforming systems [20-22]. Dispersion between the
Fourier modes occurs due to the permutation composition,
comparable to the dispersion in nonuniform maps [21]. The
decay rate is not governed by the local Lagrangian behavior
since the stretching rates are the same almost everywhere
except for a countable number of discontinuities which form a
set of zero measure. Nonuniformity arises in the rearrangement
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FIG. 4. The image shows the first few iterations for the composed
map with o o M with ¢ = (34), ¥ = 10~ and the initial condition
c9(x) = cos(2mx). The color scale is adjusted at each iteration to
clearly show the persistent pattern emerging.

J

of striations by the interval exchange. Diffusive and reactive
systems have been shown previously to be sensitive to striation
arrangement [31]. However, unlike the strange eigenmodes of
nonuniform smooth systems which align with regions of low
stretching, the eigenmodes do not appear to correlate with
physical characteristics of the underlying advective dynamics,
such as periodic points or where the discontinuities are
introduced.

According to the second leading eigenvalues |A;| for
different diffusivity rates each permutation falls into one of
16 subgroups of Ss. The subgroups consist of five or ten
permutations with |A;| the same for all values of x. The
subgroups reflect rotations and reflections in the dynamics of
the compositions on T = [0, 1) which is not intuitive from the
permutations alone. For the rest of the paper we ignore o € SSR
and focus on permutations which have long-time exponential
decay of variance.

C. Effect of «

A representative permutation from each of the 15 remaining
subgroups was chosen, and the second leading eigenvalues
were computed for many values of «. Figure 5 shows several
of the profiles which highlight the behavior seen. For some of
the permutations there is convergence in the limit of k — 0,
and the approach is monotonic with the diffusion coefficient,
for example, (2453) and (45). Convergence of mixing rates in
the limit of small diffusivity is well observed numerically in
nonuniform smooth chaotic deformations [20,24,32].

However nonmonotonic profiles of the decay rates also
occur with changing «, for example, (24), (354), and (2354),
which have not been widely reported. If the subgroups were
listed by the value of |A,[, then it is apparent from Fig. 5
that the ordering would be dependent on the value of «.
Reference [25] observed similar behavior for permutations
composed with diffusion, however nonmonotonicity was not
reported. Examples of maps in which nonmonotonicity has
been seen include an expanding map with three branches [33]
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FIG. 5. |A,]| is plotted against « for a number of permutations.
Convergence in the limit k — 0 occurs for some of the permutations,
whereas |1,| changed nonmonotonically for others. The dashed lines
represent theoretical upper and lower bounds in the limit « = 0. The
symbols are used to distinguish the profiles and do not represent data
points.

and the nonuniform inverted baker’s map with a no-flux
boundary condition where a power law relation had oscillatory
nonmonotonic behavior [34]. Both maps contain points that are
nondifferentiable.

IV. MIXING RATES IN THE NONDIFFUSIVE LIMIT

In the absence of diffusion the variance of the concentration
field would remain constant, however the advective operator
Py can be said to be mixing in the following sense [35]. Take
sets A,B C 2 =[0,1) and define the Lebesgue measure n
such that A = [a,b) so that u(A) = b — a. Let (2,A4,1) be
a normalized measure space where A is the o algebra made
up of all possible half-open subsets of the unit interval and
M:Q — Q is a measure-preserving transformation. Then M
is said to be mixing if

lim w(A N M™(B)) = u(B)u(A) forall A,B C A.  (9)

For a map M which is not invertible we replace M" with M ~".
This states that, under the action of the map on the set A, we
expect to find the same amount of A in any of the chosen
intervals B. This can be reformulated in functional form as the
action of the map M on observable functions g and /4 via the
decay of correlations,

Cyn(n) = ‘/h(goM‘”)du—/ng/hdM‘. (10)

The rate at which C, ;(n) — 0 is of interest. Typically the
observables g and h are representative of a scalar field. We
refer to the following lemma from Ref. [36]:

Lemma 1. For the Frobenius-Perron operator P which
represents the map M, let X be a class of real-valued
functions preserved by P. Let o(P) denote the spectrum
of P when considered as an operator on X', and set t =
sup{|z|: € o (P)\{1}}. Then there is a constant C < oo such
that Co(N) < CtV forall N > 0if g € L and h € X.

Hence the decay of correlations and thus the rate of mixing
T is bounded by the second leading eigenvalue of the spectrum
of P. It previously has been shown that the mixing rate given
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by the second leading eigenvalue in the small diffusivity limit
tends to the second leading eigenvalue of the isolated spectrum
for the advective operator Py, in smoothly deforming systems
[32].

Thus, studying the spectrum of P,; will give an insight into
the mixing rate of the composed map as x — 0. However,
for k = 0 the transfer matrix for the Fourier coefficients can
not be truncated feasibly, thus it cannot be found from the
computational method already presented. The rate of mixing
for the map when « = 0 can be calculated from matrices
defining the probability transition between Markov partitions
for the map, the derivation of which closely follows methods
developed for permutations composed with expanding maps,
and we briefly outline the results of Ref. [28].

An expanding map on the unit torus [0, 1) is described as

f(x) =mx m =2, (11)

and the composition of expanding maps and permutations is
denoted o o f. The eigenvalues of Markov transition matrices
representing the composed maps are related to the isolated
spectrum of the composed map o o f through the use of
Fredholm matrices. The absolute value of the second leading
eigenvalue for the transition matrix is the value 7. It is proved
that whenever N is not a multiple of m, the composition o o f
acting on functions of bounded variation is always mixing, that
is, T < 1. A lower bound on t is found to be 1/m, and when
N > m and gcd(m,N) =1,

mod 1, meZ,

Tmax = M (12)
m sin(zw/N)

«
N

is a suitable upper bound.

The construction and results of Ref. [28] have a direct
comparison with the current presented model. Consider the
graphical representation of the system studied here; the halving
map composed with a permutation, shown in Fig. 6. We denote
the preimage (o0 o M)~!, which also is presented graphically.
It is possible to construct a Markov partition on the preimage
map with2 x N elements of equal size 1/2N (N is the number
of cells in the permutation). It can easily be shown that an
eigenvalue 7 of the transformation ¢ ~! o f is equivalent to the
eigenvalue 7 of (6 o Mp)~!, where o~! denotes the inverse
permutation of o. This arises from the construction of the
Markov transition matrices in the proof of the bounds from
Ref. [28] (see the Appendix for details).

In reference to the definition of mixing given in (9), (o o
M)~ !is not invertible, and as such, action of the map o o Mp
is considered, which is precisely the evolution of striations we
have studied here. Thus we compare the rates of mixing in
the limit ¥k — 0 to those predicted from the Markov transition
matrices of (6 o Mp)~.

Table I compares T for the preimage (o o Mg)~! with |A;]|
of the respective diffusive transfer matrices in the limit of small
diffusivity. The values show good agreement for many of the
permutations, however this is not the case for all. Considering
the permutations which are not in good agreement, profiles
of |A;| with « for these permutations have nonmonotonic
behavior with significant variation in the values of |A,|. It
is not known whether the profiles eventually will converge
or continue oscillating in the limit of small diffusivity, but
investigating smaller values of « is computationally infeasible.
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(a) (b)
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(00 Mp)~!(z)

e

T

T

FIG. 6. Graphical representations of (a) a one-dimensional approximation of the baker’s map, the halving map, (b) the halving map
composed with the permutation o = (15243), denoted (¢ o M3), and (c) the preimage map (o o Mp)~! is shown with an appropriate Markov

partition.

The lower and upper bounds, respectively, on the value of
T for the model considered here are

1 sin(2 /5)
Tmin = %> Tmax — -
2 2 sin(/5)

and are plotted as dashed lines in Fig. 5. tpnax and Tmin
predict the slowest and fastest mixing rates, respectively, of the
operator Py.y, for o € S5 and seem to be reasonable bounds
on the mixing rate when the diffusive rate is small. However,
at large values of « the upper bound does not agree as a bound
on |A;| due to the nonmonotonicity of the profiles. For many
of the permutations in the composed maps the second leading
eigenvalue t given by the Markov transition matrix is smaller
than || for nonzero «. Counterintuitively this implies that
the mixing rate is slower when the diffusive effect is large
compared to the diffusivity in the zero limit.

Explaining the nonmonotonicity is beyond the scope of
this paper, although nonmonotonicity in profiles of mixing
rates with « appear to persist when other hyperbolic maps
on the unit interval are considered for the stretch and fold
component, such as when the baker’s map is the incompress-
ible nonuniform baker’s map [20] or inverted baker’s map
[34,37]. The computational results of these maps composed
with permutations are omitted for brevity.

~ 0.809,

V. FINITE TIME MIXING

The results of the paper thus far have been concerned with
asymptotic mixing rates of the composed maps. However,
mixing of concentration fields has several stages which
contribute to the finite time mixing and in practical situations
one would want to consider the time needed to mix to a desired

condition. We consider the finite mixing rate by first returning
to means of quantifying mixing under the action of advection
and diffusion. We introduce the L* and L4 norms,

LY = Jle(x,t) = Cllso

=inf{M:|c(x,t) — ¢c| < M a.e. x € [0,1)},

1 1/q
L] = le(x,t) —¢llg = (/ le(x,t) — Elqu> :
0

In this paper we already have considered the variance which
is defined as ||c(x,t) — E||%, the square of the L? norm. Which
norm to consider depends on the application and desired
result. Note thatfor0 < ¢’ < g then || - |l, < Il - lly < Il - lloo-
Similar to a previous study [25], we consider the time needed
for a desired norm to come within an arbitrary condition, say
5% of uniform, which is referred to as the time to 95% mixing
tos. It is defined to be the smallest f95 = ¢ > 0 such that

lle(x,1) = cllg/lle(x,0) = ¢lly < 0.05, (13)

and

where g denotes the L7 norm. We numerically investigate the
number of iterates needed to satisfy this requirement for the
L°° norm and .

In the initial stages of advection and diffusion, when the
effect of diffusivity is small, an L7 norm will remain constant
for some time until the gradients or length scales in the
concentration field are on the order of the Batchelor length
scale /K /M5, the balance between diffusive rate and local
strain rate ;5. For smoothly deforming chaotic flows, in the
limit of small diffusivity the exponential mixing rate becomes
independent of the diffusivity coefficient in the limit of small
diffusivity, thus the main consequence of decreasing the effect

TABLE I. For each of the subgroups, the absolute value of the second leading eigenvalues for low values of the diffusion coefficient,
denoted |A%], are computed. A comparison with 7, the mixing rate from the respective Markov transition matrices of the preimage mapping

(0 o Mp)~!, shows good agreement.

(45) (34) (345) (354) (35) (23)(45) (2354) (2453)
1077 0.6042 0.6444 0.673 0.5878 0.6013 0.7493 0.7996 0.8046
107 0.6061 0.6518 0.6641 0.6235 0.5904 0.753 0.8075 0.807
Markov 0.5919 0.6624 0.6677 0.5755 0.5755 0.7564 0.809 0.809
(24) (245) (253) (25)(34) (13452) (1345)
|07 0.5751 0.8048 0.6443 0.6086 0.5089 0.8075 0.6156
2107 0.561 0.8072 0.6531 0.5926 0.4788 0.807 0.5808
Markov © 0.5 0.809 0.6624 0.5919 0.5 0.809 0.5
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FIG. 7. The variance ¥ (j)/¥(0) is plotted for o o Mp with
o = (2354), initial condition ¢©(x) = cos(27x) for three diffusivity
values. The linear-log plot is used to better distinguish the iterates
in which ¥ (j)/¥(0) crosses the 95% threshold, represented by the
the dashed line. ¥(j)/v¥(0) crosses the threshold at the earliest time
when « = 1073, the smallest value.

of diffusivity is to extend the initial transient where a measured
norm is close to constant. Once the Batchelor scale is reached
there is significant decay, however this initial stage is weakly
dependent on diffusivity, on the order of log(x) [21,38].

As an example, we take the permutation o = (2354), which
has a slower asymptotic mixing rate at nonzero x than the upper
bound on the zero-diffusivity mixing rate. The initial condition
is taken to be cos(2m x). Figure 7 plots the variance decay rates
for three different values of «. The renormalized variance of
c(x) for the larger values of k = 1073,10~* achieves the 95%
mixed state after the smallest value of k = 107, although the
difference is approximately one iteration. However, for the
L*° norm in Fig. 8, the condition for the larger diffusivity rates
is reached approximately five iterations later. This example
illustrates that the counterintuitive deceleration with diffusivity
rate xk could have a significant effect on the time to achieve

10°

o o g=10"°
o o k=10"*
A A K=107°

= /L5

t

L

2
10 0 5 10 15 20 25 30

FIG. 8. The L{°/L{° normis plotted foro o Mg witho = (2354),
initial condition ¢ (x) = cos(27x) for three diffusivity values. The
linear-log plot is used to better distinguish the iterates in which
L /Lg° crosses the 95% threshold, represented by the dashed line.
Similar to the variance, L{°/L{° crosses the threshold at the earliest
time when « = 107, the smallest value.
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a practical mixing condition. In applications of fluid mixing
devices this would equate to five additional stirring periods
or channel segments to achieve the desired result, which
could be overlooked if approximating mixing time from
advective properties only and thus the correct mixing criteria
not achieved in the predicted time.

VI. DISCUSSION

We have presented a one-dimensional model which cap-
tures a mixture of stretching and discontinuous advective
dynamics with a diffusive step. In the initial transient the
additional discontinuities speed up the decay of variance over
the chaotic advection alone. However once the Batchelor
scale is reached and variance begins to deplete, a phase of
exponential decay begins due to the nonuniformity caused
by the permutation of the striation arrangement. Lagrangian
arguments fail to explain the varying decay rates across
the range of permutations since stretching rates are the
same almost everywhere except where they are undefined on
the discontinuities which form a set of measure zero. The
mechanism for the emergence of an exponential asymptotic
mixing rate is global, and in the limit ¥ — 0 the mixing rate is
well approximated by the global transport rate predicted from
the Markov partitions of the preimage map.

However, this approach to the mixing rate in the zero-
diffusivity limit is nonmonotonic in many cases, which is coun-
terintuitive. Although nonmonotonicity has been observed
in one-dimensional maps before [34] [33], here a slower
mixing rate than the global mixing rate is predicted for large
values of the diffusivity coefficient. However, all maps in
which nonmonotonicity with diffusion has been reported have
a common property in that they contain points which are
nondifferentiable. We hypothesize that this deceleration with
diffusion is a feature of noncontinuous mappings in which
discontinuous transformations are a subset. In the dynamical
systems and ergodic theory literature there is great interest
in finding global mixing rates of advective maps and bounds
on these mixing rates, but these computational results suggest
that, in studying fluid mixing systems in which there is a
mixture of stretching and cutting and shuffling, diffusion
may have to be taken into account for accurate mixing rate
predictions and comparisons across mixing protocols. The
significance in this observation is shown to effect mixing
rates in finite time considerations to achieve physical mixing
conditions, chosen arbitrarily here to be a 95% mixed state.

The present paper could be extended to a larger collection
of interval exchange transformations with finite order, however
the similarities of the mixing rates for small diffusivity to the
rates T when « = 0 implies that the conclusions of Ref. [28]
predict well the asymptotic mixing rates and it is unlikely that
adding diffusion would highlight anything of further interest
than already discussed herein. The model is idealized highly
in relation to real fluid mixing problems. The one-dimensional
reduction of the baker’s map leads to striation arrangements
which are all perfectly aligned with the stable manifolds and,
notably, the discontinuities also are aligned with the stable
manifolds. One possible extension would be to study the same
mixing mechanisms in a two-dimensional system where one
of these idealizations is not present.
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APPENDIX

In this Appendix we briefly discuss the construction of
the Markov partitions and highlight the required results of
Ref. [28] to find the mixing rates for o o Mg when x = 0.

The Markov partitions for the composition map o o f,
where o € Sy and f as defined in (11), are constructed
as follows. Define P; by {0,1, ...,k — 1}, and number the
associated rows and columns in the transition matrices from
0. A(m,N) and B(m,N) are defined to be the state transition
matrices for the expanding map f with respect to Py and Py,
respectively, and are found via

_J1, if j =mi+d mod N, 0<d<m —1,
Alm,N);j = {0, otherwise,
and

|1, if j =mi+d mod Nm, 0<d<m —1,
B(m.N);j = {0, otherwise.

PHYSICAL REVIEW E 96, 053112 (2017)

The state transition matrices for o o f then are obtained
by permuting the columns of A(m,N) and B(m,N). P(o) is
defined as

_ 1, it j=0(),
P(o) = {0, otherwise,

and let Q(o) be the Nm x Nm matrix obtained by replacing
each entry 1 in P(o) by an m x m identity matrix and each 0
entry by am x m zero matrix. Then the state transition matri-
ces for o o f with respect to Py and Py, are A(m,N)P (o)
and B(m,N)Q(o). It is proved in Lemma 4.2.1 of Ref. [28]
that the eigenvalues of A(m,N)P (o) and B(m,N)Q(o) are the
same.

When considering the state transition matrices of the
preimage (o o Mp)~!, the same construction can be fol-
lowed in which the rows are permuted instead of the
columns; P(c)A(m,N) and Q(o)B(m,N). By the same
arguments in Lemma 4.2.1 [28], a vector space can
be constructed which proves that the second leading
eigenvalues of P(0)A(m,N) and Q(o)B(m,N) also are
equivalent.

Finally, note that P(o)A(m,N) is the matrix obtained from
A(m,N)P(c~') and, if % is an eigenvalue of P(c)A(m,N),
then T = %/m, hence for every o, To-155 = Tigom,)-1-
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