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Turbulent diffusion of chemically reacting flows: Theory and numerical simulations
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The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin
et al., Phys. Rev. E 90, 053001 (2014)] is generalized for large yet finite Reynolds numbers and the dependence
of turbulent diffusion coefficient on two parameters, the Reynolds number and Damkohler number (which
characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical
simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced,
homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect
of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement

with the developed theory.
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I. INTRODUCTION

Effect of chemical reactions on turbulent transport is of
great importance in many applications ranging from atmo-
spheric turbulence and transport of pollutants to combustion
processes (see, e.g., [1-8]). For instance, significant influence
of combustion on turbulent transport is well known [8—13] to
cause the so-called countergradient scalar transport, i.e., a flux
of products from unburned to burned regions of a premixed
flame. In turn, the countergradient transport can substantially
reduce the flame speed [14-16] and therefore is of great
importance for calculations of burning rate and plays a key
role in the premixed turbulent combustion.

It is worth remembering, however, that the countergradient
transport appears to be an indirect manifestation of the
influence of chemical reactions on turbulent fluxes, as this
manifestation is controlled by density variations due to heat
release in combustion reactions rather than by the reactions
themselves. As far as the straightforward influence of reactions
on turbulent transport [17] is concerned, such effects have
been addressed in a few studies [8,18,19] of premixed flames.
Because the easiest way to study such a straightforward
influence consists in investigating a constant-density reacting
flow, the density is considered to be constant in the present
paper.

The effect of chemical reactions on turbulent diffusion
of chemically reacting gaseous admixtures in a developed
turbulence has been studied analytically using a path-integral
approach for a §-correlated-in-time random velocity field [20].
This phenomenon also has been recently investigated by ap-
plying the spectral-t approach that is valid for large Reynolds
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and Péclet numbers [21]. These studies have demonstrated
that turbulent diffusion of the reacting species can be strongly
suppressed with increasing Damkohler number Da = 7p/ 7.,
which is a ratio of turbulent 7y and chemical . time scales.

The dependence of the turbulent diffusion coefficient Dy
on the turbulent Damkohler number obtained theoretically in
[21] was validated using the results of mean-field simulations
(MFSs) of a reactive front propagating in a turbulent flow
[22]. In these simulations, the mean speed s of the planar
one-dimensional reactive front was determined using numer-
ical solution of the Kolmogorov-Petrovskii-Piskunov (KPP)
equation [23] or the Fisher equation [24]. This mean-field
equation was extended in [22] to take into account memory
effects of turbulent diffusion when the turbulent time was
much larger than the characteristic chemical time. Turbulent
diffusion coefficients as a function of Da were determined
numerically in [22] using the obtained function sr(Da) and
invoking the well-known expression sy = 2(D7/ 7.)'/2. The
theoretical dependence Dr(Da) derived in [21] was in good
agreement with the numerical results of MFSs [22].

In the present study we have generalized the theory [21]
of turbulent diffusion in reacting flows for finite Reynolds
numbers and have obtained the dependence of the turbu-
lent diffusion coefficient on two parameters: the Reynolds
number and the Damkohler number. The generalized theory
has been validated by comparing its predictions with the
three-dimensional direct numerical simulations (DNSs) of
the reaction wave propagating in a homogeneous isotropic
and incompressible turbulence for a wide range of ratios of
the wave speed to the rms turbulent velocity and different
Reynolds numbers.

It is worth stressing that the previous validation of
the original theory by MFS [21] and present validation of the
generalized theory by DNS complement each other, because
they were performed using different methods. Indeed, the
previous validation [21] was performed by evaluating Dy
using numerical data [22] on the mean reaction front speed
obtained by solving a statistically planar one-dimensional
mean KPP equation, with such a MFS method implying spatial
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uniformity of the turbulent diffusion coefficient. In contrast,
in the present work, Dy is straightforwardly extracted from
DNS data obtained by numerically integrating unsteady three-
dimensional Navier-Stokes and reaction-diffusion equations,
with eventual spatial variations in the turbulent diffusion
coefficient being addressed.

This paper is organized as follows. The generalized theory is
described in Sec. II. Direct numerical simulations performed to
validate the theory are described in Sec. III. Validation results
are discussed in Sec. IV. A summary is given in Sec. V.

II. EFFECT OF CHEMISTRY ON TURBULENT DIFFUSION

The goal of this section is to generalize the theory [21]
by considering turbulent flows characterized by large but
finite Reynolds numbers. It is worth stressing that neither
the original theory [21] nor its generalization has specially
been developed to study combustion. On the contrary, while
the theory addresses a wide class of turbulent reacting flows,
certain assumptions of the theory do not hold in premixed
flames. Nevertheless, as will be shown in subsequent sections,
the theoretical predictions are valid under a wider range of
conditions than originally assumed and in particular under
conditions associated with the straightforward influence of
chemical reactions on turbulence in flames.

A. Governing equations

The equation for the scalar field in the incompressible
chemically reacting turbulent flow reads

dc
ot

where c(¢,x) is a scalar field, v(¢,x) is the instantaneous fluid
velocity field, D is a constant diffusion coefficient based on
molecular Fick’s law, and W (c) is the source (or sink) term. The
function W(c) is usually chosen according to the Arrhenius
law (to be given in the next section). We consider a simplified
model of a single-step reaction typically used in numerical
simulations of turbulent combustion.

The velocity v of the fluid is determined by the Navier-
Stokes equation

+ (- V)e = W(c) + DAc, (1)

ov

1
+@ - Vv=——Vp+vAv+ f, (2)
at P

where f is the external force to support turbulence, v is the
kinematic viscosity, and p and p are the fluid pressure and
density, respectively. For an incompressible flow the fluid
density is constant.

B. Procedure of derivations of turbulent flux

To determine turbulent transport coefficients, Eq. (1) is
averaged over an ensemble of turbulent velocity fields. In
the framework of a mean-field approach, the scalar field c is
decomposed into the mean field (c¢) and fluctuations ¢’, where
(c"y = 0 and angular brackets designate ensemble averaging.
This can be considered, for example, as the averaging over an
ensemble of independent snapshots taken, e.g., in numerical
simulations with a time interval that is larger than the
turbulent correlation time. This is similar to a sliding (window)
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averaging, where the sliding time is larger than the turbulent
time. In this study (see the next section with the DNS results)
we also employ a spatial averaging over a plane perpendicular
to the direction of the front propagation, etc. The velocity field
is decomposed in a similar fashion, v = (U) + u, assuming,
for simplicity, a vanishing mean fluid velocity (U) = 0, where
u are the fluid velocity fluctuations.

Using the equation for fluctuations ¢’ = ¢ — {(c) of the scalar
field and the Navier-Stokes equation for fluctuations u of the
velocity field written in k space we derive an equation for the
second-order moment (c'u); = (¢'(k)u;(—k)):

o(c'u;)k
ot

= [t + O+ D*|(ui) + N(cu;)
—(uiu )iV jc), (3)

where (uju ;)i = (u;(K)uj(—=k)), . = (c)/(W) is the chem-
ical time, (W) is the mean source function, and N (c'u;)
includes the third-order moments caused by the nonlinear
terms:

N(cu;) = —([V-(cw)lui)x — (¢ [(u - VIuil)i
—('lp™ Vi p' i “)

Here we follow the procedure of the derivation of the turbulent
fluxes that is described in detail in [21], taking into account
large yet finite Reynolds number. In particular, we use a
multiscale approach (i.e., we separate fast and slow variables,
where fast small-scale variables correspond to fluctuations and
slow large-scale variables correspond to mean fields). Since the
ratio of the spatial density of species is assumed to be much
smaller than the density of the surrounding fluid (i.e., small
mass-loading parameter), there is only one-way coupling, i.e.,
no effect of species on the fluid flow. For the same reason the
energy release (or absorbtion of energy) caused by chemical
reactions is much smaller than the internal energy of the
surrounding fluid. This implies that even a small chemical
time does not affect the fluid characteristics. Finally, we also
assume that the deviations of the source term W from its mean
value (W) are not large. While such an assumption does not
hold in a typical premixed turbulent flame [8], we will see
later that the theory well predicts the effect of the chemical
reaction on turbulent transport even if the difference in W(c)
and (W)({c)) is significant, as commonly occurs in the case of
premixed combustion.

The equation for the second-order moment (3) includes the
first-order spatial differential operators applied to the third-
order moments A (c'u;). To close the system of equations it
is necessary to express the third-order terms N (c'u;) through
the lower-order moments {(c'u; ) (see, e.g., [25-27]). We use
the spectral-t approximation that postulates that the deviations
of the third-order moments A/ (c’u;) from the contributions to
these terms afforded by the background turbulence N(c'u;)©
can be expressed through the similar deviations of the second-

order moments {¢'u;)r — (c’ui);‘o),
N(cu;) — N(c'uj)® = _rr(k)[<6/ui>k — <C’ui)i°)] &)

(see, e.g., [25,26,28]), where t.(k) is the scale-dependent
relaxation time, which can be identified with the correlation
time t(k) of the turbulent velocity field for large Reynolds

053111-2



TURBULENT DIFFUSION OF CHEMICALLY REACTING ...

ugln)

3
2

=~ —© - DNS:Re=200
= 105t — — -DNS:Re=100
—.—-DNS:Re=50
—_—5/3
1 1 “\ 1
10° 10" 102
k oF

FIG. 1. Spectrum of turbulent kinetic energy.

and Péclet numbers. The functions with the superscript (0)
correspond to the background turbulence with zero gradients of
the mean scalar field. Validation of the T approximation for dif-
ferent situations with homogeneous and inhomogeneous con-
ditions has been performed in various numerical simulations
and analytical studies (see, e.g., [29-34]). When the gradients
of the mean scalar field are zero, the turbulent flux vanishes
and the contributions of the corresponding fluctuations [the
terms with the superscript (0)] vanish as well. Consequently,
Eq. (5) reduces to N(cu)k = — (¢ Fu;(—k)) /T (k).

We also assume that the characteristic times of variation
of the second-order moments are substantially larger than the
correlation time 7 (k) for all turbulence scales. This allows us
to consider the steady-state solution of Eq. (3), which yields
the expression for the turbulent flux (c'u;); = (¢/(k)u;(—k))
in k space,

(uik = —Terr (k) uiu )V (c), (6)

where e(k) = [t + (v + D)K> + t=1(k)] " is the effective
time.
We consider isotropic and inhomogeneous background

turbulence (u;u ;)\ = (u;(k)u;(—k)) (see, e.g., [35]),

(ui(k)u j(—k))
B ET(k)|: kikj |
ij = 1o

ey + (k; V; —iji):|(112>» (N

k2 2k2

where

2 K\
Er(k) = 3—,(0(1 —Re /37! (E) (8)

is the energy spectrum function for kg < k < koRe*, (k) =
27o(k/ ko)~2/ is the turbulent correlation time, ko = Ly L
Re = foug/v > 1 is the Reynolds number, and ug = 4/ (u?)
is the characteristic turbulent velocity in the integral scale £
of turbulence. The last two terms in Eq. (7) determine contri-
butions from inhomogeneous turbulence. For comparison of
the theory with DNS we do not neglect the small Re~'/? term
in Eq. (8).
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TABLE I. DNS cases.

Case Re Rel T]/AX SL/M() le/ap DaDNS
1 50 18 0.68 0.1 2.1 0.2
2 50 18 0.68 0.2 2.1 0.4
3 50 18 0.68 0.5 2.1 1.0
4 50 18 0.68 1.0 2.1 2.1
5 50 18 0.68 2.0 2.1 4.1
6 100 30 0.86 0.1 3.7 0.4
7 100 30 0.86 0.2 3.7 0.7
8 100 30 0.86 0.5 3.7 1.9
9 100 30 0.86 1.0 3.7 3.7
10 100 30 0.86 2.0 3.7 7.5
11 200 45 1.06 0.1 6.7 0.7
12 200 45 1.06 0.2 6.7 1.3
13 200 45 1.06 0.5 6.7 3.4
14 200 45 1.06 1.0 6.7 6.7
15 200 45 1.06 2.0 6.7 13.5

C. Turbulent flux

After integration in k space we obtain the expression for
the turbulent flux {c'u),

(c'u) = /(C'm)zcdk = —DrV(c), )

where the coefficient of turbulent diffusion D7 of the scalar
field is

Dr

_D§ [1 B CI>(Da,Re,Pr):| (10)

" Da 1 —Re !/

D} = wu}/3 is the characteristic value of the turbulent
diffusion coefficient without chemical reactions, ty = £o/ug
is the characteristic turbulent time, the function ®(Da,Re,Pr)
is
1 X2 + a(Re,Pr)
®(Da,Re,Pr) = dX, (11D
/};e—l/z 2DaX3 + X2 +a

the parameter a(Re,Pr) = 2(1 + Pr_l)/Re, and Pr=v/D is
the Prandtl number. Note that the expressions for the turbulent
diffusion coefficient for homogeneous and inhomogeneous
turbulence are the same.

Evaluating approximately the integral in Eq. (11) by
expanding the expression in the integral over a small parameter
a(Re,Pr) for large yet finite Reynolds numbers, we obtain
the following dependence of turbulent diffusion coefficient on
Damkohler and Reynolds numbers:

Dg 1 1 + 2Da
Dr = —-|1- "1/, 1 12
Da 2Da[l —Re™/“] 1+ 2DaRe

_ap(1 4 prhynRe (12)
0 Re
In the limit of extremely large Reynolds numbers, we recover

the result for the function Dr(Da) obtained in [21]:

_DOT ! In(1 + 2 Da)
" Da 2Da ’

It follows from Eq. (12) that for small Damk&hler numbers

Dr 13)
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Da « 1, the function D7(Da) is given by

4Da InRe
DT = Dg|:1 — T — ZDg(l +Pr71)¥ + Rel/2:|,

(14)
while for large Damkéhler numbers 1 <« Da <« Re!/? it is
DI In2Da DalnRe
Dr=—-2|1- —2(1+Prh)—— 15
TDa[ 2Da (+r)Re]()

and for very large Damkohler numbers 1 <« Re!/? « Da it is

T

D DalnR
DT=—°|:1 (1 4 prh e e}.
Da

Re (16)

Equations (15) and (16) show that turbulent diffusion of
particles or gaseous admixtures for a large Damkoéhler number
Da > 1 is strongly reduced, i.e., Dr = DOT/Da = tcu(%/&
This implies that the turbulent diffusion for a large turbulent
Damkohler number is determined by the chemical time.
The underlying physics of the strong reduction of turbulent
diffusion is quite transparent. For a simple first-order chemical
reaction A — B the species A of the reactive admixture is
consumed and its concentration decreases much faster during
the chemical reaction, so the usual turbulent diffusion based
on the turbulent time 7y >> 7, does not contribute to the mass
flux of a reagent A.

III. THE DNS MODEL

Direct numerical simulations of a finite-thickness reaction
wave propagation in forced, homogeneous, isotropic, and
incompressible turbulence for the first-order chemical reac-
tions were performed in a fully periodic rectangular box of
size of Ly x Ly x L using a uniform rectangular mesh of
N, x N, x N, points and a simplified in-house solver [36]
developed for low-Mach-number reacting flows. Contrary to
recent DNS studies by two of the present authors [37,38]
that addressed self-propagation of an infinitely thin interface
by solving a level set equation, the present simulations deal
with a wave of a finite thickness, modeled with Eq. (1) for
a single progress variable ¢ (c =0 and 1 in reactants and
products, respectively), while the Navier-Stokes equation (2)
was numerically integrated in both cases.

To mimic a highly nonlinear dependence of the reaction
rate W on the scalar field ¢ in a typical premixed flame
characterized by significant variations in the density o and
temperature 7, the expression

1-c¢ |: Ze(1 +r)2:|
= exp | —
(1 +1) (1 4 c1)

a7

was invoked in the present constant-density simulations. Here
Tg 1s a reaction time scale, while the parameters Ze =
6.0 and T = 6.0 are counterparts of the Zeldovich number
Ze = E (T, — Tu)/RTb2 and heat-release factor (o, — pp)/ P,
respectively, which are widely used in combustion theory
[8-10], with subscripts u and b designating unburned and
burned mixtures, respectively. Indeed, substitution of ¢ =
(T —T,)/(T, — T,) into the exponent in Eq. (17) results in
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the classical Arrhenius law

W 1—c E, (18)
=— exp| —— |,
o+ 1) P\TRT

i.e., Eq. (17) does allow us to mimic the behavior of the reaction
rate in a flame by considering constant-density reacting flows.
Itis worth recalling that a simplification of a constant density is
helpful for studying the straightforward influence of chemical
reactions on turbulent transport, as already pointed out in
Sec. L.

The speed Sy, of the propagation of the reaction wave in the
laminar flow, the wave thickness 6 = D/S, and the wave
time scale T = 85 /S, were varied by changing the diffusion
coefficient D and the reaction time scale tg, which were
constant input parameters for each DNS run. The speed Sp.
was determined by numerically solving the one-dimensional
equation (1) with v = 0.

The present DNSs are similar to DNSs discussed in detail
in [37,38], except for replacing a level set equations used
in [37,38] by Eqgs. (1) and (17). Therefore, we will restrict
ourselves to a very brief summary of the simulations. A more
detailed discussion of the simulations can be found in recent
papers [39,40].

The boundary conditions were periodic not only in the
transverse directions y and z, but also in the direction x
normal to the mean wave surface. In other words, when
the reaction wave reached the left boundary (x = 0) of the
computational domain, the identical reaction wave entered the
domain through its right boundary (x = L,).

The initial turbulence field was generated by synthesizing
prescribed Fourier waves [41] with an initial rms velocity u
and the forcing scale £; = L /4, where L=L,=L,=L,/4isthe
width of the computational domain. Subsequently, a forcing
function f [see Eq. (2)] was invoked to maintain statically
stationary turbulence following the method described in
Ref. [42]. As shown earlier [37,38], (i) the rms velocity u( was
maintained as the initial value, (ii) the normalized dissipation
rate els/ ug averaged over the computational domain fluctuated
slightly above 3/2 after a short period (+ < 7y = £¢/ug) of
rapid transition from the initial artificially synthesized flow
to the fully developed turbulence, (iii) the forced turbulence
achieved good statistical homogeneity and isotropy over the
entire domain, and (iv) the energy spectrum showed a range
of the Kolmogorov scaling (—5/3) at the Reynolds number
Re=u(ly/v=200 based on the scale ¢; (see Fig. 1).

In order to study a fully developed reaction wave, a planar
wave c(x,t = 0) = ¢ (£) was initially (r = 0) released at x* =
L,/2 such that ff)oo c(§)dE = fooo[l —cp(§)]d¢ and & =
x — x°, where ¢ (£) is the precomputed laminar-wave profile.
Subsequently, evolution of this field c(x,t) was simulated by
solving Eq. (1). To enable periodic propagation of the c field
along the x direction, the field is extrapolated outside the axial
boundaries of the computational domain at each time step ¢”
as c(x’,y,z,t") = c(x,z,t"), where x’ = x + I L, and I is an
arbitrary (positive or negative) integer number. Consequently,
Eq. (1) is solved in the interval x" € [¢(t") — A,¢(") + A],
where ¢(#") is the mean coordinate of a reaction wave
on the x’ axis and A = 0.45L, in order to avoid numer-
ical artifacts in the vicinity of x’ = ¢(#") £ 0.5L,. In two
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FIG. 2. Instantaneous c field obtained in the DNS at f/t; = 5.4 (top row), 6.2 (middle row), and 7 (bottom row) for Re = 200, with
S /ug = 0.1 (left column) and 2.0 (right column). Gray isosurfaces are associated with the peak reaction rate, i.e., c¢(x,y,z,t) = ¢*, where
W(c*) is the maximum value. Top-sliced planes are colored from blue to red in order to represent an increase in the local ¢ from zero
to unity. Yellow vortex tubes visualize turbulence field by showing regions characterized by large values Q > Q* = 2u3/t,v of the Q

criterion.

remaining regions, i.e., x’ € [¢(¢") — 0.5L,,{(t") — A] and
x' e [¢@)+ A,c(#") 4+ 0.5L,], the scalar ¢(¢") is set equal
to zero (fresh reactants) and unity (products), respectively,
because the entire flame brush is always kept within the interval
of x" € [¢(t") — A,(t") + A] in the present simulations.
Finally, the obtained solution c(x’,y,z,t") is translated back
to the x coordinate (for details see [39,40]).

Three turbulent fields were generated by specifying three
different initial turbulent Reynolds numbers Re = 50, 100, and
200, which were increased by increasing the domain size L.
The increase in L resulted in increasing the longitudinal inte-
gral length scale £, the Taylor length scale A = +/ 15vu(2) /€,
the Taylor scale Reynolds number Re; = upA /v, the turbulent
time scale t;; = £11/up, and hence the Damkohler number
Dapns = t11/tF. Henceforth, ¢ designates the dissipation rate
averaged over volume and time at # > 5t;. The simulation
parameters are shown in Table I. Because a reaction wave
does not affect turbulence in the case of constant density p and
viscosity v, the flow statistics were the same in all cases that
had different S; but the same Re. It is worth noting that the
longitudinal integral length scale £;; reported in Table I and
used to evaluate Dapns was averaged over the computational
domain and time at ¢t > 5t¢ and was lower than its initial value
L= L/4.

When the width L was increased by a factor of 2, the
numbers N, N, = N./4,and N, = N, /4 were also increased

by a factor of 2,i.e., Ny = 256, 512, or 1024 at Re = 50, 100,
or 200, respectively. Accordingly, in all cases, the Kolmogorov
length scale n = (v3/¢)!'/* was of the order of the grid
cell size Ax (see Table I), thus indicating sufficient grid
resolution. The capability of the grids used for resolving well
not only the Kolmogorov eddies but also the reaction wave
was confirmed in separate (i) one-dimensional simulations
of planar laminar reaction waves and (ii) two-dimensional
simulations [43] of laminar flames subject to hydrodynamic
instability [44]. Moreover, the resolution of the present DNS
was validated by running simulations with the grid cell size Ax
decreased by a factor of 4 at Re = 50, i.e., by setting N, equal
to 1028.

In the next section we will report the mean quantities (g)
averaged over a transverse plane and time at 5tf < ¢ < feng,
with f.,q being equal to 50t or even longer. Moreover,
we will present correlations between fluctuating quantities
q'(t,x) = q(t,x) — {g)(x). Furthermore, using the computed
axial profiles of (c), axial profiles of other mean quantities
and correlations will be transformed to dependences of these
variables and correlations, respectively, on the mean reaction
progress variable (c).

IV. RESULTS AND DISCUSSION

Figures 2 shows the evolution of ¢ fields for Re = 200.
The background turbulent flow structures are visualized by
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FIG. 3. Dependences of the normalized turbulent scalar flux
(u'c’)/up on the mean reaction progress variable (c), computed at
different ratios of S /u, specified in the legend for (a) Re = 50,
(b) Re = 100, and (c) Re = 200.

showing regions characterized by large values Q > Q* =
2u}/tsv of the Q criterion. Such a flow structure is typical
for homogenous isotropic turbulence. A comparison of these
figures shows that a lower normalized laminar-wave speed
St /up is associated with a more wrinkled surfaces of the
reaction zone and a thicker mean turbulent wave brush that
propagates at a lower speed.

Figure 3 shows dependences of the normalized turbulent
scalar flux (u’c’)/ug on the mean reaction progress variable
(c), computed for Re = 50 [Fig. 3(a)], Re = 100 [Fig. 3(b)],
and Re = 200 [Fig. 3(c)]. In an unburned or burned mixture,
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FIG. 4. Dependences of the normalized mean turbulent wave
thickness §;/¢;; on the normalized wave speed S /uy computed at
three different turbulent Reynolds numbers Re specified in legend.

the instantaneous progress variable is constant,c = Oorc = 1,
respectively. This implies that in the two regions turbulent
flux (c'u’) = 0. Inside the mean reaction wave the mean
progress variable (c) varies between 0 and 1. In this region
the gradient V(c) does not vanish. Since V(c) is positive in
this region (in the coordinate framework used in the paper), the
turbulent flux (c'u’) = —D7V/{c) is negative inside the mean
reaction wave. The absolute value of the turbulent flux |(c'u’)|
reaches a maximum at the point where the gradient V{c)
is maximum. If the probability of deviation of the reaction
wave from its mean position is described by the Gaussian
distribution, the gradient V{c) is maximum at (c) = 0.5. For
instance, in various premixed turbulent flames, V (c) does peak
at (c) = 0.5 [see, e.g., Fig. 4.22 and Egs. (4.34) and (4.35) in
[81]. While the flux magnitude depends on Sy /u and hence on
Dapys (see Table I), such variations in the flux magnitude are
sufficiently weak and nonmonotonic, with the peak magnitude
being obtained at a medium Sy /ug = 0.5.

In contrast, the mean turbulent wave thickness §; defined
using the maximum gradient method, i.e.,

1
= e (VL (@) >
decreases rapidly with the increase of the normalized wave
speed Sy /ug and hence Dapys (see Fig. 4). This numerical
result is fully consistent with the theory, which predicts a
decrease in Dy with increasing Damkohler number. Un-
der the DNS conditions, an increase in Sy /uo results in
increasing Da and therefore decreasing Dr. Consequently,
8, o¢ [Dr(Da)t.]'/? decreases with increasing Sy /uy.
Accordingly, the gradient of the mean reaction progress
variable is increased by Sy /ug (or Dapys), whereas turbulent
diffusivity evaluated as

(u'c’)
Vi(e)

Dr({c)) = — (20)
decreases with increasing Sy /ug and Dapns (see Fig. 5). The
decrease of the turbulent diffusion coefficient Dy with the
increase of the Damkohler number observed in DNS agrees
well with the developed theory.
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FIG. 5. Dependences of the normalized turbulent scalar diffusiv-
ity Dr/uof;; on the mean reaction progress variable (c), computed
for (a) Re = 50, (b) Re = 100, and (c¢) Re = 200. Values of S, /ug
are specified near the curves.

Moreover, Fig. 5 indicates that Dy evaluated using Eq. (20)
depends weakly on (c), thus implying that the influence of
the reaction on the turbulent diffusion coefficient may be
characterized by a single mean turbulent diffusivity defined
as

1
Dr =/0 Dr(§)d§. 2n

To compare values of the mean turbulent diffusion coefficient
D7 obtained in the simulations with the theoretical predictions
for D7(Da) we need to take into account that the Damkohler

PHYSICAL REVIEW E 96, 053111 (2017)
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FIG. 6. Reaction-rate ratio 6 = max{{W)((c))}/max{W(c)} vs
S1/uo. Symbols show DNS data, with the Reynolds numbers Re
being specified in the legend.

number Dapys used in DNS is different from the Damkohler
number Da used in the theory. In the theory, Da involves the
time scale t. that characterizes the peak mean rate (W). In
the DNS, due to strong fluctuations in the scalar field c(z,x)
and especially W{c(t,x)], the peak mean rate max{{W)({c))}
is much less than the peak local rate max{W{c(z,x)]}, as is
well known in combustion theory [7,8,10—12]. Accordingly,
the peak mean reaction rate is characterized by a significantly
larger chemical time scale (r.) when compared to the time
scale Ty associated with the laminar W(c). A ratio of these
two time scales 6§ = tr/(t.) = Da/Dapns can be estimated
as 0 = max{{W)({c))}/max{W(c)}. The reaction-rate ratio 6
versus Sy /up is shown in Fig. 6 for different values of the
Reynolds number Re.

Using the values of 6 obtained in the DNS and plotted in
Fig. 6, we relate the Damkdohler number Da used in the theory
with the Dapng used in DNS: Da = 6Dapns. In Fig. 7 the
mean turbulent diffusion coefficient D7 versus Da = 0 Dapys
obtained in the simulations (symbols) is compared with the
theoretical predictions for Dy given by Eq. (12). Figure 7
demonstrates very good agreement between the results of
DNSs and theoretical predictions.

0.5¢

O L L L
0.001 0.01 0.1 1.0 Da

FIG. 7. Theoretical dependence Dr = Dr/D! on Damkohler
number Da determined by Eq. (12) for different values of the Reynolds
number Re = 50 (blue), 100 (black), and 200 (red) at Pr = 1. The
DNS data on ﬁr normalized using uly; are shown in blue triangles
(Re = 50), black squares (Re = 100), and red circles (Re = 200).
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V. CONCLUSION

The theory of turbulent diffusion in reacting flows pre-
viously developed in [20,21] has been generalized for finite
Reynolds numbers and the dependence of turbulent diffusion
coefficient on two parameters, the Reynolds number and
the Damkohler number, has been obtained. Validation of
the generalized theory of the effect of chemical reaction
on turbulent diffusion using three-dimensional DNSs of a
finite-thickness reaction wave propagation in forced, homoge-
neous, isotropic, and incompressible turbulence for the first-
order chemical reactions has revealed very good quantitative
agreement between the theoretical predictions and the DNS
results.

PHYSICAL REVIEW E 96, 053111 (2017)
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