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Front propagation in a regular vortex lattice: Dependence on the vortex structure
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We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this,
we consider a regular set of vortices whose structure is changed by varying both their boundary conditions
and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by
electroconvective flows and numerically from kinematic simulations based on the determination of the dominant
Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an
extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend
on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight
dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front
velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow
subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take
into account not only the intensity of vortex flows but also their inner structure to determine front propagation
at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in
vortex chains at large velocity and large aspect ratios.
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I. INTRODUCTION

In many reactive systems, reaction does not occur homo-
geneously but within thin fronts which propagate at some
proper velocity V0 in a still medium. However, when the
medium is stirred, the advection and the distortion of reaction
fronts by vortices considerably enhance the global reaction
rate with important consequences regarding technology (e.g.,
combustion [1], chemistry [2,3]), ecology [4–6], or geophysics
(e.g., porous medium [7]). Much attention has then been
devoted to understand the mechanisms of enhancement of
reaction efficiency by a stirring flow in both a laminar [8–18]
and a turbulent [1,19–24] context.

In this issue, it is essential to appropriately identify the parts
of the flow that play a dominant role in the way reactive fronts
invade a stirred medium. In particular, in flows composed of
single-scale vortices, as in a vortex chain or a vortex array,
many models have relied only on flow features at the vortex
scale and overlooked the inner structure of vortices. They then
considered the same prescribed vortex structure [8–14] and,
drawing on the transport mechanisms of passive tracer in a
vortex chain [25–29], focused analytical derivations on the en-
hancement of the diffusion of contaminants across vortex sepa-
ratrices [8–11], taken as the limiting phenomena for large scale
front propagation. Although separatrices play an essential role
in front propagation, these models nevertheless implicitly over-
looked the possible implication of other parts of vortices. They
then provided universal relationships between the mean front
velocity and the flow intensity that make no difference between
the types of vortices and no case for their inner structure.

Here we revisit this issue by experimentally changing the
inner vortex structure and further comparing the resulting
effects on the front propagation. We find a large sensitivity of
the mean front velocity to the vortex structure which questions
the modeling of front propagation in stirred flows. In particular,
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this sensitivity stresses that the extremely small thickness of
the fronts as compared to the vortex scale enables them to
probe the details of the flows with benefit for their propagation
[16,17]. This ability, which makes a difference with passive
tracers, calls for taking into account the inner structure of
vortices to appropriately model front propagation in stirred
media and further address the effects of flow instabilities or of
multiscale flows.

Our study involves a single scale flow made of a regular lat-
tice of planar vortices involving the same sizes and same depth
and in which a reaction front can propagate. Front propagation
is achieved experimentally by using an autocatalytic reaction
in a solution stirred by electroconvective flows in a Hele-Shaw
cell. In order to modify the inner structure of vortices in a con-
trolled way, we use two external means which both refer to their
boundary conditions: (1) a change of lateral boundary condi-
tions from free to rigid and (2) a change of the vortex depth.

In each configuration, a systematic experimental investiga-
tion is performed and the evolution of the mean front velocity
with the vortex magnitude is determined. It reveals a variability
of the mean front velocity with the boundary conditions and,
for rigid boundary conditions, with the vortex depth. To check
the role of flows in these outcomes, we analytically derive the
vortex structure in each configuration in the Stokes regime, and
we determine the resulting mean front velocity by kinematic
simulation based on a lattice dynamics algorithm. The agree-
ment between experiment and simulation strengthens the ex-
perimental evidence of the responsibility of the vortex structure
in the variability of the mean front velocity in vortex lattices.
Altogether our study thus provides original experimental,
analytical, and numerical results which converge to evidence
that front propagation in stirred media depends not only on the
magnitude of vortices but also on their inner structure.

We denote U the vortex intensity (i.e., the maximum
velocity of the flow field), V0 the proper front velocity (i.e., the
velocity of the front with respect to the fluid), Vf its effective
velocity (i.e., the mean front velocity in the mean fluid frame),
L the vortex width, d the cell depth, and λ the front thickness.
In this framework, the goal of previous modelings was to
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relate these variables by determining the relationship between
their nondimensional forms: Vf /V0 = f (U/V0,d/L,λ/L).
However, the main issue addressed in this study will be
to question whether a single function f (·) is sufficient for
representing the various configurations of vortex flow or
whether other flow parameters referring to the inner vortex
structure will prove to also be relevant.

Section II describes the experiment and specifies the
different lateral boundary conditions applied on vortices.
Section III addresses the analytical determination of planar
electroconvective flows in the Hele-Shaw regime together
with the implications of different boundary conditions on the
vortex structure. Section IV reports a kinematic simulation of
front propagation in the different flows determined in Sec. III.
Section V discusses the results obtained on front propagation
enhancement for various vortex aspect ratio d/L and boundary
conditions as well as the origin and the implications of the
sensitivity of front propagation on the vortex structure. A
conclusion to the study is given in Sec. VI.

II. EXPERIMENT

The experiment aims at achieving front propagation in
a periodic array of steady vortex flows in well-controlled
conditions suitable for a quantitative study of its dependence
on the vortex structure. For this, it is essential to avoid
any feedback of the reaction onto the flows, as displayed,
for instance, in combustion due to gas expansion following
heat release. This is achieved by considering an athermal
oxydo-reduction reaction in solution. Next, the flows must
be steady, which discourages generating them from primary
instabilities (such as thermoconvective or Rayleigh-Taylor
instabilities), since they are known to induce phase versatility
in the vortex pattern and secondary instabilities. Instead, flows
have to be forced so as to be under control. This led us
to use electroconvective flows in a sufficiently dissipative
hydrodynamical regime to avoid flow dynamics. Restricting
the study to a Stokes regime in a Hele-Shaw cell, we thus
used steady electroconvective flows, directly monitored by
magnetic intensity and electric current.

A. Setup

The chemical reaction used is the chlorite-iodure oxydo-
reduction reaction in aqueous solution:

ClO−
2 + 4I− + 4H+ → Cl− + 2I2 + 2H2O, (1)

5ClO−
2 + 2I2 + 2H2O → 5Cl− + 4IO−

3 + 4H+, (2)

IO−
3 + 5I− + 6H+ → 3I2 + 3H2O. (3)

It is autocatalytic as the primary consumption of iodide I− in
(1) is enhanced in (3) by the resulting production of iodate IO−

3
via iodine I2 in (2). The reactants are mixed in a solution which
thus starts from a chemically homogeneous state. It is initially
blue due to the formation of a complex between iodide, iodine,
and a Starch indicator introduced for this purpose, and turns
uncolored after reaction following the depletion of iodide.

Different modes of reaction may occur: (1) a global mode
in which the whole medium evolve the same way on any of

its parts with, therefore, a homogeneous reaction rate or (2)
a local mode in which the reaction rate is localized in a thin
interface, called the reaction-diffusion front, which propagates
at a definite velocity V0 in a still medium. In the latter case, as
the medium is at rest, the phase change induced by the front
corresponds to a wave. Its propagation mechanism consists
in the diffusion of a contaminant to neighboring parts of the
front that then react due to a consecutive enhancement of their
reaction rate. A popular analog corresponds to the burning by
a fire front where heat diffusion causes the fresh parts close to
the front to burn, yielding fire advance and propagation. The
simplest, one-dimensional, modeling of the reaction-diffusion
wave is provided by a contaminant balance:

∂θ

∂t
= D�θ + f (θ ), (4)

where θ denotes the contaminant, D its diffusivity, and f (·) the
reaction rate. This dynamics includes propagation of a wave
θ (x,t) ≡ θ (x − V0t) at a velocity V0 that is a solution of the
nonlinear equation

−V0
∂θ

∂x
= D�θ + f (θ ) (5)

with appropriate conditions at infinity. It thus corresponds to a
nonlinear eigenvalue [30–32]. The alternative between the two
kinds of solutions depends on initial conditions. In practice,
the front solution needs a germ to develop. Here we force it by
initiating, at an extremity of the setup, a localized depletion of
iodide by oxydo-reduction at a metallic plate.

We note that the velocity V0 slightly depends on the
temperature of the solution due to Arrhenius factors controlling
the chemical kinetics and on the electric current density
following its implication on ionic transport [33,34]. However,
this latter dependence is weaker when the front propagates on
a direction opposite to the electric current [17]. Therefore, to
minimize the variability of V0 to less than a few percent, the
temperature has been stabilized to 20 ◦C and the front has been
initiated so as to propagate in average in a direction opposite
to that of the electric current. We then obtained values of V0

varying between 1.0 and 1.4 mm/mn depending on the current
density.

The homogeneous solution is poured into a long glass
receptacle whose depth d is controlled by spacers. This channel
is then placed above an array of magnets whose magnetic
field B alternates direction between neighbors [Fig. 1(a)]. An
electric current density j, parallel to the channel axis, is then
induced in the solution by electrodes placed at its extremities.
Following the presence of a magnetic field, it generates a
density of Laplace forces in the solution which drives alternate
vortices. This electromagnetic forcing has been used in many
different contexts to study, for instance, boundary layer effects
in salty water [35,36], mixing [29,37], single-scale [38–40],
multiscale [41], or quasi-two-dimensional turbulent or chaotic
flows [42–45], front propagation [15–17], fiber deformation
[46], or sedimentation [47]. In the Stokes regime in which our
experiment stands, the vortex flow intensity is linearly related
to the density of Laplace force and thus to both the current
density and the magnetic field. Both can be tuned either by the
distance of the solution to the magnet array or by the tension
applied to the electrodes. This yields vortex intensities up to
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FIG. 1. Sketch of the setup showing the chemical solution stirred by Laplace forces induced by an electric current flowing over alternate
magnets (a) and the resulting array (b) or chain (c) of counter-rotating vortices. The channel depth, vortex size, and channel width are denoted
d , L, and l, respectively. The magnetic field and the electric current are labeled B and I .

50 mm/mn for arrays placed beneath the solution, a channel
depth of d = 2 mm, and current intensities of about 30 mA.

Initiation of a front is triggered by placing a small metallic
piece at a channel end. A slight dependence of front velocity
on current density arises following the resulting transport
of charged species [16–18] and is taken into account in the
following. As the front propagates, the solution, observed from
above, splits into blue unreacted zones and uncolored reacted
zones, the front corresponding to their thin frontier (Figs. 2
and 3). This provides the opportunity of finely localizing it by
a nonintrusive optical observation. Front propagation is finally
recorded by a camera on a computer so as to provide the
front shapes and the front velocity, both locally at each time
and globally in average over several vortices (Figs. 2 and 3).
Following fluid stirring, the front turns distorted and enrolled
around the vortices. In addition, its velocity along the channel
axis appears to be largely increased by the flow, in proportions
that we shall analyze with respect to the boundary conditions.

B. Flow boundary conditions

The channel is 400 mm long, 20, 100, or 120 mm wide and
involves depths of either 2, 4, or 6 mm. A single kind of square
magnet is used with dimensions 20 × 20 × 5 mm, yielding the
channel widths to extend over one, five, or six magnets.

All flows experience rigid (no-slip) boundaries at the top
and bottom faces of the channel, following which their profile
in the depth direction is close to a Poiseuille profile.

However, in the lateral directions, two kinds of situations
are encountered depending on the channel width. When the

channel width is large compared to the magnet dimensions,
most vortices are surrounded by vortices. They then experience
free (free-slip) boundary conditions (hereafter denoted b.c.) on
all their frontiers, except for the two extreme vortices which
touch the channel sides [Figs. 1(b) and 2]. As the leading
parts of the front actually travel into the central vortices
only (Fig. 2), this configuration thus refers to effective free
lateral b.c. On the other hand, when the channel has the same
extension as a magnet, a single vortex takes place between its
lateral sides. Vortices then experience both free b.c. at their
frontier with neighbor vortices and rigid b.c. on the lateral
sides [Figs. 1(c) and 3]. As front will be advected along
these sides, this configuration thus refers to effective rigid
lateral b.c.

Figures 4 and 5 display the velocity field measured by
particle image velocimetry (PIV) on a field extending over
four vortices. They all show the regular flow structure obtained
for both boundary conditions in the midheight plane of the
channel. The vanishing of velocity at the lateral sides of the
channel for effective rigid lateral b.c. is noticeable in Fig. 4.
In contrast, for effective free lateral b.c., no vanishing occur in
Fig. 5 between vortices.

Following the narrow depth of the channels, the Reynolds
number is low (cf. Sec. III) in which case steady stable flows
are expected. The steadiness of the flows is confirmed by PIV
measurements together with the absence of symmetry breaking
in the vortex chain (the slight asymmetry of the flow field in
Fig. 4 is a visual artifact induced by a phase mismatch between
the PIV lattice and the vortex axes of symmetry). On the

FIG. 2. Front propagation with free lateral boundary conditions, except for the side vortices. Times regularly increases from left to right
while fronts propagate upwards. The channel depth is d = 2 mm, the vortex width L is 20 mm, and the channel width l equals 5L: l/L = 5,
U/V0 = 33.0. Time interval between pictures is 49 s.
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FIG. 3. Front propagation with rigid lateral boundary conditions. Times regularly increases from left to right while fronts propagate
upwards. The channel depth is d = 2 mm, the vortex width L is 20 mm, and the channel width l equals the vortex width L: l = L = 20 mm,
U/V0 = 17.7. Time interval between pictures is 58 s.

analytical ground, the onset of stability of planar vortex lattices
has been studied in configurations involving the two types of
lateral boundary conditions [48]. Two parameters arise: the
inverse Re−1

L = ν/LU of the Reynolds number ReL based on
the vortex width L, ν denoting the fluid kinematic viscosity
and an effective damping coefficient μ that takes into account
the viscous friction implied on the planar flows by the top and

bottom plates of the channel. For a Poiseuille profile in the
channel depth direction, one gets μ = 8Re−1

L (L/d)2, which is
quite larger than Re−1

L here: μ = 800Re−1
L for d = 2 mm and

μ ≈ 90Re−1
L for d = 6 mm. Then stability analysis confirms

that, in our velocity range, the studied vortex flows are actually
stable [48]. In particular, the onset of instability stands above a
velocity of 1000 mm/mn (resp. 9500 mm/mn) for d = 6 mm

FIG. 4. Flow field measured by PIV in a channel with rigid lateral boundary conditions. The channel depth is d = 4 mm, the vortex width
L is 20 mm, and the channel width l equals the vortex width L: l = L = 20 mm. (a) Velocity field. (b) Superimposed intensity of the velocity
field intensity obtained by extrapolation techniques. The vanishing of the flow field at the lateral boundaries makes a difference of vortex
structure with free boundary conditions (Fig. 5).
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FIG. 5. Flow field measured by PIV in a channel with free lateral boundary conditions. The channel depth is d = 4 mm, the vortex width
L is 20 mm, and the channel width l amounts to 6L. The slight distortion at the left bottom originates from an uncompensated defect in the
camera frame. (a) Velocity field. (b) Superimposed intensity of the velocity field intensity obtained by extrapolation techniques.

(resp. d = 2 mm), far from the maximum of our velocity range,
50 mm/mn. Although this analysis considered only an even
number of vortices in the channel width, the onset of instability
found is so large that no instability may be expected in our
parameter range.

Both free and rigid lateral b.c. could therefore be achieved
within the same setup, simply by tuning the channel width. In
both cases, the channel depth d was varied between a short
value 2 mm, an intermediate value 4 mm, and a large value
6 mm. The objective of the experiment is then to address the
implications of these different b.c. and aspect ratios on front
propagation.

C. Front propagation

1. Propagation regime

The propagation regime depends on two nondimensional
numbers Pe = UL/D and Da = L/Uτ where τ denotes the
characteristic reaction time close to the fresh state θ = 0, θ

being the progress variable of the reaction and D the molecular
diffusivity of the relevant species.

Then, for a concave reaction rate f (θ ) (4), theories
select a front velocity V0 yielding τ = 4D/V 2

0 , Da =
(LV0/4D)V0/U , and Pe Da = (LV0/2D)2 [30–32]. With
V0 = 1 mm/mn, L = 20 mm, D = 2.10−3 mm2/s, and 2 <

U < 50 mm/mn here, this yields the experimental ranges
300 < Pe < 8500, 0.8 < Da < 21 with a constant product
Pe Da ≈ 7000. This corresponds to the thin front regime
(Pe � 1) and within it, either to the flamelet regime for large
Da where the front is slightly distorted by the flow or to
the distributed regime for Da about unity or lower, where
the front, engulfed by many vortices, displays a long wake
of burning vortices behind it [13,14,17,49]. In both cases, the

front thickness λ is small compared to the vortex size L. In
particular, λ should be about 1 mm here for a parabolic reaction
rate f (·) and is likely less from direct observation, so that
λ/L < 5 × 10−2.

In this thin front regime, the front then satisfies an Eïkonal
dynamics where, apart from curvature effects, it may be
considered as a line advancing at a proper velocity V0 with
respect to the fluid. In addition, in the present Hele-Shaw
cell, the effect of the large velocity gradient in the channel
depth direction may be determined with respect to a Péclet
number η = dV0/2D based on the channel depth d and the
planar front velocity V0 [50]. For low η or low d, the front
displays a large curvature on the depth direction following
which it globally advances at V0 plus the depth-averaged
component of the flow velocity on its normal. In contrast,
for large η or large d, curvature is weak enough for making
the front advance at velocity V0 plus the maximum on the
channel depth of the velocity component on its normal n,
i.e., V0 + V(x,y,0) · n for a Poiseuille flow, z = 0 denoting
the middepth [50,52]. Here, as η > 30 at the lowest channel
depth, the experiment stands in this large gap regime. The
front then advances in the whole channel depth at a single
velocity corresponding to a propagation at velocity V0 in a
fluid moving at velocity V(x,y,0). Whereas the experiment is
actually three-dimensional, front propagation in a Poiseuille
flow is thus equivalent to a two-dimensional propagation in
the middepth plane.

2. Effective velocity and vortex intensity

The propagation of the front has been studied at various
current densities j for both free and rigid lateral b.c. and
various channel depths. In all cases, it led a periodic motion of
the front along the channel direction. The mean velocity of the
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front displacement along this axis provided its effective front
velocity Vf .

This effective velocity results from a balance between two
phases: a quick transport from one vortex side to the other
for which the front benefits from vortex advection at the large
speed U ; a slow crossing of separatrices to enter the next
vortex at the low speed V0 since advection no longer helps the
front to propagate on the direction of the channel axis at these
locations. The overall result is a mean velocity standing in
between the large U and the weak V0 velocity to a proportion
that we seek to study here.

The vortex intensity U is defined as the maximum velocity
of the flow field V. It is not measured directly but deduced
from the measurement of the current density j to which U

is proportional in a given configuration. The proportionality
constant between U and j was obtained from the detailed
study of front dynamics in a vortex. As shown in Figs. 2
and 3, the front gets advected from one separatrix to the next
once it has entered a vortex. This advection occurs far from
the vortex center and close to the quickest vortex streamline,
as depicted in a previous study [17]. During this motion, the
displacement of the front by propagation in the comoving
medium is negligible, since U is quite large compared to
V0. Accordingly, the mean velocity during this advection
phase stands as a relevant indicator of the vortex intensity.
As expected, it is actually found to be proportional to the
current density j .

However, as the flow velocity weakly varies on a flow
streamline, this mean velocity is slightly lower than the
maximum flow velocity U . To take into account this bias, we
determined both of them on different runs of the simulations

of front propagation reported in Sec. IV. They were found
proportional one to the other, the measured mean velocity
being lower than the vortex intensity U by a factor 0.73 (resp.
0.79) for free (resp. rigid) lateral b.c. Together with experimen-
tal measurements, this provided us with the proportionality
constant between the current density j and the vortex intensity
U , in any configuration.

To facilitate the comparison between the experimental
results and the literature on simulations or modelings, we
shall adopt the vortex intensity U as the scalar indicator of the
vortex magnitude. Its linear difference with the mean velocity
explains the data differences with Ref. [18].

The measured mean velocity over front advection from one
separatrix to the next is given by πr/t where r is the mean
radius of the corresponding streamline and t the advection
time. Given a picture length of 760 pixels englobing four
vortices and the approached value r ≈ 2L/3 found here, one
gets with an uncertainty of ±1 pixel at each extremities of r

and of ±1 s for t , the relative uncertainty δU/U ≈ 3 × 10−2.
Similarly, measuring the mean effective velocity over four
vortices and the same picture length, one obtains Vf = 4L/T

where T denotes the front travel time over these vortices.
For the same basic uncertainties, one then gets the relative
uncertainty δVf /Vf < 1.4 × 10−2.

3. Free boundary conditions

Figure 2 displays a propagation sequence over a period
corresponding to the crossing of two counter-rotating vortices.
Five vortices stand within the channel width. However, the
leading part of the front, which sets the mean velocity, stands

FIG. 6. Front propagation for free b.c. The vortex width is L = 20 mm. Columns correspond to channel depths d = 2,4,6 mm. Lines
correspond to reduced vortex intensities U/V0 weak (≈10), moderate (≈20), and large (≈30).
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FIG. 7. Reduced front velocity Vf /V0 as a function of the reduced vortex intensity U/V0. (a) Free b.c.: a single linear relationship is
displayed whatever the channel depth d . (b) Rigid b.c.: concave relationships are displayed with an increasing concavity with the channel
depth d .

on the three central vortices for which free b.c. are in order.
The front motion gets quite periodic soon after the front
initiation, typically till the second vortex crossing, so that an
asymptotic dynamics is reached well before the channel end.
See the experimental movie “FreeBC-Experiment.mov” [51]
performed at d = 2, L = 20, U/V0 = 23.1 and free b.c..

Figure 6 reports images of front propagation for three
reduced vortex intensities U/V0 and three channel depths.
It shows similar front shapes displaying thin tongues around
separatrices and wakes extending behind the fronts until all
vortices are burnt. However, tongues get thinner and wakes
get longer as the relative flow velocity U/V0 increases. The
latter effect results from a decreasing propagation efficiency
in a vortex in comparison to advection. In particular, as
contaminated vortices burn mainly by radial propagation of
a front towards the vortex center with no benefice from
advection, they take a fixed time t ≈ L/V0 to disappear.
Meanwhile the leading front advances over a distance Vf t ≈
LVf /V0, which is found to be proportional to U/V0 [Fig. 7(a)].
Except close to boundaries, front wakes are thus all the longer
than vortex intensity is larger.

Figure 7(a) reports the enhancement of the mean front
velocity Vf by the vortex flow U . It is expressed with the
nondimensional variables Vf /V0, U/V0. Data show a linear
rise with no difference regarding the channel depth d. The

change of vortex structure with d, if any, is thus insufficient
to noticeably modify front propagation. In agreement with the
expectation of Sec. II C 1, this supports the picture of a leading
part of the front moving in the midheight plane where the flow
is the largest and of a planar flow whose profile on the depth
direction does not affect front propagation.

4. Rigid boundary conditions

Figure 3 displays a propagation sequence somewhat similar
to that reported for free b.c., except that a single vortex
stands within the channel width. In particular, the quick
phase of front advection between successive separatrices takes
place at a distance of about half the channel depth from the
lateral boundaries [16,17]. As this is the expected width of
the lateral boundary layer in a Hele-Shaw cell, the front
trajectory thus presumably fits within this boundary layer.
See the experimental movie “RigidBC-Experiment.mov” [51]
performed at d = 2, L = 20, U/V0 = 17.7 and rigid b.c..

Figure 8 reports images of front propagation on conditions
similar to Fig. 6 but for rigid lateral b.c. Here too, the scenario
of front propagation over the vortex chain looks quite similar,
independently of flow intensity and of channel depth. However,
the frontier between fresh and burnt domains seems to enlarge
here with the channel depth. As images are taken from above,

FIG. 8. Front propagation for rigid b.c. The vortex width is L = 20 mm. Columns correspond to channel depths d = 2,4,6 mm. Lines
correspond to reduced vortex intensities U/V0 weak (≈10), moderate (≈20), and large (≈30).
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this reveals that fronts are less superposed on the channel depth
direction than for free lateral b.c., this effect increasing with
the cell depth. Finally, some patterns within burning vortices
begin to appear at the large channel depth d and the largest
flow velocity U/V0. We attribute this to secondary flows rising
with both d and U/V0.

Figure 7(b) reports the enhancement of the reduced mean
front velocity Vf /V0 by the reduced vortex flow U/V0.
Different enhancement curves are obtained depending on the
channel depth d. In particular, they exhibit at d = 4 or 6 mm
a concavity which differs from the linearity displayed for free
b.c. and which noticeably increases with d. For instance, at
U/V0 ≈ 34, increasing the channel depth from d = 2 mm
(Vf /V0 = 11.7) to d = 6 mm (Vf /V0 = 6.8) decreases the
mean front velocity Vf of about 40%. This reveals that different
vortex structures are in order depending on the aspect ratio
d/L and that their differences are sufficient for noticeably
affecting the enhancement of front propagation, even at low
vortex intensity.

This observation means that a tiny variation of the vortex
structure may yield noticeable implications on front propaga-
tion. This sensitivity reveals that inner details of the flows,
i.e., their subscale structure, is important in the large-scale
behavior of front dynamics, a fact that is overlooked in
most large-scale theories or modeling of front propagation
[8–14]. The remaining of this paper is devoted to analyze this
situation first by investigating a model capable of quantifying
the implication of b.c. on the flows and then by determining
the implications of flows on front propagation by numerical
simulation.

III. STREAM FUNCTION MODELING

We call V the flow velocity, B the magnetic field, j the
electric current density, p the fluid pressure, ρ its volumic
mass, and ν its kinematic viscosity. We denote (x,y,z) the
directions along the channel length, width, and depth (Fig. 1)
and (ex,ey,ez) the corresponding unit vectors. The vortex
intensity is still labeled U .

Assuming a planar flow in the bulk, the advective term
V · ∇V may be estimated to about U 2/L since the flow
variation scale in the flow plane is L.1 However, in case of
rigid lateral b.c., this scale decreases to about the channel
depth d near the boundaries, yielding another estimate of
about U 2/d there. On the other hand, the dissipative term
ν�V may be estimated to νU/d2 for a near Poiseuille profile.
Accordingly, the Reynolds number reads Re = Ud/ν close to a
boundary and Re′ = Ud2/νL, i.e., Re′ = Re d/L, in the bulk.
As the water viscosity is about 1 mm2/s and L = 20 mm,
one gets at d = 2 mm, Re = 1 for U = 30 mm/mn, and
Re′ = Re/10. Accordingly, in our experimental range where
U � 50 mm/mn and 2 � d � 6 mm, we may assume a
Stokes regime (Re′ 	 1), except near the boundaries at large
velocities (Re > 1). Neglecting advection terms provides a
linear relationship between the flow and its sources, that we
shall solve mode by mode.

1The advective term identically vanishes on parallel flows but does
not here because of the curvature of the flow streamlines.

Taking into account the density of Laplace forces fl =
ρj × B, we thus obtain, at a distance of order d from the
boundaries:

− ∇p

ρ
+ ν�V + j × B = 0, (6)

∇B = 0; ∇ × B = 0, (7)

∇j = 0, (8)

∇V = 0. (9)

Here B stands for the magnetic field produced by the magnets,
the one that is induced by the electric current being quite
negligible in comparison. Relations (8) and (9) stand for charge
conservation and flow incompressibility.

Taking the curl of Eq. (6) and using the divergenceless
character of j and B yields the vorticity equation

�� = ν−1(j · ∇)B = S, (10)

where � = ∇ × V denotes the vorticity and S the density of
vorticity sources.

On the other hand, relations (7) show that B is Laplacian
free: �B = 0. Assuming a uniform current density j = jex , in
agreement with parallel electrodes placed at the extremities of
the channel in the present setup, then yields �S = 0, ∇ × S =
0 and ��V = 0.

In the following, we consider a channel of width l

containing an odd number of square magnets of length L,
placed so that the channel boundaries fit with the magnet
boundaries. We place the origin at the middle of the channel
width, on a magnet boundary on the x axis and at half the
channel depth. This configuration forces the magnetic field to
be antisymmetric with respect to the y axis and symmetric
with respect to the x axis. As it is periodic with a period
2L on both the x and y axis and symmetric with respect
to all the magnet centers, this selects its Fourier modes
to be Bk,p(z)sin[(2k + 1)πx/L]cos[(2p + 1)πy/L] ; (k,p) ∈
N 2. Following (10), this yields the vorticity sources density S
to read

S =
∞∑

k=0

∞∑
p=0

Sk,p(z)cos
[
(2k + 1)π

x

L

]
cos

[
(2p + 1)π

y

L

]
.

(11)

As �S = 0, the Fourier components Sk,p(z) must satisfy

d2Sk,p

dz2
− a2

k,p

π2

L2
Sk,p = 0 (12)

with

ak,p = [(2k + 1)2 + (2p + 1)2]1/2. (13)

They thus express as exponentials. However, having placed
the magnets below the fluid layer, we shall select the sole
exponential that does not diverge at z = +∞:

Sk,p(z) = sk,p e−ak,pπz/L. (14)

We now assume that the flow is planar, V · ez = 0. This
allows us to seek it in term of a stream function ψ(x,y,z):
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V = ∇ × (ψez) = ∇ψ × ez. The vertical vorticity �z = � ·
ez then writes �z = −�hψ where �h = ∂2/∂x2 + ∂2/∂y2

denotes the horizontal Laplacian. Labeling Sz the z component
of S, one thus obtains from (10)

��hψ = −Sz. (15)

A. Boundary conditions and general solution

As Eq. (15) is linear in ψ , its solution to definite b.c.
corresponds to the sum of a particular solution ψp and of com-
plementary functions that are solutions of the homogeneous
equation

��hψ = 0. (16)

Our goal now consists in determining for each mode (k,p)
of B, the resulting mode induced on the stream function ψ .
This determination will be found below to depend on boundary
conditions. We note that it a priori requires to explicitly
express the modes of B from the distribution of its sources.
However, we shall show in Sec. III D that, among the modes
of ψ , the fundamental mode will be overdominant, leaving
the determination of the other harmonics and thus of B itself
useless.

1. Boundary conditions

Rigid b.c. take place on the solid plates of the channel, i.e.,
the top and bottom plates z = ±d/2 and the lateral faces y =
±l/2. They impose a vanishing of the velocity there, V = 0,
and thus a constant ψ on the formers and a uniform ψ on the
x axis on the latters.

In all horizontal planes, we fix at 0 the uniform value of
ψ for no flow. We then notice that, in each of them, as vortex
separatrices correspond to streamlines that are common to
counter-rotating vortices, they must keep unchanged under
the symmetry ψ → −ψ that reverses velocity and exchanges
the vortex types. Accordingly, they correspond to ψ = 0.
One of these streamlines is imposed by the channel plates
at y = ±l/2. Those that occur in the bulk are, however, a
priori unprescribed and will result from both the distribution
of the vorticity sources and the b.c. Finally, the intersection
between vortex separatrices and the top, bottom, and lateral
plates yields, by continuity, ψ = 0 on them.

In term of stream function, the b.c. thus read:
On the top and bottom faces z = ±d/2: ψ = 0,

ψ(x,y, ± d/2) = 0. (17)

At the lateral faces y = ±l/2: ψ = 0, ∇hψ = 0,

ψ(x, ± l/2,z) = 0, (18)

∂ψ

∂y
(x, ± l/2,z) = 0. (19)

At vortex separatrices: vortex separatrices stand at abscissa
xb = ±L/2 mod(L) following the forcing by the magnet lat-
tice and, in case of free b.c., on ordinates yb = ±L/2 mod(L),
by reason of symmetry. Then

ψ(xb,y,z) = 0; ψ(x,yb,z) = 0 (20)

with, because of effective free b.c. on these separatrices,
the continuity of stresses σi,j = ν/2(∂iVj + ∂jVi), or, equiva-
lently

continuity of
∂2ψ

∂x∂y
and of

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
. (21)

2. Particular solution

Following (11), a particular solution ψp of Eq. (15) can be
sought as a Fourier series:

ψp =
∞∑

k=0

∞∑
p=0

ψk,p(z)cos
[
(2k + 1)π

x

L

]
cos

[
(2p + 1)π

y

L

]

(22)

with, following (14),

d2ψk,p

dz2
− (ak,pπ/L)2ψk,p = sz

k,p

(ak,pπ/L)2
e−ak,pπz/L, (23)

where sz
k,p denotes the z component of the Fourier

coefficient sk,p.
As the right member of Eq. (23) belongs to the kernel of

the operator of its left member, a secular solution is generated.
It writes

ψk,p = − sz
k,p

2(ak,pπ/L)3
z e−ak,pπz/L. (24)

3. Complementary functions

Complementary functions are solutions of the homoge-
neous equation (16). As they belong to the kernel of a
composition of operators, secular solutions are expected.
Added to the particular solution (22) and (24), they will enable
the b.c. on the z and y directions to be satisfied.

The linearity of Eq. (16) allows us to seek its base of
solutions in terms of functions of separate variables. In
addition, as we disregard b.c. on the x axis, the expected
stream function ψ as well as its complementary function
ψc = ψ − ψp will thus be, as the particular solution ψp,
periodic in x and with the same period 2L. Accordingly, the
relevant base of solutions for complementary functions will
involve functions of the form

ψc = f (z)g(y)cos(γ x + ξ ); γ = (2k + 1)π/L; k ∈ N ,

(25)

where no phase shift ξ will be required in the following. In ad-
dition, following the symmetry of the addressed configuration
with respect to the plane (x,z), attention will be restricted to
even functions g(·).

The corresponding complementary functions are identified
in Appendix A by a systematic procedure. Only six kinds of
real complementary functions, even in x and y, are selected:

ψ1 = f1(z) cosh(γy) cos(γ x),
ψ2 = (a + bz) y sinh(γy) cos(γ x),
ψ3 = e±γ z (a + by) cos(γ x),
ψ4 = eαz cosh(βy) cos(γ x) with α2 + β2 = γ 2,

ψ5 = eαz cos(βy) cos(γ x) with α2 = β2 + γ 2,

ψ6 = cos(αz + ϕ) cosh(βy) cos(γ x) with β2 = α2 + γ 2,
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FIG. 9. Profile of the fundamental mode ψ
f

0,0 on the channel depth direction z (blue full line) and comparison with a sinusoidal shape (a)
(red dashed line) and a parabolic shape (b) (red dashed line).

where the wave numbers (α,β,γ ), the coefficients (a,b), the
phase ϕ, and the function f1(.) are real.

4. General solution

The general solution to Eq. (15) writes as the sum of
ψp and of complementary functions ψc, up to coefficients
to determine according to the b.c. to satisfy. We use below
the allowable complementary functions to satisfy sequentially
the b.c. Solutions to free or rigid b.c. will be labeled with a
superscript “f” or “r,” respectively.

B. Free lateral boundary conditions

As the free lateral b.c. (20) and (21) are naturally satisfied
by sinusoidal factors, the particular solution ψp satisfies them
both on the x and y directions. It thus only remains to satisfy
the rigid b.c. (17) on the z direction: ψ(x,y, ± d/2) = 0.

Considering a Fourier component (k,p) of ψp re-
quires complementary functions involving sinusoidal fac-
tors cos(βy) cos(γ x), with γ = (2k + 1)π/L and β = (2p +
1)π/L. Among the six kinds of complementary functions, only
one, ψ5, satisfies this criterion. The corresponding functions
involve an exponential factor eαz with α2 = β2 + γ 2 with,
therefore, two opposite values of α, yielding two independent
complementary functions. These are sufficient to satisfy the
two required b.c. at z = ±d/2 while preserving the free lateral
b.c. The resulting combination writes

ψf =
∞∑

k=0

∞∑
p=0

ψ
f

k,p(z)cos
[
(2k + 1)π

x

L

]
cos

[
(2p + 1)π

y

L

]

(26)

with

ψ
f

k,p = sz
k,p

d4

32 b3
k,p

{
− z̃e−bk,p z̃

+ebk,p sinh[bk,p(z̃ − 1)] + e−bk,p sinh[bk,p(z̃ + 1)]

sinh(2bk,p)

}
,

bk,p = ak,p

π

2

d

L
, (27)

ak,p being given by (13) and z̃ = 2z/d with −1 � z̃ � 1.
The difference between this determination and other mod-

elings [53] traces back to the variation of the eigenvalue ak,p

with the mode indexes (k,p), which is explicitly considered
here in order to satisfy the properties (7) of the magnetic field.

It appears that the functions ψ
f

k,p(z) are slightly asymmetric
following the asymmetry of the vorticity source density (14).
They thus differ from both a sinusoidal mode [Fig. 9(a)] and
from a parabolic profile [Fig. 9(b)]. This therefore reveals
a difference between the present flow induced by a vorticity
source and the Poiseuille flows induced by a pressure gradient.
In practice, however, the difference is negligible on the
fundamental mode k = 0, p = 0 [Fig. 9(b)].

C. Rigid lateral boundary conditions

In order to satisfy, for each Fourier mode k ∈ N , the
additional constraints (18) and (19) imposed on the y axes
by rigid b.c., we now seek to complement the solution (26)
by complementary functions. We thus start from the stream
function ψf (26) and (27) which satisfies rigid b.c. on the
top and bottom plates z = ±d/2 but free lateral b.c. at
y = ±l/2, and we seek to expand its Fourier amplitude ψ

f

k,p(z)
in a Fourier expansion in [−d/2,d/2] based on the modes
ψ

f

n,k,p(x,y,z), n � 1, k � 0, p � 0. This requires prolongating

the function ψ
f

k,p(z) by a periodic function ψ̃
f

k,p(z) that is C1

in [−d,d] (Appendix B). This yields

ψ
f

n,k,p(x,y,z) = ψ
f

n,k,p cos[nπz/d + ϕn] cos[(2k + 1)πx/L]

× cos[(2p + 1)πy/L], (28)

where, following the odd symmetry of the function ψ̃
f

k,p(z) at
z = ±d/2, the phase ϕn is π/2 (resp. 0) for odd (resp. even)
n and where no mode n = 0 is in order following the zero
average of ψ̃

f

k,p(z) in [−d,d].
As Eq. (15) is linear, we may seek its solution for each

modes (n,k,p) separately and independently. For this, we look
for complementary functions ψc

n,k,p(·) suitable for making

the resulting stream function ψr
n,k,p(·) = ψ

f

n,k,p(·) + ψc
n,k,p(·)

satisfy the rigid lateral b.c. at y = ±l/2. Among the set of
complementary functions involving separate variables, only
those exhibiting the same dependance on z than ψ

f

n,k,p(·), i.e., a
sinusoidal dependence, can be relevant to our issue. Following
Appendix A and Sec. III A 3, only two kinds of them satisfy
this constraint, the functions ψ1 and ψ6, with the respective
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dependance on y: cosh[(2k + 1)πy/L] and cosh[βπy/L] with
β2 = (2k + 1)2 + n2(L/d)2.

Considering the linear combination ψr
n,k,p = ψ

f

n,k,p +
a ψ1 + b ψ6 with real coefficients (a,b), provides two de-
grees of freedom to satisfy the rigid lateral b.c. (18)
and (19): ψr

n,k,p(x, ± l/2,z) = 0; ∂ψr
n,k,p/∂y(x, ± l/2,z) =

0. This yields a linear algebraic system whose solution is
reported in Appendix C. Labeling μ = l/L, it provides the
following stream function:

ψr
n,k,p(x,y,z) = ψ

f

n,k,p cos[nπz/d + ϕn]

× cos[(2k + 1)πx/L] × {cos[(2p + 1)πy/L]

+ (−1)p(2p + 1) ψ̃n,k,μ(y/L)}. (29)

The difference with free b.c. is thus conveyed by the uni-
variate function ψ̃n,k,μ(y/L) whose expression is reported in
Appendix C.

When the channel width is taken large compared to
the magnet width, i.e., when μ � 1, the function ψ̃n,k,μ(·)
decreases as e−(2k+1)π |l/2−y|/L. As expected, it thus only serves
close to the lateral faces y = ±l/2 to satisfy the rigid b.c. and
leaves in the bulk a stream function close to the expression
found for free b.c.

The connection of Fourier modes to the vorticity source S
is made by the Stokes vorticity equation (15). Both the modes
ψ

f

n,k,p(·) and ψr
n,k,p(·) are excited by the same Fourier mode

Sz
n,k,p(·) of the vertical component Sz of S:

Sz
n,k,p(x,y,z) = Sz

n,k,p cos[nπz/d + ϕn] cos[(2k + 1)πx/L]

× cos[(2p + 1)πy/L], (30)

yielding the Fourier amplitude:

ψ
f

n,k,p = −Sz
n,k,p(L/π )4 [(2k + 1)2 + (2p + 1)2 + n2]−1

× [(2k + 1)2 + (2p + 1)2]−1. (31)

D. Fundamental mode

Returning to the expression of the Fourier amplitudes
ψ

f

k,p(z) (27) relevant to our issue, we notice that
it quickly decreases with k and p. In particular,
ψ

f

k,p(0) = sz
k,p b−3

k,p tanh(bk,p) d4/32 with sz
k,p usually

decreasing with k and p [in particular, we notice that it vanishes
at infinite (k,p) when Sz is a C1 function]. Accordingly
ψ

f

k,p(0) decreases at least as the cube of k and p with already

ψ
f

1,0(0)/ψf

0,0(0)<5−3/2 tanh
√

10/ tanh
√

2<0.1. This allows
to restrict attention in the following to the fundamental mode

FIG. 10. Stream function of the fundamental mode (n,k,p) =
(1,0,0) for free b.c.: contour plot of ψ

f

1,0,0 in the middepth plane
(x,y,0). Lines correspond to increased level of ψf of amplitudes i/8,
1 � i � 8.

(k,p) = (0,0) and to neglect harmonics. In addition, we notice
that the Fourier expansion of ψ

f

0,0(z) is dominated by the
fundamental mode n = 1:

ψ
f

0,0(z) = 1.03cos[πz/d] − 0.04cos[3πz/d]

− 0.03sin[2πz/d] + 0.sin[3πz/d]

+ 0.004sin[4πz/d] + · · · , (32)

the amplitude of the mode n = 3 being about 4% of that
of the fundamental while that of the mode n = 2, about 3%
of the fundamental, reflects the slight asymmetry of ψ

f

0,0(z).
Here too, this legitimizes to neglect higher harmonics n > 1.
Altogether this yields us to consider the fundamental mode
(n,k,p) = (1,0,0) as a relevant approximate solution with the
corresponding expressions:

For free b.c. on the y axis:

ψ
f

1,0,0(x,y,z) = ψ
f

1,0,0cos[πz/d] cos[πx/L] cos[πy/L].

(33)

This is the solution usually adopted in theories or modeling
[9–13,46,47]. Its streamlines are depicted in Fig. 10.

For rigid b.c. at y = ±l/2:

ψr
n,k,p(x,y,z) = ψ

f

1,0,0 cos[πz/d] cos[πx/L]

{
cos[πy/L]

+ (−1)q
cosh[βπ μ/2] cosh[π y/L] − cosh[βπ y/L] cosh[π μ/2]

cosh[βπ μ/2] sinh[π μ/2] − β sinh[βπ μ/2] cosh[π μ/2]

}
(34)

with μ = l/L = 1 + 2q, q ∈ N , and β2 = 1 + (L/d)2.
In particular, for a channel involving a single vortex

between its lateral boundaries, as in the present experiment,

one has μ = 1 and q = 0. The corresponding streamlines for
the fundamental mode (n,k,p) = (1,0,0) are then depicted in
Fig. 11 for different aspect ratios d/L.
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FIG. 11. Stream function of the fundamental mode (n,k,p) = (1,0,0) for rigid b.c. on the y axis: contour plot of ψr
1,0,0 in the middepth

plane (x,y,0). Lines correspond to increased level of ψr of amplitudes i/8, 1 � i � 8. (a) L/d = 20/2 = 10; (b) L/d = 20/4 = 5; (c)
L/d = 20/6 = 10/3. Notice the streamlines similarity between (a) (rigid b.c. and small aspect ratio) and Fig. 10 (free b.c.), despite the different
b.c. This contrasts with the increasing elliptic form of streamlines as L/d decreases from (b) to (c).

Interestingly, one notices that, for free b.c., the stream
function (33) is independent of the aspect ratio d/L, whereas
for rigid b.c. it actually depends on it, following the dependence
of the parameter β on d/L (34). Accordingly, one may expect,
for free b.c., a constant vortex structure independent of the
aspect ratio d/L and, for rigid b.c., a vortex structure varying
with this aspect ratio.

The dependence of the stream function with the aspect
ratio d/L is noticeable in Fig. 11 in the streamline ellipticity
which increases with it. Also, one notices the striking similarity
between streamlines for free b.c. (Fig. 10) and for rigid b.c.
at small aspect ratio d/L = 2/20 [Fig. 11(a)]. As boundary
layers in a Hele-Shaw cell scale with d at fixed L, rigid b.c.
yield an effective free b.c. at the end of boundary layers but for
a reduced vortex size. For small d/l, this reduction is minor
so that the vortex looks similar to that obtained for free b.c.
In contrast, for larger d/L, the reduction is large enough for
making the vortex streamlines noticeably elliptic.

IV. SIMULATION OF FRONT PROPAGATION

In agreement with the absence of noticeable three-
dimensional effects in the experiment and with the usual
assumption of planar flows in Hele-Shaw cells, we intend
to simulate front propagation in a plane stirred by a two-
dimensional flow satisfying the above flow modeling. The
main objective of the simulation will be to recover the
effects of b.c. on front propagation so as to point out their
crucial influence on velocity enhancement. As the actual
front propagation is driven in the plane where the flow is
maximal, i.e., the middepth plane z = 0 up to the slight
asymmetry pointed out in (27), the stream functions at z = 0,
ψf (x,y,0), and ψr (x,y,0) will be considered as those of the
two-dimensional flow used in the following.

To simulate front propagation, we do not need to detail the
sharp transition between burnt and fresh domains but only its
spatio-temporal evolution. We may thus skip the simulation
of the concentration fields by reaction-diffusion-advection to
focus on a simulation of the advance of the transition between
the two domains. This corresponds to turning to a kinematic

simulation of front propagation. In addition, to avoid the
geometrical complexity inherent to a moving line, we will
not simulate the line dynamics itself but the dynamics of the
domains that it separates. These dynamics will be based on
two transport phenomena: an advective process modeled by
a Lagrangian transport at velocity V and a contamination
process at the proper front velocity V0 modeled by simple
lattice dynamics.

The advantage of the simulation will be to provide front
propagation at a sufficient accuracy to discuss boundary effects
while escaping geometric complexity. The disadvantage will
be to overlook the front thickness and the effect of large
curvature. However, the former being smaller than any other
characteristic length scale (λ 	 d) and the relevant curvature
radii ρ being large compared to the front thickness in the
experiment (ρ � O(d) � λ), this bias will induce no prejudice
on the modeling of front propagation here.

As the transition between burnt and fresh domains is sharp,
they both refer to uniform concentrations to which discrete
values, 1 and 0 respectively, will be assigned. The objective of
the simulation is then to implement both their advection by the
flow field V and the contamination of one by the other at speed
V0. Simulating this evolution looks similar to implementing the
so-called G-equation [1] in which a continuous field G relating
a reacted domain where G = 1 to an unreacted one where
G = 0 undergoes the dynamics DG/Dt = V0|∇G|, D/Dt

denoting the Lagrangian derivative attached to the flow field
V. However, the difference is that the field considered here is
discrete, so that its evolution turns out to be kinematic.

We describe below the mapping used to implement this
kinematic model on a lattice.

A. Mapping

A lattice is designed to simulate a chain of n vortices of
width L extended over distances Lx = nL, Ly = L in the x

and y direction. As the lowest velocity is V0, the elementary
time and spatial steps �t and �x are linked by �x =
V0�t . The simulation of the vortex chain therefore requires
(Lx/�x,Ly/�x) pixels. Choosing �t = 1 s, this corresponds
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with V0 = 1 mm/mn and L = 20 mm to (1200n,1200) pixels.
The kinematic evolution of domains during an elementary time
step �t is achieved by successively applying two mappings,
one corresponding to advection and the other to contamination.

Advection of a pixel by the flow V on a time step �t is
achieved by translating its position along a streamline at speed
V . A forward Euler method was preferred to a Runge-Kutta
method, which appeared more time costly without noticeable
improvement. However, to better take into account streamlines
curvature, the time step �t has been decomposed into V/Vo

substeps on which the streamline direction, the flow intensity,
and the resulting advection have been computed. The final
position hence obtained is finally projected on the nearest pixel
of the discrete lattice.

Altogether it appeared that the advection mapping alone
conserved trajectories on streamlines at a quite satisfactory
accuracy. For instance, at the vortex medium streamline
ψ = 1/2, the variation of ψ was only δψ = 7.5 × 10−4 after
a vortex turnover time T = πL/U and even smaller on more
external streamlines. Meanwhile, as Vf ≈ U/3 for U > 5V0

(see Sec. IV B), the front head then already reached the next
vortex: Vf T ≈ π/3L > L. This ensures that the accuracy
in the advection scheme is quite sufficient for adequately
modeling front propagation in the vortex chain. On the other
hand, care has been taken to address sufficiently large flow
velocities to make the advection distance crossed over the
time step �t large enough compared to the pixelization so as
to ensure a weak enough relative uncertainty. In practice, for
the lowest bound considered, U/V0 = 10, the distance crossed
at each time step, about 10 pixels, implied a relative accuracy
on the trajectory of one half pixel over 10, i.e., of 5%.

Contamination by reaction around a given burnt pixel on
a time step �t is achieved by changing its neighbors into
burnt pixels, whatever their actual state. This procedure is of
course redundant in most of the burnt domain where neighbor
pixels are already burnt and only efficient at its boundary
where it determines the front advance into the fresh domain.
It is, however, simple to handle, time saving, and provides the
advantage of not having to consider the domain boundary, i.e.,
the front, specifically.

As the spatial and temporal steps are linked by �x = V0�t ,
the propagation velocity is a priori V0. However, as the
mapping involves a square lattice, it does not respect the
intrinsic isotropy of the actual contamination process by
reaction diffusion. To better approach isotropy on a sufficiently
short delay to accurately simulate front propagation, we
mix contamination along the lattice axis directions with
contamination on the lattice diagonal directions. We thus apply
two kinds of mappings, one Ma along the axis and the other
Md along the diagonal (Fig. 12), each of them occurring
on the elementary time step �t . One has nevertheless to
take into account that contamination along diagonals yields
a propagation

√
2 times quicker than along the lattice axis.

Therefore, over a period of 3�t , the mapping Ma is applied
twice and the mapping Md once, in the following order:
Ma ⊗ Md ⊗ Ma . In this way, the difference of propagation
with respect to directions is reduced while preserving the
propagation velocity V0. Altogether, without flow, the iteration
of the three mappings yields the contamination from a pixel to

FIG. 12. Propagation mapping starting from a single burnt pixel
P at time t0. To approach isotropy on the square lattice, propagation
on axes (mapping Ma) and on diagonals (mapping Md ) are alternated
at each time steps ti = t0 + i�t . Mappings at t1: MaP ; at t2: Md ⊗
MaP ; at t3: Ma ⊗ Md ⊗ MaP .

be much more isotropic than would be obtained with a single
mapping (Fig. 12).

The combined kinematics given by advection and contam-
ination is obtained by applying successively the advection
mapping and the contamination mapping, care being taken
to alternate the elementary mappings Ma , Md , as reported
above. The natural change of directions of domain boundaries
provided by advection is then found to also improve the
isotropy of contamination at large time. The initial condition
applied was a line of burnt pixels on the width of the
vortex chain, at one of its extremities. It, however, proved
to be unessential for front propagation on distances of several
vortices (Fig. 13).

The mean front velocity is accurately measured as the
mean velocity of progression of the burnt domain on the
chain direction over an integer number of vortices. In practice,
the numerical model has been applied from U/V0 = 10 to
100 for different kinds of flow fields reflecting different b.c.
and different vortex aspect ratios d/L. The lowest bound
U/V0 = 10 ensures a sufficient accuracy of the advection
scheme, and the largest bound U/V0 = 100 allows the system
to remain close to the Hele-Shaw regime (Re′ = 3 for d = 6
mm and U/V0 = 100 here).

B. Front propagation

Numerical simulations are worked out for flows corre-
sponding to the fundamental modes for free (33) or rigid (34)
lateral b.c. They qualitatively reproduce the front evolution
found in experiment and apparently show quite similar
front trajectories for both b.c. and various depths (Fig. 13).
See the movie “FreeBC-Simulation.mov” [51] reporting a
simulation performed at U/V0 = 60 and free b.c. and the
movie “RigidBC-Simulation.mov” [51] reporting a simulation
performed at U/V0 = 60, d = 6, L = 20 and rigid b.c.. We
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FIG. 13. Simulation of front propagation for free or rigid b.c. Burnt (resp. fresh) medium appears in white [resp. in blue (black)]. Columns
correspond to free b.c. (left), rigid b.c. with d = 2 mm, L = 20 mm (center), and rigid b.c. with d = 6 mm, L = 20 mm (right). Lines correspond
to reduced vortex intensity U/V0 = 20 (above) and U/V0 = 60 (below). The differences are tiny and mainly concern the distance between the
front and the lateral boundaries. These distances are similar for free b.c. and rigid b.c. with d = 2 mm, but increase for d = 6 mm.

address below the quantitative outcomes of these simulations
regarding front velocity.

1. Free lateral boundary conditions

Figure 14(a) shows the enhancement of the effective front
velocity Vf by the flow for free b.c.

The full points refer to the kinematic simulation worked
out here. No dependence with respect to the channel depth d

is in order since the stream function (33) of the flow does not
involve it. No dependence with respect to the vortex width L

is in order either, since the stream function involves spatial
variables nondimensionalized by L.

The full line interpolates the data provided by the numerical
simulations of the advection-reaction-diffusion dynamics in
the same flow and for the same b.c. [12]. Interestingly, both
kinds of simulation agree remarkably. This confirms that, in
the present regime of advection-reaction diffusion, the front
thickness is not a sensitive parameter and may be overlooked.
This also validates the basement of the kinematic simulation,
in particular its advection and contamination schemes, as well
as the relevance of its basic time scale and resolution. In
particular, Fig. 15 shows the implication of a decrease of the
resolution on front propagation below the 1200 pixels per
length L used here. Only below a much smaller resolution of

120 pixels per length L do we notice a significant effect on
velocity enhancement.

Finally, one notices the large linearity of the relationship
between the front effective velocity Vf and the flow velocity U .

2. Rigid lateral boundary conditions

Figure 14(b) displays the results of the simulation of front
propagation for the fundamental flow mode (34) relevant to
rigid b.c. As the stream function then depends on the ratio
d/L through the parameter β, considering different channel
depths d for a given vortex width L makes sense. We then
observe that the larger d/L, the weaker the effective front
velocity Vf . This echoes the similar dependence on d found
in the experiment for rigid b.c. However, the effect is weaker
here than in the experiment [Fig. 7(b)]. In particular, at the
boundary of the experimental range, U/V0 = 40, the relative
variation of Vf with d is about 10% whereas it is about 55%
in experiment.

The linear fit of data obtained for free b.c. has been
reproduced on Fig. 14(b) for comparison. It appears that
instead of the linear trend found for free b.c., the enhancement
curve is concave: the rigid b.c. lower the effective front velocity
Vf significantly. Here too, this behavior is similar to that found
in experiment, but weaker.

FIG. 14. Kinematic simulation of front propagation for the fundamental modes (33) and (34). Front velocity enhancement for free and rigid
b.c. (a) Free b.c.: Full points correspond to the present kinematic simulation of front propagation. The full line interpolates data obtained from
simulation of advection-reaction-diffusion dynamics for the same flow and the same b.c. [12]. (b) Rigid b.c.: The full line refers to the fit of the
data obtained in panel (a) for free b.c. It is reported for comparison.
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FIG. 15. Implication of resolution on the kinematic simulation of
mean front propagation for free b.c.

V. DISCUSSION

We analyze the variations of velocity enhancement with
the channel depth and the boundary conditions (b.c.) and then
comment on the sensitivity of the front propagation to the
vortex structure.

A. Variations with the channel depth and the b.c.

Figure 16 gathers the evolution of front velocity Vf with
vortex intensity U obtained in experiment and lattice dynamics
simulation for free [Fig. 16(a)] and rigid [Fig. 16(b)] b.c.
Experiment and simulation agree on the following: for free
b.c, on the same linear rise of Vf with U , independently of the
channel depth d; for rigid b.c. on a concavity of the relation
between Vf and U and its dependence on the channel depth
d. This concavity means that the change of vortex structure
induced by turning the b.c. from free to rigid weakens the
relative enhancement of front velocity by flow advection. The

independence (resp. dependence) with respect to the channel
depth d echoes the same independency (resp. dependency)
found analytically for the dominant mode of their stream
function (33) [resp. (34)].

This overall agreement between experiment and simulation
on the salient features of the velocity enhancement by vortex
advection supports the modeling of vortices by planar flows
and the analytical solution for their dominant modes derived
in Sec. III.

However, for rigid b.c., front velocities appear weaker in
simulation than in experiment for the largest channel depth and
the largest vortex intensities U/V0 > 30. This effect may be
due to phenomena related to deviations from the Stokes regime
and especially to secondary flows (see Appendix D). These
flows are induced by the inertial term of the Navier-Stokes
equation and result from the part of it that is not compensated
by a pressure gradient. Their sources are actually localized here
close to the rigid boundaries, either the lateral or the top and
bottom boundaries. They begin to be noticeable when the flow
departs from the Stokes approximation, i.e., in our velocity
range, mainly for d = 6 mm and either U/V0 = 15 at lateral
boundaries or U/V0 = 30 at top and bottom boundaries. They
may then generate secondary flows that would break the planar
flow assumption and might explain the additional depletion of
velocity observed at d = 6 mm in the experiment.

B. Sensitivity of front propagation to vortex structure

Following the large dissipation inherent to Hele-Shaw
cells, the change of b.c. confines flow modifications to the
vicinity of boundaries. Yet these local changes suffice to
significantly affect the effective front velocity, making its
rise with vortex intensity turn form linear to concave and
from an independence to a dependence on the channel depth.
This expresses a large sensitivity of front propagation to the
flow details. This conclusion is also supported by the possible
depletion of front velocity induced by secondary flows at the
largest flow intensity and channel depth, since their amplitude

FIG. 16. Comparison between kinematic numerical simulation and experiment for free b.c. (a) and rigid b.c. (b). (a) Free b.c.: the kinematic
simulation is independent of the channel depth. The full line interpolates its data. (b) Rigid b.c.: the kinematic simulation depends on the
channel depth. The thin lines interpolate its data for d = 2 mm (full line), d = 4 mm (dashed line), d = 6 mm (dotted line).
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is nevertheless faint. We address below the nature and the
implications of this sensitivity.

1. Origin of the sensitivity: A large-scale separation

The origin of this sensibility lies in the large scale separation
between the front thickness λ and the vortex size L. Following
it, the front interacts with local parts of the vortex and can
then probe its inner structure. In particular, during vortex
crossing, the front visits some definite zones. Should the
flow be modified in them, the front propagation could be
noticeably altered, whereas the overall flow modification
would nevertheless seem tiny. Accordingly, it is the local nature
of the front with respect to the vortex that makes it sensitive to
localized changes of the flow. This gives rise to the sensitivity
of front propagation to the flow structure.

In comparison, the diffusion of passive tracers in the same
vortex flows appears to refer to a different nature since
diffusion spreads tracer concentrations over distances much
longer than the vortex scale. This yields a large homogeneity of
tracers within each vortex following which the effective tracer
diffusion from vortex to vortex depends on their concentration
level in vortices and on the structure of vortex separatrices.
Therefore, local changes of the vortex flow elsewhere than on
these separatrices would negligibly modify the concentration
field in a vortex and thus the diffusion dynamics. The absence
of scale separation between the diffusion field of passive
tracers and vortices thus prevents their diffusion over the vortex
chain to be sensitive to the flow structure.

The implication of the local nature of front propagation
on front velocity has been explored in a model of trajectory
optimization [16,17]. It has been found that the quickest way
for a front to cross a vortex was to be advected on a streamline
belonging to the boundary layer but close to the quickest
streamline [16,17]. Then the front could take benefit from
both a quick advection from one side of the vortex to the other
and a short distance to the next separatrix, which has to be
crossed at its slow proper velocity V0. Of course, should the
boundary layer be modified by a change of b.c. or by a rise
of channel depth, the location of the quickest streamline and
thus of the optimal trajectory would be affected, as well as the
resulting effective front velocity.

The features of this quickest trajectory help in understand-
ing that, among the different configurations of rigid b.c.,
the one which provides the closest velocity enhancement to
that of free b.c. corresponds to the thinner channel depth,
d = 2 [Fig. 16(b)]. At first sight, this statement might appear
somewhat paradoxical since the most dissipative configuration
(smallest d) provides the closest outcome to the less dissipative
one (free lateral b.c.). It may, however, be easily explained from
the link between effective velocity and quickest trajectories.
Whereas the quickest streamline lies on the separatrix for free
b.c., it is reported at some distance inward for rigid b.c. As
this distance increases with d, it is the smallest for the most
dissipative configuration, d = 2 here. This configuration will
therefore involve the closest front trajectory to that displayed
for free b.c., and thus the closest effective front velocity to it.

When open flows are added to the vortex array [54],
we finally notice that a link between spatial structure and
sensitivity may be guessed. In some regimes, the front actually
appear frozen in the vortex frame. Its geometry then determines

the effective net burning rate and thus appears as the analog of
the mean front velocity in closed flows. The particular structure
of this so-called burning invariant manifold [55] results from
a fine equilibrium between propagation by reaction diffusion
and advection by the flow. Its complex geometry may then be
guessed to sensitively depend on the vortex structure, thus pro-
viding an analog of the dynamical sensitivity evidenced here.

2. Implications

The sensitivity of large-scale front propagation to the small-
scale structure of vortices questions the objective of previous
modelings that aimed at relating the effective front velocity Vf

to variables at the vortex scale only, e.g., U . This goal consists
in providing a universal relationship for describing propagation
in vortex arrays, independently of the vortex structure, whereas
variations of Vf of 40% are displayed here by simply changing
the lateral boundary conditions (Fig. 16). In contrast, our study
shows that, following the large-scale separation between front
and vortex, all subscales cannot be removed by coarse-graining
or by renormalization. Accordingly, models of large-scale
front propagation should obtain universal relationships, but
restricted to classes of vortex flows.

On the practical side, this sensitivity might open the way
to strategies for enhancing or lowering front propagation by
acting at definite parts of a vortex instead than on its whole. In
particular, imposing lateral boundary conditions at a channel
depth of d = 6 mm and at large vortex amplitude, U/V0 > 30,
proves to be equivalent here to lowering the vortex intensity
by nearly a factor 2 [Fig. 16(b)]. This might find applications
on epidemics, fire burning, or chemistry in microfluidics for
instance.

Regarding multiscale flows, the sensitivity of large-scale
propagation to subscale flows yields to reconsider the rele-
vance of renormalization procedures. One may expect their
validity to be restricted to some classes of imbricated flows,
yielding, for instance, a difference between turbulent flows in
which subscales permanently evolve and laminar flows where
they do not. We seek to address this issue in the near future in
the same experiment setup.

VI. CONCLUSION

We have studied front propagation in a periodic lattice of
vortex flows and addressed the dependence on the vortex struc-
ture of the effective front velocity at a large scale. For this, we
considered three channel depths d and two kinds of boundary
conditions (b.c.): free b.c. in an extended lattice and rigid b.c.
in a vortex chain. Front propagation was studied both experi-
mentally using an athermal autocatalytic reaction in a solution
stirred by electroconvective flows, and by kinematic simulation
based on flow solutions derived in the Stokes regime. Alto-
gether, our combined experimental, analytical, and numerical
study thus provides the first systematic and comparative
analysis of front propagation for different boundary conditions.

Solutions to planar electroconvective flows in the Stokes
regime were obtained in term of Fourier series whose
fundamental mode appeared to be dominant. It showed no
modification of the planar flow structure with the channel
depth d for free b.c. but a boundary layer of order d for rigid
ones. Accordingly, the flow modifications when changing the
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b.c. were only local, close to the channel boundaries, and tiny
at the vortex scale. Nevertheless, they induced a noticeable
reduction of front velocity both in experiment and in simulation
according to which the vortex structure is as important as the
vortex intensity regarding the effective front propagation. This
reveals a sensitivity of front propagation to the fine details of
vortices and thus to their subscales.

This sensitivity proved to be larger in experiment than
in simulation. As the front velocity for free b.c. was well
recovered by simulation, we attribute this difference to the
development of secondary flows for rigid b.c., following
the rise of inertial terms. The fact that front propagation
enabled the detection of secondary flows at low Reynolds
numbers, Re < 4, prior to any other noticeable manifestation,
emphasizes its sensitivity to flow details.

On physical grounds, this sensitivity relies on the scale
difference between the front and the flow structure, the front
thickness λ being quite smaller than the vortex scale L. This
allows the front to take advantage of tiny flow features at its
proper scale λ to enhance its propagation. On the practical side,
this sensitivity might be used to diagnose some fine features of
flows from the propagation of fronts in them or to enhance or
weaken front propagation by tiny modifications of the vortex
flow in which fronts propagate. On the fundamental side, it
makes a definite difference with passive tracers for which the
scale of their diffusion field is comparable to that of vortices.

Regarding scale analysis, the sensitivity of front propaga-
tion to subscales revealed in this single-scale study denies
the emergence of a universal solution for front propagation in
stirred flows, except when the flow structure is fixed, as found
here for free b.c. On a multiscale context, where different
vortex scales might be imbricated, this feature raises the
question as to whether the sensitivity to subscales will persist
or whether universality will be recovered by statistical effects
in a scale cascade.
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APPENDIX A: COMPLEMENTARY FUNCTIONS

We look to solutions to the unforced Stokes vorticity
equation:

��hψ = 0. (A1)

These solutions will be used to complement the particular
solution ψp (22) and (24) so as to satisfy rigid b.c. on the
directions z and y. However, in the present configuration, the
periodic forcing of the magnet lattice in a channel whose ends
are overlooked yields the expected stream functions ψ for both
free and rigid b.c. to be periodic in x, with period 2L. As the
complementary functions ψc = ψr − ψ , they will therefore

involve a Fourier expansion involving sinusoidal modes on x,
with wave numbers (2k + 1)π/L, k ∈ N . Following the lin-
earity of Eq. (A1), we shall then determine the complementary
function for each of these Fourier modes independently.

The linear differential equation (A1) admits a base of solu-
tion involving products of complex exponentials and, because
of possible secularity, of monomials: ψc ≡ ek.r ze yf xg , k ∈
C3,r = (x,y,z),(e,f,g) ∈ R3. However, the sinusoidal depen-
dence on x involved here requires kx = iγ, γ ∈ R, and g = 0.
Calling for real solutions then yields the corresponding basic
modes to be products of circular functions, real exponentials,
or monomials. We enlarge this quest below by seeking basic
solutions involving separate variables:

ψc = f (z)g(y)cos(γ x); γ = (2k + 1)π/L k ∈ N . (A2)

As Eq. (A1) involves a composition of operators, secular
terms in f (·) and g(·) are expected. Finally, following the
symmetry of our setup with respect to the (x,z) plane, attention
will be restricted to even functions g(·).

Application of the Laplacian operator yields

�hψ = f (z)cos(γ x)G, (A3)

G = g′′ − γ 2g, (A4)

��hψ = [(f ′′ − γ 2f )G + f G′′]cos(γ x). (A5)

Equation (A1) then provides the following constraint on
functions f (·) and G(·):

(f ′′ − γ 2f ) G = −f G′′, (A6)

which yields the following alternatives:
(1) G = 0,∀f

Equation (A4) then selects g(y) = cosh γy

(2) G �= 0
(a) G′′ = 0

Function g(·) writes g(y) = a + by.
Function f (·) then satisfies f ′′ = γ 2f and thus

writes f (z) = e±γ z.
(b) G′′ �= 0

As f (·) and G(·) are functions of different variables,
there exists a factor δ2, positive or negative, such that

G′′ = δ2G,

f ′′ = ε2f

with ε2 = γ 2 − δ2. The solutions read as follows:
(i) ε = 0

Then f (·) = a + bz and G(y) = cosh(γy).
Accordingly, G appears as a resonant forcing term
in relation (A4). It thus generates a secular term
g(y) = y sinh(γy).
(ii) ε �= 0

One obtains f (z) = e±εz and G(y) = cosh(δy).
As δ �= γ , G appears as a nonresonant forcing term
in relation (A4). It then generates a normal mode
g(y) = cosh(δy).

Depending on the sign of δ2 = ±β2 and ε2 = ±α2, either
circular or exponential functions are generated. Altogether, one
finally obtains the following base of complementary functions:

ψ1 = f1(z) cosh(γy) cos(γ x),
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ψ2 = (a + bz) y sinh(γy) cos(γ x),
ψ3 = e±γ z (a + by) cos(γ x),
ψ4 = eαz cosh(βy) cos(γ x) with α2 + β2 = γ 2,

ψ5 = eαz cos(βy) cos(γ x) with α2 = β2 + γ 2,

ψ6 = cos(αz + ϕ) cosh(βy) cos(γ x) with β2 = α2 + γ 2,

where the wave numbers (α,β,γ ), the coefficients (a,b), the
phase ϕ, and the function f1(·) are real.

Following (15) and (A1), all these stream functions refer
to no vorticity sources. In addition, as the stream function ψ1

satisfies �hψ1 = 0, it refers to no vertical vorticity. On the
other hand, as the remaining stream functions ψi,2 � i � 6,
satisfy �hψi �= 0, they generate some vertical vorticity, which
corresponds to that induced by the rigid lateral boundaries.

APPENDIX B: FOURIER EXPANSION OF ψ
f

k, p(z)

We seek a Fourier expansion of the Fourier amplitude
ψ

f

k,p(z) (27), which is defined in the interval [−d/2,d/2]. For
this, we wish to prolongate it so as to make it periodic prior to
expanding it in a Fourier series.

As ψ
f

k,p(z) vanishes at z = ±d/2, d may be considered as
a multiple of its half-period. This allows us to prolongate it
over an interval of length 2d and then to duplicate it so as to
make it periodic. This is obtained by considering the function
ψ̃

f

k,p(z), which is odd both in [−d,0] with respect to −d/2

and in [0,d] with respect to d/2 and which is equal to ψ
f

k,p(z)
in [−d/2,d/2]. The vanishing and the odd symmetry of
function ψ̃

f

k,p(z) at z = ±d/2 ensures both its continuity and
that of its derivative, as well as the vanishing of its average
on [−d,d]. Being C1, ψ̃

f

k,p(z) will then be equal to its Fourier

series in ] − d,d[ and thus in [−d/2,d/2], where it reduces
to ψ

f

k,p(z).

The corresponding Fourier modes ψ
f

n,k,p(x,y,z) are made
explicit in relation (28). They then yield the Fourier modes
Sz

n,k,p(·) (30) of the vorticity source Sz (11) and (14). We then

notice that, as the modes ψ
f

n,k,p(·) or ψr
n,k,p(·), all the modes

Sz
n,k,p(·) vanish at z = ±d/2, whereas the vorticity source Sz

does not. This discrepancy comes from the fact that the Fourier
series based on the modes Sz

n,k,p(·) corresponds to that of the
vertical vorticity source Sz prolongated in the interval [−d,d]
by the same method of odd symmetry than that applied to the
stream function. However, as Sz does not vanish at z = ±d/2,
its prolongation involves a discontinuity at these points. This
forbids equality between Sz and its Fourier series at these
discontinuity points.

APPENDIX C: STOKES SOLUTION FOR RIGID
BOUNDARY CONDITIONS

We consider the linear combination ψr
n,k,p = ψ

f

n,k,p +
a ψ1 + b ψ6 with real coefficients (a,b) and seek which of
their values yields the rigid lateral b.c. (18) and (19) to be
satisfied. These b.c. write

ψr
n,k,p(x, ± l/2,z) = 0;

∂ψr
n,k,p

∂y
(x, ± l/2,z) = 0. (C1)

Satisfying them yields the linear algebraic system

a cosh[(2k + 1)π/2 μ] + b cosh[βπ/2 μ] = 0, (C2)

−(2p + 1)sin[(2p + 1)π/2 μ] + a(2k + 1) sinh[(2k + 1)π/2 μ] + bβ sinh[βπ/2 μ] = 0, (C3)

where μ = l/L.
Considering, in agreement with the experimental configuration, a channel width l containing an odd number of vortices (or

equivalently, to a phase shift, an odd number of magnets), we get μ = 1 + 2q, q ∈ N .
Noticing that sin[(2p + 1)π/2 μ] = (−1)p+q , the solution to the algebraic system (C3) yields the stream function ψr

n,k,p:

ψr
n,k,p(x,y,z) = ψ

f

n,k,p cos[nπz/d + ϕn] cos[(2k + 1)πx/L] × {cos[(2p + 1)πy/L] + (−1)p(2p + 1)ψ̃n,k,μ(y/L)}, (C4)

where the difference with the solution for free b.c. is provided by the function ψ̃n,k,μ(y/L):

ψ̃n,k,μ(y/L) = (−1)q
cosh[βπ μ/2] cosh[(2k + 1)π y/L] − cosh[βπ y/L] cosh[(2k + 1)π μ/2]

(2k + 1) cosh[βπ μ/2] sinh[(2k + 1)π μ/2] − β sinh[βπ μ/2] cosh[(2k + 1)π μ/2]
. (C5)

Notice that, in the combination yielding this stream func-
tion, ψ

f

n,k,p(·) stands as the solution to the vorticity source for
free lateral b.c. whereas ψ1 and ψ6 refer to solutions to no
vorticity source. Among them, ψ1 induces no vertical vorticity
since �hψ1 = 0. In contrast, ψ6 which satisfies �ψ6 = 0
generates some vertical vorticity equal to −�hψ6 = ∂2ψ6/∂z2

and thus to −n2(π/d)2ψ6. This corresponds to the vorticity
induced by the rigid lateral boundaries.

APPENDIX D: SECONDARY FLOWS

Secondary flows are induced by the irrotational part of
the inertial term of the Navier-Stokes equation, i.e., by the

part that can therefore not be compensated by the pressure
gradient. Their sources appear close to boundaries since the
velocity shrinks to zero rapidly whereas the pressure gradient
remains constant, thus yielding a sudden disequilibrium in
the Navier-Stokes equation. Their intensity may thus be
expected to be noticeable when inertial terms get no longer
negligible with respect to dissipative ones, i.e., when the
Stokes approximation begins to be invalid. This criterion
corresponds to a Reynolds number reaching a value of order
unity, the appropriate length and velocity scales used to built
it depending on the flow zones that are addressed. As evoked
in Sec. III, two kind of zones need to be distinguished: the
vicinity of lateral boundaries and the bulk.
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Close to lateral boundaries, i.e., at a distance of the order of
the channel depth d, all characteristic flow scales are of order
d. Then the Reynolds number writes Re = Ud/ν so that, with
ν = 1 mm2/s, it turns out to be unity for U = 30 mm/mn
at d = 2 mm, U = 15 mm/mn at d = 4 mm, and U = 10
mm/mn at d = 6 mm. In our experimental range U � 50
mm/mn, a departure from the Stokes regime may thus be
feared close to boundaries. However, to our knowledge, no
detailed study of its implication has been achieved in our
configuration made of straight lateral boundaries and circular
streamlines. Nevertheless, a detailed study in an analogous
configuration involving a uniform flow encountering a bumpy
boundary in a Hele-Shaw cell revealed the generation of
secondary flows localized in the vicinity of the bump [56].
By analogy, one may expect here secondary flows to be
induced within the boundary layers of the lateral boundaries,
especially at d = 6 mm and for values of U/V 0 of several
tenths.

In the bulk, the Stokes regime ends when the boundary
layers induced by the horizontal plates separate. This

corresponds to a transition from a Poiseuille profile to a flatter
profile. As the scale of variation is L in the horizontal plane
(x,y) and d on the direction z, one gets |V · ∇V| ≈ U 2/L,
|ν�V| ≈ νU/d2 and the Reynolds number Re′ = Re d/L =
Ud2/Lν. It then reaches unity for U = 300 mm/mn for d = 2
mm, U = 75 mm/mn for d = 4 mm, and U = 33 mm/mn
for d = 6 mm. Then, an inviscid zone progressively emerges
around the middepth of the channel. Inertial terms are
then no longer equilibrated by dissipative terms but by
a pressure gradient. However, in the vicinity of top and
bottom boundaries, the sharp decrease of velocity and thus
of dissipation, together with the quasiconstancy of pressure,
yields an imbalance which generates a secondary flow. This
mechanism, analogous to the Ekman pumping [57], generates
vertical flows which may perturb front propagation. In our
velocity range, these secondary flows are too weak at small
or moderate channel depths, d = 2 or 4 mm, but may be
noticeable at the largest channel depth d = 6 mm above
about U = 30 mm/mn. They may thus partly explain the
specificity of this channel depth and the noticeable departure
of experimental data from numerical ones beyond U/V0 ≈ 30.
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