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Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids
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We report shock-wave-like structures that are strikingly different from previously observed fingering
instabilities, which occur in a two-layer system of miscible fluids reacting by a second-order reaction A + B → S

in a vertical Hele-Shaw cell. While the traditional analysis expects the occurrence of a diffusion-controlled
convection, we show both experimentally and theoretically that the exothermic neutralization reaction can also
trigger a wave with a perfectly planar front and nearly discontinuous change in density across the front. This
wave propagates fast compared with the characteristic diffusion times and separates the motionless fluid and the
area with anomalously intense convective mixing. We explain its mechanism and introduce a new dimensionless
parameter, which allows to predict the appearance of such a pattern in other systems. Moreover, we show that our
governing equations, taken in the inviscid limit, are formally analogous to well-known shallow-water equations
and adiabatic gas flow equations. Based on this analogy, we define the critical velocity for the onset of the shock
wave which is found to be in the perfect agreement with the experiments.
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I. INTRODUCTION

In recent years, the interaction between reaction-diffusion
phenomena and convective instabilities has attracted increas-
ing interest both from the fundamental point of view and
numerous applications. A second-order A + B → S reaction
is distinguished among other reactions by a comparatively
simple, albeit nonlinear, kinetics. If two species are initially
separated in space, then this reaction can form a reaction
front studied in a number of works [1,2] within a scaling
theory applied to an infinite system. If the reaction occurs
in a two-layer miscible system under gravity, then it may
result in various buoyancy-driven instabilities which have been
intensively studied both experimentally and theoretically over
the past decade [3–10]. It has been found that the chemi-
cally induced changes of solution properties may provoke
the instabilities in otherwise stable situations. Recently, De
Wit with colleagues [11] have made a courageous attempt
to classify all variety of possible convective patterns. The
asymptotic theory, similar to those developed in Ref. [1], was
applied to analyze the stability of large time density profiles
depending on the solutal expansion and diffusion coefficients
of species. It was shown that there exists one of the following
instabilities or their combination. The Rayleigh-Taylor (RT)
convection occurs when a denser solution is placed above a
less dense one. The double diffusive (DD) instability arises if
a lower component diffuses faster than an upper one and the
diffusive-layer convection (DLC) develops in a case of faster
upper component.

We have showed recently [10,12,13] that the classification
[11] is not complete, since the effect of a concentration-
dependent diffusion (CDD) was not accounted for and have
reported new diffusive type of instability.

We report a pattern formation which is fundamentally
different from the common fingering process. We show both
experimentally and theoretically that a neutralization reaction
occurring in a miscible system under gravity can also trigger
a plane shock wave and explain its mechanism. We also point
out a remarkable analogy between our governing equations

and classical problems with shock-wave dynamics. In the
paper, the term “shock wave” means a generalized wave which
propagates fast, but is not necessarily supersonic, compared
with characteristic velocity in a given media.

II. EXPERIMENTAL RESULTS

The experiments were performed in a vertically oriented
Hele-Shaw (HS) cell made of two glass plates separated by
a thin spacer of 1.2 mm (2 mm, 4 mm) thickness which
assigned the inner sizes of the rectangular cavity, width
25 mm and height 90 mm. The HS cell was filled with
two-layer system composed of aqueous solutions of nitric
acid HNO3 and one of bases LiOH, NaOH, or KOH. The
initial concentration of reagents was varied within (0 ÷ 3)
mol/l to ensure the stable density stratification and to exclude
the RT instability. During the filling of the cell with the
upper solution the lower layer was separated by a thin
plastic slide tightly inserted in two narrow (0.3 mm) slots
made in the walls. The reagents came into contact after the
plastic slide was gently taken out. Fizeau interferometry was
used to visualize a refractive index distribution caused by
temperature and concentration inhomogeneities. Silver-coated
hollow glass spheres of neutral buoyancy were added to the
liquids to observe the convective patterns. The temperature
was measured by a movable thermocouple. In addition, we
visualized the pH distribution by adding a small amount of
universal acid-base indicator. All experiments were done at
(24 ± 1) ◦C.

The analysis of the experiments made with different
acid-base pairs of various initial concentrations allows us to
combine all the results into two general groups which differ in
convective instability scenarios. The first one is characterized
by the development of a relatively weak buoyancy-driven
convection caused by different diffusion mechanisms. Since
the salt being produced in the reaction front diffuses more
slowly than either of the reagents, the DLC or CDD instability
develops in the upper layer, whereas the DD convection can
arise in the lower layer. This scenario, except CDD, develops
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FIG. 1. Time evolution of the reaction front position obtained
experimentally for different values of Kρ . Solid line corresponds to
the theoretical estimate for the critical value of the front speed (15)
to trigger a shock wave.

in accordance with the instabilities classification given in
Ref. [11]. This regime is characterized by both the relatively
slow propagation of the reaction front (see Fig. 1, filled
symbols) and small temperature excess in the reaction front
which is not higher as 0.5 K. The reaction lasts a few hours
to several days, depending on the initial concentration of the
reagents, and its reaction rate is about 10−4 mol/ l s. By taking
into account that the reaction rate is about of the rate of
diffusion processes and that the convective instabilities are
of the diffusive origin, the above scenario can be defined as a
diffusion-controlled (DC) regime.

The completely different scenario not covered by the
classification [11] has been observed in the second group of
the experiments. Right after the solutions were brought into
contact, the vigorous plumes arise above the reaction front.
In only a few seconds the intense convective flow occupies
the whole upper layer homogenizing the solution (Fig. 2). The
flow provides continuous supply of the reagents and removal of
the salt near the reaction front, which in turn enhances the flow
itself due to the increase of the reaction rate. This manifests
itself in much faster propagation of the reaction front (see
Fig. 1, open symbols), the temperature at which can rise up
to 7 K. As a result, one can observe the development of a
shock-wave-like pattern (see the Supplementary Video [14]).
There is an abrupt change in temperature, density, and velocity
in the moving reaction front which separates the motionless
fluid ahead of it and the area with intensive convective mixing
behind of it. The reaction lasts from 7 to 15 min, depending
on the initial concentration of the reagents, which corresponds
to the reaction rate of the order of (10−3 ÷ 10−2) mol/l s. We
name this scenario as a convection-controlled (CC) regime.

In order to distinguish two regimes let us introduce a new
nondimensional parameter defined as a ratio of the reaction
zone density ρrz to the upper layer density ρup

Kρ ≡ ρrz

ρup
= ρ0

(
1 + βs

Cmin
δD

+ βres
Cmax−Cmin

δD

)

ρup
, (1)

where ρ0 is the solvent density, β is solutal expansion
coefficient, C is the concentration, and subscripts s and res
denote the variables related to the salt and the residual reagent
taken in excess, respectively. Cmin and Cmax are the minimal
and maximal initial concentrations in the pair of reagents, and
δD = Dslow/Dfast + 1 shows the ratio of diffusion coefficients
of slow and fast reagents for a given pair of species. For better

FIG. 2. Shock-wave structure observed in 150 s after the aqueous
solutions of HNO3 (upper layer) and NaOH were brought into contact.
The frames from left to right correspond to interferogram showing a
refractive index distribution, velocity field revealed by the traces of
light-scattering particles and pH distribution obtained due to universal
indicator, respectively. The initial concentrations of acid and base are
equal to 1.5 mol/l and 1.4 mol/l, respectively. The initial contact line
is indicated by the horizontal band. Kρ = 0.997.

results, the CDD effect [10] must be taken into account in
(1). The value of Kρ uniquely defines the instability scenario.
If Kρ < 1, then the ρrz is smaller than ρup, which provokes
the local RT instability and triggers the CC evolution in
all systems (Fig. 3). When Kρ > 1, the density distribution
remains globally stable, making the diffusion the only mass

FIG. 3. Map of chemoconvection modes at the plane of the
initial concentrations A0, B0, and expansion coefficients βa , βb of
species. The shaded areas correspond to the shock-wave appearance
at Kρ < 1. The open and filled circles indicate the CC and DC
regimes experimentally observed for NaOH/HNO3, respectively. The
numbered circles correspond to the experimental results shown in
Fig. 1.

053106-2



SHOCK-WAVE-LIKE STRUCTURES INDUCED BY AN . . . PHYSICAL REVIEW E 96, 053106 (2017)

transfer mechanism at the initial stage. Later, the DD, DLC,
or CDD instabilities can result in a weak convective motion,
which, nevertheless, is not able to change significantly the
reaction rate. This case corresponds to the DC regime.

The map of the DC and CC regimes is presented in Fig. 3.
The isopycnic line halves the map into zones where either acid
(above the line) or base (below the line) is placed in the upper
layer. The shaded areas adjacent to the isopycn correspond
to the CC regime (Kρ < 1) for different acid-base pairs. The
DC regime (Kρ > 1) is realized outside this area. For better
perception of the figure a few experimental points only for
the pair NaOH-HNO3 are shown in the map. These results
are in perfect agreement with the calculations based on the
formula (1).

III. THEORETICAL MODEL

We consider two aqueous solutions of acid A and base B

filling a thermoisolated HS cell with the semigapwidth d. Right
after the process starts, the reagents with initial concentrations
A0,B0 diffuse into each other and are neutralized at the rate k

with the formation of salt S and heat release Q. The system
geometry is given by a two-dimension domain with x axis
directed horizontally and z-axis antidirected to gravity. We
scale the problem by using 2d, 4d2/Da0, Da0/2d, QA0/ρ0cp,
A0 as the length, time, velocity, temperature, and concentration
scales, respectively. Da0, ν, cp stands for acid diffusivity,
kinematic viscosity and heat capacity.

The mathematical model we develop consists in the set of
equations for species coupled to Navier-Stokes and energy
equations, written in the dimensionless form [10]:

∂t� + 1.2J (�,�) = Sc(∇2� − 12� − ∂xρ), (2)

∂tT + J (�,T ) = Le∇2T + αAB, (3)

∂tA + J (�,A) = ∇Da(A)∇A − αAB, (4)

∂tB + J (�,B) = ∇Db(B)∇B − αAB, (5)

∂tS + J (�,S) = ∇Ds(S)∇S + αAB, (6)

ρ = RaA + RbB + RsS − RT, (7)

where J stands for the Jacobian determinant J (F,P ) ≡
∂zF∂xP − ∂xF∂zP . Here we use a two-field formulation for
motion equation and introduce the stream function � and
vorticity � = −∇2�. Diffusion terms in Eqs. (4)–(6) are
written to take into account the CDD effect [10]:

Da(A) ≈ 0.158A + 0.881,

Db(B) ≈ −0.087B + 0.594,

Ds(S) ≈ −0.284S + 0.478. (8)

The parameters are the Schmidt and Lewis num-
bers Sc = ν/Da0, Le = χ/Da0, the Damköhler number
α = 4KA0d

2/Da0, the set of solutal Rayleigh numbers
Ri = 8gβiA0d

3/νDa0, i = {a,b,s}, and the Rayleigh num-
ber R = 8gβQA0d

3/ρ0cpνDa0. Their values for the pair
HNO3/NaOH can be estimated as follows: Sc = 317, Le = 42,
α = 103, Ra = 3.2 × 105, Rb = 3.8 × 105, Rs = 5.1 × 105,

 0.55

 0.6

 0.65

 0.7

 (a)

 (b)

To
ta

l d
en

si
ty

 

t = 0.3
t = 5.0

 0.55

 0.6

 0.65

 0.7

-20 -15 -10 -5 0 5 10

To
ta

l d
en

si
ty

 

Vertical axis z 

t = 0.3
t = 0.7
t = 2.0

FIG. 4. Time evolution of a transverse averaged total density
ρ(z,t) for HNO3/NaOH: (a) the case when the density of the reaction
zone is equal to those of upper layer: Kρ = 1; (b) the CC regime
at Kρ = 0.997 (the circle 2 in Fig. 3). In the last case, nonlinear
simulations clearly shows the appearance of the shock wave for
t > 0.5 after the collapse of the depleted zone low in density.

R = 2.5 × 104. In the calculations, we apply a no-slip bound-
ary condition for velocity and a zero-flux condition for all
species and temperature.

Figure 4 (top) shows the evolution of the density profile
within a linear theory for the bifurcation case: Kρ = 1. To see
nonlinear development of the disturbances, the problem (2)–
(7) has been solved numerically by a finite-difference method
[15]. While the linear theory demonstrates slow evolution of
the base state within DC dynamics, the nonlinear evolution
clearly shows the formation of the shock wave at Kρ = 0.997
[Fig. 4 (bottom)]. The pattern is formed as a result of the
collapse of a depleted zone low in density. This implies the
inapplicability of the assumption of the large time asymptote
used in Ref. [11] to classify all possible solutions and indicates
a much more complicated bifurcation structure. Finally, Fig. 5
demonstrates how intense mixing occurs behind the shock
wave front: Almost complete mixing of salt occurs already
after the expiration of one unit of time (≈317 s).

IV. ANALOGY WITH CLASSICAL SHOCK-WAVE
PROBLEMS

The unexpected experimental findings has made us pay
attention to the mathematical formalism of the problem.
The set of classical equations governing a two-dimensional
supersonic flow of an isentropic (adiabatic) compressible gas
can be written as it follows [16]:

∂ρ

∂t
+ ∂ρU

∂x
+ ∂ρV

∂y
= 0, (9)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −C2

γρ

∂ρ

∂x
, (10)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= 0, (11)
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FIG. 5. (a) Time evolution of the spatial reaction rate computed as the number of points where salt S(x,z,t) is larger than a given small
threshold S∗ = 0.001 normalized by the area of the domain behind the traveling shock wave; (b) the frames from left to right show the salt
concentration at successive times. Kρ = 0.997.

where U and V are velocity components and ρ and P stand
for the density and pressure of gas, respectively. It is assumed
in (9)–(11) that the main gas flow occurs in the x direction and
the channel width in the y direction is much smaller. Since the
flow is isentropic, we have Pργ = const, where γ stands for
the adiabatic index. Another important relation is given by the
sound speed: C = √

γP/ρ.
The equations given by (9)–(11) has a remarkable mathe-

matical analog with the equations for long gravity waves at the
free surface of a shallow-water layer, which was first discussed
in 1911 by Isaachsen in Ref. [17]. This analogy is the textbook
example when the same equations describe two systems with
completely different physics [16]. The Saint-Venant equation
system [18] describing two-dimensional unsteady flows of
water below a free surface in an open narrow channel with
the constant bed slope within hydraulic approximation can be
written as follows:

∂h

∂t
+ ∂hU

∂x
+ ∂hV

∂y
= 0, (12)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −g

∂h

∂x
− bU + gs, (13)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −bV, (14)

where h is the water depth, U and V are velocity components,
g is the acceleration due to gravity, b is the viscous drag
coefficient, and s is the constant bed slope taken for the
definiteness along the x axis. In the inviscid limit b = 0 and
no bed slope s = 0 (excluding the case of the constant bed
slope, see below), the system of shallow water (12)–(14)
is thus formally identical to the Eqs. (9)–(11). The velocity
C∗ = √

gh here plays the part of the sound velocity C in gas
dynamics. If the shallow-water flow moves with velocities
higher than the critical velocity C∗, one can observe the

formation of the shock-wave-like structure known as “hy-
draulic jump” [16]. Thus, the gas compressibility is simulated
here by the deformation of the free surface of an incompress-
ible fluid. This analogy has been intensively used in theoretical
physics since 1911. For example, the mechanism of a stellar
core collapse was experimentally studied on the basis of the
physics of hydraulic jumps [19].

One can demonstrate that a set of equations for fluid flows
with dissolved reacting species in a Hele-Shaw cell under the
action of gravity can be reduced either to the shallow water
equations (12)–(14) and, under some additional assumptions,
to the isentropic gas flow equations (9)–(11). Hele-Shaw cell
is a closed parallelepiped cavity significantly compressed in
one of the horizontal direction, as shown in Fig. 6: L 	 2d,
H 	 2d. Thus, the fluid flow may be considered quasi-two-
dimensional [20]. By taking into account the no-slip boundary
conditions for the velocity on wide sidewalls of the cell, the
variations of velocity across the gap can be approximated by
the Poiseuille profiles [21]. Evolution equations in the Hele-
Shaw approximation for the narrow channel L 
 H then are

FIG. 6. Schematic presentation of a Hele-Shaw cell.
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obtained by averaging the Navier-Stokes equations across the
gap:

∂ρ

∂t
+ ∂ρU

∂x
+ ∂ρV

∂y
= 0, (15)

∂U

∂t
+ 6

5
U

∂U

∂x
+ 6

5
V

∂U

∂y
= − 1

ρ

∂p

∂x
− 3η

ρd2
U + g, (16)

∂V

∂t
+ 6

5
U

∂V

∂x
+ 6

5
V

∂V

∂y
= − 3η

ρd2
V, (17)

where ρ is the density of water with reagents dissolved in it
and η is the dynamic viscosity.

Since the main effect of pressure variation is due to local
density variations, which in turn is due to the ongoing chemical
reactions, we can assume that the pressure distribution is
approximately hydrostatic and follows:

p(x,y,t) = gHρ(x,y,t), (18)

where pressure variations in height can be neglected due to
high but narrow Hele-Shaw cell.

To express the medium density ρ through the concentrations
of reagents dissolved in water we can apply the Boussinesq
approximation

ρ = ρ0(1 + βAA + βBB + βSS), (19)

which demands to ignore density differences except where they
appear in terms multiplied by gravity g. Here ρ0 and βA,B,S

stands for the constant water density and the set of solutal
expansion coefficients, respectively. The concentrations of
species in (19) are defined by the set of the reaction-diffusion
equations. In fact, we assume that the medium is slightly
compressible bearing in mind that chemical reactions between
components dissolved in water can locally change the density
of the medium even though the water itself is thought to be
incompressible. The kinetics of the reaction must satisfy the
continuity equation (15). For example, the first-order reaction
A → S, which is often regarded as a rough model of the
neutralization reaction, satisfies this condition. Finally, we
obtain dimensionless equations:

∂p

∂t
+ ∂pU

∂x
+ ∂pV

∂y
= 0, (20)

∂U

∂t
+ 6

5
U

∂U

∂x
+ 6

5
V

∂U

∂y
= − Sc

∂p

∂x
− 12ScU + GaSc2,

(21)

∂V

∂t
+ 6

5
U

∂V

∂x
+ 6

5
V

∂V

∂y
= −12ScV, (22)

where Ga = g(2d)3/ν2 are the Galileo number.
Thus, Eqs. (20)–(22) are identical (except for the 6/5

coefficient which usually is not critical) to the Saint-Venant
equation system (12)–(14), where the pressure p acts as the
water depth h, and the gravity term plays a role of the constant
bed slope. In the case when the drag terms and 6/5 coefficient
can be neglected, the Eqs. (20)–(22) can also be reduced

formally to the adiabatic gas problem (9)–(11) by making the
change of variables

X = x − 1
2 GaSc2t2, Y = y, T = t,

P = p, Û = U − GaSc2t, V̂ = V,

meaning that we go into a coordinate system that moves along
the x axis with acceleration. Then the constant term in (21)
disappears and we formally arrive at the following:

∂P

∂T
+ ∂P Û

∂X
+ ∂P V̂

∂Y
= 0, (23)

∂Û

∂T
+ Û

∂Û

∂X
+ V̂

∂Û

∂Y
= −Sc

∂P

∂X
, (24)

∂V̂

∂T
+ Û

∂V̂

∂X
+ V̂

∂V̂

∂Y
= 0, (25)

which is identical to the Eqs. (9)–(11) for gas dynamics.
By comparing (23)–(25) with gas dynamics equations, we

conclude that the critical velocity in our case is

C∗ =
√

Sc. (26)

This means that if the density wave moves faster than
√

Sc,
then we can hypothetically observe a subsonic analog of the
shock wave in gas. In the present paper, we have demonstrated
experimentally that such a wave exists. Moreover, our theory,
developed on the basis of classical shock wave equations, is
surprisingly in excellent agreement with the experiment. This
velocity estimated for our problem as c∗ ≈ 17.8 (c∗ ≈ 0.056
mm/s in dimensional units) is indicated by the solid line in
Fig. 1. It is in perfect agreement with experimental data: In
order to trigger a shock-wave solution, the disturbances must
move faster than

√
Sc. We observed that as soon as the wave

velocity fell below this value, the wave immediately stops and
was replaced by a common fingering under DC mode. One can
notice that the medium is assumed to be slightly compressible
since the chemical reaction between components dissolved
in water can locally change the density of the medium even
though the water itself is thought to be incompressible.

In conclusion, it can be emphasized that the principal role in
the excitation of shock waves is played by a chemical reaction
which produces significant local differences of the density and
maintains these differences for a long time. Probably, the effect
cannot be reproduced in nonreactive media, since any initially
prepared density differences will be quickly smoothed out by
diffusion.
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