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Nonhelical turbulence and the inverse transfer of energy: A parameter study
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We explore the phenomenon of the recently discovered inverse transfer of energy from small to large scales in
decaying magnetohydrodynamical turbulence by Brandenburg et al. [Phys. Rev. Lett. 114, 075001 (2015)], even
for nonhelical magnetic fields. For this investigation we mainly employ the Pencil Code performing a parameter
study, where we vary the Prandtl number, the kinematic viscosity, and the initial spectrum. We find that to get a
decay that exhibits this inverse transfer, large Reynolds numbers (O ∼ 103) are needed and low Prandtl numbers
of the order unity Pr = 1 are preferred. Compared to helical MHD turbulence, though, the inverse transfer is
much less efficient in transferring magnetic energy to larger scales than the well-known effect of the inverse
cascade. Hence, applying the inverse transfer to the magnetic field evolution in the Early Universe, we question
whether the nonhelical inverse transfer is effective enough to explain the observed void magnetic fields if a
magnetogenesis scenario during the electroweak phase transition is assumed.
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I. INTRODUCTION

Magnetohydrodynamic turbulence offers a rich variety of
physical phenomena and hence is still a field of intense
research. In comparison to pure (incompressible) hydrody-
namical turbulence, the presence of magnetic fields intro-
duces additional complexity to the problem, changing the
picture from the classical turbulence theory introduced by
Kolmogorov [1].

Hence, MHD turbulence has long been an area of interest.
For example, a large-scale background field or the field on the
largest eddy-containing scales could give rise to modifications
of the small-scale fluctuations compared to pure hydrodynamic
turbulence. Iroshnikov [2] and Kraichnan [3] first introduced a
modified theoretical description, where only waves of opposite
directions interact. This interaction is then governed by the
Alfvén timescale τA ∼ l/vA, which is shorter than the eddy-
distortion time τl considered otherwise. This introduces an
additional factor of τl/τA in the energy-transfer time which
is used in the derivation of the hydrodynamic turbulence
theory. The Alfvén effect [2,3] causes the inertial-range
scaling to differ from classical HD turbulence, effectively
leading to a more shallow spectrum of E ∼ k−3/2, rather than
E ∼ k−5/3.

The theory of Alfvénic wave interaction was extended by
Sridhar and Goldreich and Goldreich and Sridhar [4,5] to
include interactions of multiple Alfvénic wave modes. It then
follows that three-mode wave interactions do not give rise to
resonances which then leads to the conclusion of a failure of the
IK theory. A first complete discussion of MHD turbulence with
resonant interactions was discussed by Galtier et al. (2000) [6].

The detailed analysis of MHD turbulence including reso-
nant 4-wave interactions gives rise to a steeper spectrum of
Ek ∝ k−2

‖ , but also a highly anisotropic spectrum where one
has to differentiate between the perpendicular and the parallel
parts of the energy spectrum. Cho and Vishniac [7] and more
recently also Beresnyak [8] conclude in their analysis that a
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theoretically derived Sridhar and Goldreich spectrum agrees
with their numerical simulations. See the book by Biskamp
[9] for a more detailed discussion about the effects of Alfvénic
waves in turbulent fields.

Another important phenomenon is observed when the field
exhibits magnetic helicity. In this case it is well known that the
decay is drastically different where one observes an increase of
magnetic energy on large scales and hence, a dynamical growth
of the correlation length (see, e.g., Refs. [10,11]). This effect
of an inverse cascade is due to the well conserved helicity
during the turbulent decay (see also Sec. II B in this work).

Without the presence of helicity, earlier studies by Batchelor
[12], Saffman [13], Banerjee and Jedamzik [14], and Sethi
et al. [15] showed that for blue magnetic field spectra, i.e.,
a spectrum that rises for large Fourier modes, the coherence
length also increases, but this happens by the damping of
small-scale fluctuations, leaving only large-scale fluctuations.
In this case, the decay law for the magnetic energy and the
growth rate of the coherence length depends on the large-scale
spectral index of the magnetic field fluctuations. Also, other
numerical studies confirmed that the peak of the magnetic
spectrum moves along the large scale spectrum while the
small-scale fluctuations decay (e.g., Refs. [16–18]).

Recently, Brandenburg et al. [19] suggested that, even
without helicity, the magnetic energy can increase on scales
larger than the initial integral scale, and the coherence
length can moderately grow through an effect similar to the
helical case. But this nonhelical inverse transfer requires high
Reynolds numbers. Hence, previous studies of nonhelical
MHD turbulence decay have not seen this effect clearly
[11,20–22], whereas latest numerical studies seem to confirm
the result by Brandenburg et al. [23,24].

If the effect of the inverse transfer is proven to be universal
for large Reynolds number regimes, it would have a large
impact for magnetic field evolution, in particular, during the
Early Universe. Here, slight changes of the turbulent decay
law (which is typically a power law of the time t) will result in
different field strengths and coherence lengths at later epochs.
For instance, assuming a magnetogenesis scenario during the
electroweak (EW) phase transition, Wagstaff et al. [25] showed
that the decay of the magnetic field will be too fast to explain
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(a)
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FIG. 1. Slices of the xy plane of the magnetic field strength |B| =
√
B2

x + B2
y + B2

z at the initial time and at t = 100. The color scale has
been adjusted for each panel, the energy has decayed significantly at the later snapshot. (a) Slices of the nonhelical run, H0 = 0. The size of
the eddies grow through the decay of small-scale fluctuations as well as and by the effect of the inverse transfer. (b) Slices of the maximally
helical run. The eddies grow through an inverse cascade of magnetic energy. The eddies are now about 1/5 of the box size.

the weak lower bounds of the magnetic fields in the voids of
galaxies as inferred from Fermi observations of TeV Blazars
[26,27]. Without the effect of the inverse transfer the magnetic
energy will decay as EB ∝ t−10/7 (see, e.g., Refs. [15,21]) if
a causal magnetic field spectrum with no helicity is assumed
[28]. Otherwise, according to the decay law by the effect of
the inverse transfer, the magnetic energy decays as EB ∝ t−1,
leaving strong enough present-day magnetic fields to explain
the fields in voids of galaxies [29].

Motivated by the work by Brandenburg et al. (2015) [19],
we performed a detailed numerical investigation to test the
regimes where one can expect an efficient inverse transfer of
energy to larger scales during the decay of magnetic fields.

Unlike in the case of helical magnetic fields, where helicity is
a conserved quantity and energy is transferred to larger scales
by an inverse cascade, the physical reasoning of the nonhelical
inverse transfer is not understood (see Appendix of this work
and Supplemental Material of Ref. [19]). Our goal is to shed
some light on this phenomenon. For this reason, we mainly
use the well established Pencil Code [30], which was also
used in the original study by Brandenburg et al. [19], where
we vary the Reynolds number, the Prandtl number, as well as
the initial spectra of the stochastic magnetic field.

This work starts off with a discussion of helical and
nonhelical turbulence in Sec. II. In Sec. III we describe the
details of our numerical setup, the analysis methods, and the
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run-time parameters. We then present the simulation results
in Sec. IV, where we discuss the impact of the variation of
the viscosity parameter and the Prandtl number as well as
the influence of the initial spectrum on the inverse transfer.
Furthermore, we present a run with the Zeus-MP2 Code, where
we don’t see enough evidence for the inverse transfer and
discuss how that could be linked to the numerical integration
scheme. We conclude in Sec. V with the discussion of our
main findings and their impact on causally generated fields in
the early Universe questioning the effect of the inverse transfer
due to large expected Prandtl numbers.

II. MHD TURBULENCE

In this section we briefly summarize the general properties
of turbulence, with a focus on decaying magnetohydrodynamic
turbulence. A detailed description of the numerical implemen-
tation follows in Sec. III A.

A. Nonhelical decay

The general picture of MHD turbulence is similar to the case
of pure hydrodynamic turbulence. The magnetic field decays
by excitation of velocity fluctuations which in turn decay
through a turbulent cascade and ultimately by dissipation into
heat. The decay rate depends on the initial magnetic power
spectrum Ek , which is defined by

E = 1

2

∫
B(k)2d3k =

∫
k2|B(k)|2d�dk

=
∫

dkEk =
∫

kEkd ln k, (1)

where E is the total magnetic field energy. In Fig. 1(a) we
show two slices of nonhelical MHD turbulcen decaying. Often
it is assumed that the power spectrum, i.e., the magnetic energy
per wave-number bin, is reasonably isotropic and given by a
power law:

Ek ∝ kn, (2)

where n is the spectral index at large scales, i.e., k < kI and
LI = 2π/kI is the integral scale of the magnetic field, the
scale at which Ek has its maximum. Note that here we use the
integral scale, the coherence length and the correlation length
interchangeably. If we assume most of the energy is located at
the integral scale, the total energy can be estimated as

E =
∫

kEkd ln k ≈ kIEI , (3)

where EI denotes the spectral energy at kI .
During a Kolmogorov cascade, the largest eddies have the

longest relaxation time, also called eddy turnover time τk ∼
lk/vk , which is why the integral scale dominates the rate at
which the decay occurs. One can then derive a decay law for
the magnetic energy:

E(t) = E0(1 + t/τ0)−
2(n+1)

3+n , (4)

where τ0 is the initial eddy turnover time (see, e.g.,
Refs. [15,21]).

Note that our index n is different from Ref. [21], who used
Ek ∼ kn′

, n = n′ − 1.

In principal, n can take any value. The simplest case
would come from an average of randomly distributed magnetic
dipoles, which results in a spectral index of n = 2 (see, e.g.,
Ref. [31]). This will result in a decay law of E ∝ t−6/5, which
is also known as Saffman’s law [13]. Another commonly
assumed value for a blue spectrum is n = 4, which represents
a causally generated magnetic field during a phase transition
in the early Universe [28], which leads to a decay law of
E ∼ t−10/7. Furthermore, a weak magnetic field which gets
amplified via the small-scale turbulent dynamo will develop a
Kazantsev slope (n = 3/2) at large scales [32].

B. Helical decay

A magnetic field can also exhibit helicity, which is a
measure of the twisting of the magnetic field lines. The helicity
is defined as the volume integral,

H =
∫

A · B dV , (5)

where A is the vector potential of the magnetic field.
In a highly conducting medium the helicity is nearly

conserved, i.e., it is much better conserved than the magnetic
energy. H has the dimension of magnetic energy times the
correlation length, i.e., H ∼ B2L ∼ EBL. Hence, H has the
same dimension as the magnetic power spectrum Ek . This
means that with decaying magnetic energy for a field that
is maximally helical, i.e., Hmax ≈ Ek , the correlation length
has to increase to ensure helicity conservation. The result is a
transfer of magnetic energy from smaller to larger scales, i.e.,
the field evolves via an inverse cascade. This has also been
known from numerical studies (see, e.g., Refs. [11,20,21,33]).
Here, we also illustrate the evolution of a maximally helical
field in Fig. 2, where we show the magnetic power spectra
at different to compare the nonhelical runs performed for this
study. As expected, the peak of the power spectrum remains
nearly constant.

10−1 100

k/k0

10−10

10−8

10−6

10−4

E
k

t = 0

t = 1

t = 10

t = 100

FIG. 2. Magnetic power spectra of a run with maximal helicity.
While the magnetic energy decays, the peak of the power spectrum
does not, but shifts to lower k. This inverse cascade only occurs for
maximally helical fields, where Hk ∼ Ek .
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III. NUMERICAL METHODS

For our study, we employ the well-established PENCIL

CODE,1 which solves the compressive MHD equations with
an isothermal equation of state. The set of relevant MHD
equations are summarized as follows:

D ln ρ

Dt
= −∇ · u, (6)

Du
Dt

= −ρ−1∇p + j × B
ρ

+ fvisc, (7)

∂A
∂t

= u × B − η j, (8)

where D/Dt = ∂/∂t + u · ∇ is the convective derivative and
fvisc is a viscous force. The code uses a sixth-order finite
difference scheme, which uses the logarithmic density ln ρ, the
velocity u, and the vector potential A as primitive variables. It
advances the magnetic vector potential, where the magnetic
field is B = ∇ × A and j = ∇ × B is the MHD current.
This results in the divergence-free condition ∇ · B = 0 being
inherently fulfilled.

A. Hyperviscosity

A numerical technique we use in a subset of the simulations
is the hyperviscosity [34]. It has the form of a high-order
derivative of the velocity field:

fhyper3 = ν3∇6u. (9)

It is a replacement of the standard Laplacian viscosity term
that appears in the Navier-Stokes equation:

fvisc = ν∇2u. (10)

It has been shown that by using the hyperviscosity instead of
Laplacian viscosity, the inertial range of the simulation can be
largely increased [34]. This is also reflected by an increase
of the Reynolds number without increasing the numerical
resolution of the simulation.

B. Reynolds numbers in the simulations

The study by Brandenburg et al. indicated that the inverse
transfer is only observable for large Reynolds numbers, i.e.,
Re > 103. In the case of the Laplacian type viscous force, the
Reynolds number is defined as follows:

Re = v · LI

ν
= v · 2π

kI ν
. (11)

Here, we use Brms as an estimate for the velocity fluctuations
v, the integral scale LI , and the kinetic viscosity ν. We
vary the parameter ν in the range ν = 1 × 10−4 . . . 5 × 10−6.
This range results in Reynolds numbers from roughly 100 to
2 × 103.

In the case of hyperviscosity, the Reynolds number at the
Nyquist frequency can be adjusted to be 5 to 7 [34]. In practice,
this results in an effectively much larger Reynolds number for
the simulation compared to the Laplacian case.

1http://pencil-code.nordita.org

If one assumes Kolmogorov-type turbulence in numerical
simulations, one can get an estimate for the Reynolds number
from the dissipation scale, given by the Nyquist wave number
kNy, and the integral scale [35]:

Re =
(

kNy

kI

)4/3

. (12)

This gives us values of Re = 2 × 102 if we use kNy =
512 and an integral scale of kI ≈ 10. Using this estimate
underestimates the Reynolds number, but it is independent
of the implementation of the viscosity in our simulation which
is useful as a second indicator of the expected turbulence. A
more exact Reynolds number cannot be given, because the
Reynolds number depends strongly on the numerical methods
like the implementation of the viscosity. Nevertheless, high Re
are needed to properly resolve the effect of the inverse transfer,
as we will discuss in Sec. IV.

C. Initial conditions

We generate our initial conditions in Fourier space to set
up a specific magnetic power spectrum. Our spectra have two
parts, the part on large scales is a blue spectrum, the part on
smaller scales is a decreasing spectrum, the division being at
the integral scale; i.e., LI = 1/kI . We also vary this blue part
of the spectrum, in particular,

Ek ∼ kn for k � kI ,
(13)

Ek ∼ k−5/3 for k > kI ,

where we assume a Kolmogorov spectrum on small scales
and n = 4 for most of the cases. We set kI = 80 to achieve a
reasonable separation of scales.

Initially, we set the velocity field to zero to ensure a fully
magnetically driven turbulence. The initial root-mean square
(rms) magnetic field strength is set to B0 = 0.3, corresponding
to an energy of EB = 4.5 × 10−2. The sound speed is cs = 1
and the density is set to ρ0 = 1. We plot our time series
normalized to the initial Alfvén time τ0 = (vA,0 · k0)−1, with

10 20 30 40 50

k

10−6

10−5

E
k

fitted parabola

simulation data

FIG. 3. Fitting of a parabola in log-space to determine the value
for the wave number kI , which defines the correlation length LI =
1/kI , i.e., the integral scale.
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TABLE I. Overview of the simulations performed and when the
inverse transfer of energy occurred at which parameter set. The right-
most column describes if the run exhibits the inverse transfer effect or
if the parameters do not allow it. Note the last row where the spectrum
first decays to a causal form E ∼ k4 and then decays in the same way,
with a strong inverse transfer.

Run Parameters Inverse transfer

Viscosity ν

Visc1 1 × 10−4 Decay only
Visc2 5 × 10−5 Weak
Visc3 1 × 10−5 Medium
Visc4 5 × 10−6 Strong
Hyper1 5 × 10−15 Strong
Hyper2 2 × 10−14 Strong

Prandtl number PrM
Prandtl1 1000 Weak
Prandtl2 100 Medium
Prandtl3 10 Strong
Prandtl4 1 Strong

Initial slope Index n

Slope 1 Ek ∼ k1/2 Decay only
Slope 2 Ek ∼ k1 Decay only
Slope 3 Ek ∼ k2 Decay only
Slope 4 Ek ∼ k3 Weak
Slope 5 Ek ∼ k4 Strong
Slope 6 Ek ∼ k6 Ek → k4 → strong

the initial Alfvén velocity vA,0 and the integral scale of
the initial conditions k0 = kI,t=0. Also, the magnetic energy
spectra are normalized to the initial integral scale k0.

Apart from one comparison run withH = Hmax (see Fig. 2)
we initialize the magnetic field with zero helicity.

Furthermore, we also ran one simulation where we initiated
the magnetic field at a single scale (at k = 300) so that a
natural magnetic field spectrum was established (see, e.g.,

101 102 103

time t/τ0

100

101

102

103

104

E
k
≤

k
7
/
E

0

ν = 1 × 10−4

ν = 5 × 10−5

ν = 1 × 10−5

ν = 5 × 10−6

ν3 = 2 × 10−14

ν3 = 5 × 10−15

helical

FIG. 5. Time evolution of the energy on large scales for runs with
different viscosities. Only certain parameters in the simulation setup
give rise to the inverse transfer.

Saveliev et al. [17]). Such a δ peak spectrum can be related,
for example, to a phase transition scenario that works on a
specific scale kδ .

D. Correlation length

We use a fitting function to the one-dimensional power
spectrum to calculate the time evolution of the integral scale.
We fit a parabola in log space around the peak values of the
power spectrum with a roughly equal interval in k space.
The peak of our parabola defines the correlation length
of the magnetic field (see Fig. 3). This is equivalent to
the analytic expression of k−1

I = ∫
k−1EM (k,t)/E(t)dk, our

spectral fitting approach being more descriptive, though. We
discuss the temporal evolution of this scale kI , or rather its
inverse, the length scale Lcorr = 1/kI in Sec. IV. For helical
MHD turbulence this value decreases over time while at the

10−9

10−7

10−5

10−3

ν3 = 5 × 10−15 ν3 = 2 × 10−14 ν = 5 × 10−6

10−1 100

10−9

10−7

10−5

10−3

ν = 1 × 10−5

10−1 100

ν = 5 × 10−5

10−1 100

ν = 1 × 10−4

k/k0

E
k

FIG. 4. Magnetic power spectra for runs with different viscosities. The hyperviscosity runs are shown in the two upper left panels. High
Reynolds numbers, i.e., low viscosities, are needed to observe the effect of nonhelical inverse transfer which dynamically increases the energy
on large scales. Spectra are shown for simulation times t = 0, 20, 2 × 102, and 2 × 103 τ0, where the green (uppermost) spectrum is the initial
condition t = 0. All runs have the Prandlt number Pr = 1.
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H ν1 ν2 ν3 ν4 ν5 ν6

viscosity ν

100

101

102

103

104

105

E
k
≤

k
7
/
E

0

t = 2370 τ0

νhyper3
νstandard

FIG. 6. Comparison of the energy on large scales for the runs
with different viscosities at time t = 100. H denotes the helical
comparison run. The values for the viscosities are given in Fig. 4,
where ν1 is the upper left panel and ν6 the panel in the lower right
corner.

same time keeping a constant value of its peak energy E(kI ).
Previous work on nonhelical turbulence has shown that this is
not the same when negligible helicity is present in the field’s
configuration.

IV. RESULTS

In this section, we present the results from our three-
dimensional simulations. To get a general impression on the

field evolution, we show a comparison of a helical and a
nonhelical run in Fig. 1. In Table I we give an overview of our
simulations and their main results. The simulations are carried
out with a resolution of 10243 if not otherwise stated.

A. Varying the viscosity parameter

We summarize the results of our viscosity study in Fig. 4,
where we show the spectra at different times t = 0, 20, 2 ×
102, 1 × 103, and 2 × 103 τ0. We see that smaller viscosities,
i.e., larger Reynolds numbers, lead to a stronger effect of the
inverse transfer. If the Reynolds number drops below 500 (ν �
5 × 10−5), this effect is essentially not visible. Otherwise, the
effect is strongest when we use hyperviscosity.

Note for small Laplacian viscosities the so-called bottle-
neck effect (see Ref. [36]) sets in, where energy is accumulated
at the smallest scales; i.e., it does not dissipate. It looks like
this small-scale effect does not impact the large scales.

To quantify the effect of the inverse transfer we measure
the energy on large scales as a function of time as

Ek�kL
(t) =

∫ kL

0
Ek(t) dk, (14)

where we choose kL = 7, which is a scale not fully processed
at the end of the simulation. We demonstrate the time evolution
of the energy on large scales in Fig. 5, which also includes the
maximally helical comparison run. Again, this analysis shows
how the inverse transfer depends on the Reynolds number.
Nevertheless, this effect is much less efficient than an inverse
cascade due to a helical magnetic field.

10−9

10−7

10−5

10−3

Pr = 1 Pr = 10

10−1 100

10−9

10−7

10−5

10−3

Pr = 100

10−1 100

Pr = 1000

k/k0

E
k

FIG. 7. Magnetic power spectra of runs with different Prandtl numbers. The spectra are shown for t = 0, 20, 2 × 102, 1 × 103, 7 × 103τ0.
The effect of the inverse transfer of energy is strongest with a Prandtl number of Pr = 1 and becomes less pronounced for higher Prandtl
numbers, especially the run with Pr = 1000 shows very little increase of energy on large scales.
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Figure 6 shows Ek�kL
/E0 at time t = 2370 τ0. At this

time, the integrated large-scale energy in the viscosity and
hyperviscosity runs differ by a factor of a few, whereas the
helical energy is already four orders of magnitude larger.

B. Prandtl number dependency

As mentioned earlier, we also studied the effect of the
Prandtl number on the inverse transfer. The Prandtl number is
defined as the ratio between viscosity and magnetic diffusivity,

Pr = ν3/η3, (15)

where the index “3” indicates that we use hyperviscosity ν3

and hyperdiffusivity η3. For the different runs we changed the
diffusivity η3 and kept the viscosity constant. We vary Pr from
1 to Pr = 1000.

As one can see in Fig. 7, surprisingly, higher Prandtl
numbers slow down the inverse transfer. Especially in the run
with the highest Prandtl number the effect of inverse transfer
ceases. This is also quantified in Fig. 8, where we show the time
evolution of the energy on large scales, with a comparison to
the helical case. The strongest increase of magnetic energy on
large scale is seen in the Pr = 1 case. Furthermore, in Fig. 9 we
show the evolution of the integral scale. In Fig. 10 we show the
integral scale and the energy on large scales for our different
runs at the time t = 200 τ0. This indicates again a clear trend
of a weaker inverse transfer with increasing Prandtl number.
Again, none of the nonhelical effects can compare with the
inverse cascade of the helical run. A mechanism that could
explain the transport of magnetic quantities is the merging of
attracting magnetic flux densities with opposite sign, which
was discussed by Müller (2012) [33]. This does not act as a
dynamo as it thins out the magnetic flux geometrically the
larger the structures get.

Resistive MHD is essential for this reconnection process
which can be visualised as two filaments with currents flowing
in the same direction. With increasing magnetic Prandtl

101 102 103

time t/τ0

100

101

102

103

104

E
k
≤

k
7
/
E

0

Pr = 1000

Pr = 100

Pr = 10

Pr = 1

helical

FIG. 8. Time evolution of the energy on large scales. The transfer
of energy to large scales depends crucially on the Prandtl number
where larger Prandtl numbers show less efficient inverse transfer. We
also show the evolution of the energy on large scales for the helical
case.

101 102 103

time t/τ0

10−2

10−1

L
I

Pr = 1000

Pr = 100

Pr = 10

Pr = 1

helical

FIG. 9. Evolution of the integral scale for runs with varying
Prandtl numbers. Larger Prandtl numbers lead to a slower increase of
the coherence length.

number at constant viscosity, as is the case in our simulations,
this process becomes less and less efficient and explains our
observations in our Prandtl number comparison runs [37].

C. Back reaction and decay laws

To study the the effect of possible back reactions from the
velocity fluctuations on the magnetic field on scales beyond
the integral scale, we performed a higher resolution run with
N = 15363 grid points. Again, we initialize the velocity field
with u = 0.

We chose the simulation parameters such that the effect
of the inverse transfer of energy occurs most prominently,
meaning low hyperviscosity parameter and a Prandtl number
of Pr = 1. We show the magnetic as well as the kinetic spectra
of this run in Fig. 11. As mentioned earlier, the fluctuations
in the magnetic field excite velocity fluctuations to a strength
until back reactions set in. Generally, the power spectrum of

H 1 10 100 1000

Prandtl number

10−2

10−1

100

L
I

t = 237 τ0

LI

100

101

102

103

104
E

k
≤

7
/
E

0

FIG. 10. Comparison of the integral scale for the runs with
different Prandtl numbers at the time t = 10. H denotes the helical
case.
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10−1 100

k/k0

10−10

10−8

10−6

10−4

E
k

solid: magnetic
dashed: kinetic

t = 1

t = 5

t = 50

t = 300

FIG. 11. Magnetic and kinetic power spectra of the nonhelical
simulation with a resolution of N = 15363. Note at early times the
kinetic part can exceed the magnetic part of the spectrum in large
scales and might further excite fluctuations in the B field.

the kinetic part has a different shape than the magnetic power
spectrum. At early times the kinetic power spectrum exceeds
the magnetic one on large scales, although this feature is not
persistent. Nevertheless, the energies continue on equipartition
at scales way beyond the integral scale. Since the spectrum of
the velocity field is not confined to a steep k4 spectrum, like
the divergence-free magnetic field (see Ref. [28]), it can go
beyond the magnetic one on large scales. In principle, this
could be an explanation for the inverse transfer at early times.
On small scales, eventually, equipartition of both power spectra
is reached. On intermediate scale the kinetic power spectrum
does not show a clear peak but rather a plateau, which never
reaches the peak of the magnetic power spectrum. This might
be due to the intermittent structure of the magnetic field.

FIG. 12. Spectral Transfer function Tkpq as a function of k and
q at p/k0 = 0.0875, following the analysis of Brandenburg (2001)
[38]. Yellow pixels indicate positive values and blue pixels negative
values. See also Fig. 11 for the time evolution of the magnetic energy
spectrum.
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fit: EB ∼ t−1.0

FIG. 13. Evolution of total magnetic energy Emag and total kinetic
energy Ekin. Starting from nonhelical initial condition with kpeak =
80,N = 15363. The initial setup had zero velocity field; after a short
relaxation time the kinetic energy decays as the magnetic energy.

Nevertheless, as can be seen in Fig. 13, both energies evolve
with a constant ratio of about 1/4 and obey a decay law of
E ∝ t−1. This decay law was also reported by Brandenburg
et al. [19] in the case of a strong inverse transfer and is different
from the expected value without inverse transfer which has a
steeper decay law of E ∝ t−10/7.

A different way of examining the nature of the inverse
transfer, is to analyze the spectral transfer function Tkpq =
〈Jk · (up × Bq)〉. In Fig. 12 we show one example, following
Brandenburg (2001) [38]. Indices k,p,q indicate shells in
Fourier space of our fields from the simulation at a late time
in the run when the inverse transfer is active. We show the 2D
plot for k and q for a fixed value of p/k0 = 7/80 = 0.0875 in
Fig. 12. We see that the current Jk decreases and the magnetic
field Bq increases on similar scales as the MHD flux decreases.
This transfer of energy via the MHD flux is mediated through
the velocity field up. It occurs for small scales p,k � 0.5 k0.
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fit: kmax ∼ t−0.4
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FIG. 14. Time evolution of the peak of the spectrum shown in
Fig. 11. The solid black line shows the location in k-space of the
spectrum’s peak and the dashed line gives its energy value (right
label). One can see that after an initial settling phase the peak shifts
to lower k values. Its peak energy follows the same law as the mean
magnetic field energy shown in Fig. 13.
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FIG. 15. Magnetic power spectra of a simulation with energy
injected at a single wave number k = 300. An E ∼ k4 spectrum
develops very quickly. After this redistribution of energy the spectrum
evolves as in the nonhelical case with a continuous inverse transfer
of energy to large scales.

This demonstrates the nature of the inverse transfer as a
large-scale process

Figure 14 shows the evolution of the peak of the magnetic
energy spectrum and its associated wave number. Note that the
peak amplitude starts to decay instantly, while the peak starts
to shift only after a short initial phase. Again, this could be an
indication that back reaction from the velocity field initiates
the inverse transfer.

D. Delta peak energy injection

Furthermore, we run a simulation with a δ-peak spectrum
as initial conditions. This setup is comparable to the initial
conditions of the semianalytic work of Saveliev et al. [17]. In
this study, a E ∼ k4 spectrum develops self-consistently from
those initial conditions. Note that in their calculations no more
energy is transferred to large scales.

Here we choose the δ-injection scale to be close to
the Nyquist wave number kNy = N/2, so there is enough

separation of simulation scales k0 and kδ in k space. In Fig. 15,
we show the spectra of the simulation for kδ = 300. One
can see that the expected causal spectrum develops almost
instantly. The spectrum has a peak which is at wave numbers
close to but less than the injecting wave number kpeak < kδ . For
k > kδ a turbulent spectrum with a Kolmogorov slope Ek ∝
k−5/3 develops. This resembles the initial conditions of the
simulation previously performed in this analysis very closely.
It is thus reasonable to assume our chosen initial conditions can
also resemble the conditions after such a causal field generation
process. After generating this turbulent spectrum the inverse
transfer of energy sets in and the energy carrying wave number
kI decreases while the energy is decaying as in our previous
simulations.

It has to be noted that in these initial conditions no helicity
was injected into the fields explicitly. However, some, although
negligible, helicity builds up over time.

E. Initial slope comparison

Finally, in our parameter study, we investigate the depen-
dence of the inverse transfer on the spectral index n with
a number of 5123 simulations. Here, we vary n = 0.5 . . . 6.
We present the results of these initial conditions in Fig. 16. A
steep magnetic field spectrum is needed to transfer energy from
small to large scales during the decay. Similar to the δ peak
simulation, a E ∝ k4 spectrum builds up if the power spectrum
is initially steeper than that. This n = 4 case is also the case
where the inverse transfer is strongest. A flatter spectrum
shows a less efficient effect. For n � 2, the inverse transfer
effect vanishes completely and the magnetic field only decays
without significant pileup of energy on small scales. This is
also a reason that earlier studies did not see the effect of the
inverse transfer [21]. We expect a more shallow spectrum
of Ek ∼ k3/2, the so-called Kazantsev spectrum [32], fields
generated by the small-scale dynamo [39–41], so such a field
would not go through an inverse transfer but only decay after
its generation.

10−6

10−4

E ∼ k1/2 E ∼ k1 E ∼ k2

10−1 100

10−12

10−9

10−6

10−3

E ∼ k3

10−1 100

E ∼ k4

10−1 100

E ∼ k6

k/k0

E
k

FIG. 16. Magnetic power spectra of runs with different spectral indices n. The inverse transfer of energy can only be observed if there is a
steep initial spectrum with n � 3. If an initial spectrum steeper than k4 is given it will flatten to a causal spectrum, similar to the δ-peak run
(see Fig. 15).
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FIG. 17. Zeus-MP2 run with Pencil Code initial conditions. With
the Zeus Code there is a little increase of power at low k, indicating
it does not have high enough Reynolds numbers.

F. Zeus-MP2 comparison

We also ran one simulation with the Zeus-MP2 code to
compare the results to the PENCIL CODE. The Zeus code
employs only a second order finite difference scheme to
integrate the MHD equation and hence is more dissipative
than the PENCIL CODE. This is reflected in Fig. 17, where we
show the magnetic power spectrum. In particular, the inertial
range is not as pronounced as in the runs with hyperviscosity
with the pencil code.

Additionally, due to the effectively smaller Reynolds
number in the Zeus run, the effect of the inverse transfer
is not observed. Note also that the integral scale at no times
moves to scales larger than the scales imprinted by the initial
blue spectrum. Another difference in the setup is the location
of the peak in the spectrum, shown in Fig. 17. We have
discovered that to observe an inverse cascade like effect, the
main energy carrying scale must be at high k. This caused
numerical problems with the code if too much power resided
at large wavenumbers k, limiting the scale for the peak of the
spectrum.

V. CONCLUSIONS

In this work, we presented a parameter study based
on high-resolution numerical simulations of decaying MHD
turbulence. We explored a wide range of numerical parameters
and initial conditions to find a pattern at which the inverse
transfer of magnetic energy from small scales to large scales
takes place for nonhelical magnetic fields.

Our most prominent finding is the surprising dependency
on the Prandtl number: Larger Prandtl numbers lead to a less
efficient inverse transfer of magnetic energy and might be
fully suppressed at Prandtl numbers larger than 103. This
raises the question whether one can apply the effect of the
inverse transfer of energy to the evolution of magnetic fields
in the early Universe. There, one expects large Prandtl numbers
of Pr ∼ 108(T/keV)−3/2 [21]. For instance, considering a
causally generated field, it will decay according to E ∼ t−10/7

in the case of suppressed inverse transfer. It will decay as
E ∼ t−1, however, if the inverse transfer is efficient. This
results in a many orders of magnitudes weaker field in the

100 101 102 103

time t/τ0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

A
2

×10−5×10−5

FIG. 18. Temporal evolution of the square of the magnetic vector
potential.

former case. Therefore, it is questionable whether EW phase
transition generated fields could be significant enough today
to account for the assumed fields in the voids of galaxies (see
Refs. [25,29]).

Furthermore, the efficiency of the inverse transfer depends
on the Reynolds number. Here, the Reynolds number has to be
sufficiently large to observe the effect. With our Pencil Code
simulations we find a critical Reynolds number of Re = 500
for a Prandtl number of Pr = 1.

Another very interesting result of our study is that for
shallow and moderately steep slopes of the magnetic power
spectrum n � 2 the effect of the inverse transfer is not present.
Again, this dependence on n is qualitatively different than the
inverse cascade of helical fields, which is independent of the
spectral index n. An n = 2 case could be expected from an
average over a stochastic distribution of magnetic dipoles [31],
and a field with n = 3/2 will be generated by the small-scale
dynamo [32].

Although we find numerical evidence for the effect of non-
helical inverse transfer, the physics behind this mechanism is
yet to be determined. One option could be the enhancement
of the magnetic field on large scales by back reactions of
velocity fluctuations where the kinetic power spectrum can
exceed the magnetic one on scales above the correlation
length. Nevertheless, our simulations do not indicate that this
mechanism could persist throughout the entire decay phase.
See also Ref. [19].

Additionally, Brandenburg et al. [19] suspect an effect of
two-dimensional structure of the turbulence. In two dimen-
sions the square of the vector potential 〈A2〉 is conserved [9]
and could serve as an explanation to the nonhelical inverse
transfer, similar to the conserved helicity in three dimensions.
We show the evolution of 〈A2〉 in Fig. 18 where one sees
that it varies by at least 80%. This is not a lot compared
to the magnetic energy, which changes by three orders of
magnitude during its decay. On the other hand, the helicity
in the maximally helical run changes only by a few percent.
Nevertheless, the conservation of 〈A2〉 is not expected in three
dimensions, and it is not clear why a two-dimensional turbulent
structure should develop (depending on the Prandtl number
and initial spectral index).
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FIG. 19. Temporal evolution of the total helicity for the large
nonhelical run. The magnitude of the helicity is of the order 1 × 10−5

compared to Hmax = 0.32 in the maximally helical case.

Müller suggests [33,37] the inverse transfer could be an
effect of merging current densities. Especially in the resistive
MHD case this seems to be a viable possibility, since it can
explain the difference in behavior at large Prandtl numbers,
where the merging process becomes inefficient. We do not
have any quantification of how important this merger is to
explain the inverse transfer, though.

Another way of explaining the inverse transfer is the
assumption of a self-similar evolution of the decaying MHD
turbulence. Using rescaled MHD variables, Olesen [42] and
Campanelli [43] constructed such a self-similar scenario of
decaying MHD turbulence. Although the rescaling of the MHD
variables is generally not restricted to a specific choice of the
rescaling function, an inverse transfer can only be explained by
a very specific one where the viscosity is not rescaled, i.e., ν →
l0ν and l is the scale function. First of all, there is no physical
reasoning for this (unmotivated) choice and furthermore the
rescaling of variables should not impact the physical result.
The specific self-similar solution resulting in the inverse
transfer does not give further insight to this problem.

We thus conclude that while there is numerical evidence
from our simulations that the nonhelical inverse transfer of
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FIG. 20. Spectrum of helicity fluctuations Hk .
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FIG. 21. Spectrum of absolute value of helicity fluctuations Hk .
A similar behavior as in the energy spectrum can be seen. For the
relative fluctuations, see Fig. 22.

energy can be present, a satisfying physical explanation is
still missing.
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APPENDIX: HELICITY IN THE SIMULATION

To check whether an artificial build up of helicity might
influence the magnetic field evolution, we analyze the numeri-
cal helicity in the simulation of our nonhelical high resolution
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FIG. 22. Relative error of helicity fluctuations using the data from
Figs. 11 and 21.
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run. In Fig. 19 we show the time evolution of the total helicity
which is of the order of H ∼ 10−5. This corresponds roughly
to the numerical helicity error (note in the maximal helical
case the total helicity is about H = 0.32). Furthermore, we
show a spectral analysis of the helicity in Figs. 20 and 21. The
former one shows the actual helicity spectra, whereas the latter

shows its absolute value which, surprisingly, shows features
similar to the magnetic power spectra. It is surprising since
those fluctuations should be purely numerical and should not
trace physical properties. Additionally, we compute the error
from the helicity fluctuations Ek/Hkk in our simulation, which
we show in Fig. 22.

[1] A. Kolmogorov, Akademiia Nauk SSSR Doklady 30, 301
(1941).

[2] P. S. Iroshnikov, Soviet Ast. 7, 566 (1964).
[3] R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).
[4] S. Sridhar and P. Goldreich, Astrophys. J. 432, 612 (1994).
[5] P. Goldreich and S. Sridhar, Astrophys. J. 438, 763 (1995).
[6] S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J.

Plasma Phys. 63, 447 (2000).
[7] J. Cho and E. T. Vishniac, Astrophys. J. 538, 217 (2000).
[8] A. Beresnyak, Astrophys. J. 801, L9 (2015).
[9] D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge

University Press, Cambridge, 2008).
[10] A. Pouquet, U. Frisch, and J. Léorat, J. Fluid Mech. 77, 321

(1976).
[11] M. Christensson, M. Hindmarsh, and A. Brandenburg, Phys.

Rev. E 64, 056405 (2001).
[12] G. K. Batchelor, Proc. R. Soc. London A 201, 405 (1950).
[13] P. G. Saffman, Phys. Fluids 10, 1349 (1967).
[14] R. Banerjee, R. E. Pudritz, and L. Holmes, Monthly Notices

Roy. Astron. Soc. 355, 248 (2004).
[15] S. K. Sethi and K. Subramanian, Monthly Notices Roy. Astron.

Soc. 356, 778 (2005).
[16] L. Campanelli, Phys. Rev. Lett. 98, 251302 (2007).
[17] A. Saveliev, K. Jedamzik, and G. Sigl, Phys. Rev. D 86, 103010

(2012).
[18] A. Saveliev, K. Jedamzik, and G. Sigl, Phys. Rev. D 87, 123001

(2013).
[19] A. Brandenburg, T. Kahniashvili, and A. G. Tevzadze, Phys.

Rev. Lett. 114, 075001 (2015).
[20] D. Biskamp and W.-C. Müller, Phys. Rev. Lett. 83, 2195

(1999).
[21] R. Banerjee and K. Jedamzik, Phys. Rev. D 70, 123003 (2004).
[22] C. Kalelkar and R. Pandit, Phys. Rev. E 69, 046304 (2004).
[23] J. Zrake, Astrophys. J. Lett. 794, L26 (2014).

[24] M. Linkmann, A. Berera, M. McKay, and J. Jäger, J. Fluid Mech.
791, 61 (2016).

[25] J. M. Wagstaff and R. Banerjee, J. Cosmology. Astroparticle.
Phys. 01 (2016) 002.

[26] A. Neronov and I. Vovk, Science 328, 73 (2010).
[27] A. M. Taylor, I. Vovk, and A. Neronov, A&AS 529, A144

(2011).
[28] R. Durrer and C. Caprini, J. Cosmol. Astropart. Phys. 11 (2003)

010.
[29] T. Kahniashvili, A. G. Tevzadze, A. Brandenburg, and A.

Neronov, Phys. Rev. D 87, 083007 (2013).
[30] A. Brandenburg and W. Dobler, “Pencil: Finite-difference Code

for Compressible Hydrodynamic Flows”, Astrophysics Source
Code Library (2010).

[31] C. J. Hogan, Phys. Rev. Lett. 51, 1488 (1983).
[32] A. P. Kazantsev, Sov. Phys. JETP 26, 1031 (1968).
[33] W.-C. Müller, S. K. Malapaka, and A. Busse, Phys. Rev. E 85,

015302 (2012).
[34] N. Erland L. Haugen and A. Brandenburg, Phys. Rev. E 70,

026405 (2004).
[35] N. Erland L. Haugen, A. Brandenburg, and W. Dobler, Phys.

Rev. E 70, 016308 (2004).
[36] W. Dobler, Nils Erland L. Haugen, T. A. Yousef, and A.

Brandenburg, Phys. Rev. E 68, 026304 (2003).
[37] W.-C. Müller (private communication).
[38] A. Brandenburg, Astrophys. J. 550, 824 (2001).
[39] C. Federrath, S. Sur, D. R. G. Schleicher, R. Banerjee, and R. S.

Klessen, Astrophys. J. 731, 62 (2011).
[40] J. Schober, D. Schleicher, C. Federrath, R. Klessen, and R.

Banerjee, Phys. Rev. E 85, 026303 (2012).
[41] J. M. Wagstaff, R. Banerjee, D. Schleicher, and G. Sigl, Phys.

Rev. D 89, 103001 (2014).
[42] P. Olesen, Phys. Lett. B 398, 321 (1997).
[43] L. Campanelli, Eur. Phys. J. C 76, 504 (2016).

053105-12

https://doi.org/10.1063/1.1761412
https://doi.org/10.1063/1.1761412
https://doi.org/10.1063/1.1761412
https://doi.org/10.1063/1.1761412
https://doi.org/10.1086/174600
https://doi.org/10.1086/174600
https://doi.org/10.1086/174600
https://doi.org/10.1086/174600
https://doi.org/10.1086/175121
https://doi.org/10.1086/175121
https://doi.org/10.1086/175121
https://doi.org/10.1086/175121
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1086/309127
https://doi.org/10.1086/309127
https://doi.org/10.1086/309127
https://doi.org/10.1086/309127
https://doi.org/10.1088/2041-8205/801/1/L9
https://doi.org/10.1088/2041-8205/801/1/L9
https://doi.org/10.1088/2041-8205/801/1/L9
https://doi.org/10.1088/2041-8205/801/1/L9
https://doi.org/10.1017/S0022112076002140
https://doi.org/10.1017/S0022112076002140
https://doi.org/10.1017/S0022112076002140
https://doi.org/10.1017/S0022112076002140
https://doi.org/10.1103/PhysRevE.64.056405
https://doi.org/10.1103/PhysRevE.64.056405
https://doi.org/10.1103/PhysRevE.64.056405
https://doi.org/10.1103/PhysRevE.64.056405
https://doi.org/10.1098/rspa.1950.0069
https://doi.org/10.1098/rspa.1950.0069
https://doi.org/10.1098/rspa.1950.0069
https://doi.org/10.1098/rspa.1950.0069
https://doi.org/10.1063/1.1762284
https://doi.org/10.1063/1.1762284
https://doi.org/10.1063/1.1762284
https://doi.org/10.1063/1.1762284
https://doi.org/10.1111/j.1365-2966.2004.08316.x
https://doi.org/10.1111/j.1365-2966.2004.08316.x
https://doi.org/10.1111/j.1365-2966.2004.08316.x
https://doi.org/10.1111/j.1365-2966.2004.08316.x
https://doi.org/10.1111/j.1365-2966.2004.08520.x
https://doi.org/10.1111/j.1365-2966.2004.08520.x
https://doi.org/10.1111/j.1365-2966.2004.08520.x
https://doi.org/10.1111/j.1365-2966.2004.08520.x
https://doi.org/10.1103/PhysRevLett.98.251302
https://doi.org/10.1103/PhysRevLett.98.251302
https://doi.org/10.1103/PhysRevLett.98.251302
https://doi.org/10.1103/PhysRevLett.98.251302
https://doi.org/10.1103/PhysRevD.86.103010
https://doi.org/10.1103/PhysRevD.86.103010
https://doi.org/10.1103/PhysRevD.86.103010
https://doi.org/10.1103/PhysRevD.86.103010
https://doi.org/10.1103/PhysRevD.87.123001
https://doi.org/10.1103/PhysRevD.87.123001
https://doi.org/10.1103/PhysRevD.87.123001
https://doi.org/10.1103/PhysRevD.87.123001
https://doi.org/10.1103/PhysRevLett.114.075001
https://doi.org/10.1103/PhysRevLett.114.075001
https://doi.org/10.1103/PhysRevLett.114.075001
https://doi.org/10.1103/PhysRevLett.114.075001
https://doi.org/10.1103/PhysRevLett.83.2195
https://doi.org/10.1103/PhysRevLett.83.2195
https://doi.org/10.1103/PhysRevLett.83.2195
https://doi.org/10.1103/PhysRevLett.83.2195
https://doi.org/10.1103/PhysRevD.70.123003
https://doi.org/10.1103/PhysRevD.70.123003
https://doi.org/10.1103/PhysRevD.70.123003
https://doi.org/10.1103/PhysRevD.70.123003
https://doi.org/10.1103/PhysRevE.69.046304
https://doi.org/10.1103/PhysRevE.69.046304
https://doi.org/10.1103/PhysRevE.69.046304
https://doi.org/10.1103/PhysRevE.69.046304
https://doi.org/10.1088/2041-8205/794/2/L26
https://doi.org/10.1088/2041-8205/794/2/L26
https://doi.org/10.1088/2041-8205/794/2/L26
https://doi.org/10.1088/2041-8205/794/2/L26
https://doi.org/10.1017/jfm.2016.43
https://doi.org/10.1017/jfm.2016.43
https://doi.org/10.1017/jfm.2016.43
https://doi.org/10.1017/jfm.2016.43
https://doi.org/10.1088/1475-7516/2016/01/002
https://doi.org/10.1088/1475-7516/2016/01/002
https://doi.org/10.1088/1475-7516/2016/01/002
https://doi.org/10.1088/1475-7516/2016/01/002
https://doi.org/10.1126/science.1184192
https://doi.org/10.1126/science.1184192
https://doi.org/10.1126/science.1184192
https://doi.org/10.1126/science.1184192
https://doi.org/10.1051/0004-6361/201116441
https://doi.org/10.1051/0004-6361/201116441
https://doi.org/10.1051/0004-6361/201116441
https://doi.org/10.1051/0004-6361/201116441
https://doi.org/10.1088/1475-7516/2003/11/010
https://doi.org/10.1088/1475-7516/2003/11/010
https://doi.org/10.1088/1475-7516/2003/11/010
https://doi.org/10.1088/1475-7516/2003/11/010
https://doi.org/10.1103/PhysRevD.87.083007
https://doi.org/10.1103/PhysRevD.87.083007
https://doi.org/10.1103/PhysRevD.87.083007
https://doi.org/10.1103/PhysRevD.87.083007
https://doi.org/10.1103/PhysRevLett.51.1488
https://doi.org/10.1103/PhysRevLett.51.1488
https://doi.org/10.1103/PhysRevLett.51.1488
https://doi.org/10.1103/PhysRevLett.51.1488
https://doi.org/10.1103/PhysRevE.85.015302
https://doi.org/10.1103/PhysRevE.85.015302
https://doi.org/10.1103/PhysRevE.85.015302
https://doi.org/10.1103/PhysRevE.85.015302
https://doi.org/10.1103/PhysRevE.70.026405
https://doi.org/10.1103/PhysRevE.70.026405
https://doi.org/10.1103/PhysRevE.70.026405
https://doi.org/10.1103/PhysRevE.70.026405
https://doi.org/10.1103/PhysRevE.70.016308
https://doi.org/10.1103/PhysRevE.70.016308
https://doi.org/10.1103/PhysRevE.70.016308
https://doi.org/10.1103/PhysRevE.70.016308
https://doi.org/10.1103/PhysRevE.68.026304
https://doi.org/10.1103/PhysRevE.68.026304
https://doi.org/10.1103/PhysRevE.68.026304
https://doi.org/10.1103/PhysRevE.68.026304
https://doi.org/10.1086/319783
https://doi.org/10.1086/319783
https://doi.org/10.1086/319783
https://doi.org/10.1086/319783
https://doi.org/10.1088/0004-637X/731/1/62
https://doi.org/10.1088/0004-637X/731/1/62
https://doi.org/10.1088/0004-637X/731/1/62
https://doi.org/10.1088/0004-637X/731/1/62
https://doi.org/10.1103/PhysRevE.85.026303
https://doi.org/10.1103/PhysRevE.85.026303
https://doi.org/10.1103/PhysRevE.85.026303
https://doi.org/10.1103/PhysRevE.85.026303
https://doi.org/10.1103/PhysRevD.89.103001
https://doi.org/10.1103/PhysRevD.89.103001
https://doi.org/10.1103/PhysRevD.89.103001
https://doi.org/10.1103/PhysRevD.89.103001
https://doi.org/10.1016/S0370-2693(97)00235-9
https://doi.org/10.1016/S0370-2693(97)00235-9
https://doi.org/10.1016/S0370-2693(97)00235-9
https://doi.org/10.1016/S0370-2693(97)00235-9
https://doi.org/10.1140/epjc/s10052-016-4356-6
https://doi.org/10.1140/epjc/s10052-016-4356-6
https://doi.org/10.1140/epjc/s10052-016-4356-6
https://doi.org/10.1140/epjc/s10052-016-4356-6



