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Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field
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Linear interaction analysis (LIA) is employed to investigate the interaction of reactive and nonreactive shock
waves with isotropic vortical turbulence. The analysis is carried out, through Laplace-transform technique,
accounting for long-time effects of vortical disturbances on the burnt-gas flow in the fast-reaction limit, where
the reaction-region thickness is significantly small in comparison with the most representative turbulent length
scales. Results provided by the opposite slow-reaction limit are also recollected. The reactive case is here
restricted to situations where the overdriven detonation front does not exhibit self-induced oscillations nor inherent
instabilities. The interaction of the planar detonation with a monochromatic pattern of perturbations is addressed
first, and then a Fourier superposition for three-dimensional isotropic turbulent fields is employed to provide
integral formulas for the amplification of the kinetic energy, enstrophy, and anisotropy downstream. Transitory
evolution is also provided for single-frequency disturbances. In addition, further effects associated to the reaction
rate, which have not been included in LIA, are studied through direct numerical simulations. The numerical
computations, based on WENO-BO4-type scheme, provide spatial profiles of the turbulent structures downstream
for four different conditions that include nonreacting shock waves, unstable reacting shock (sufficiently high
activation energy), and stable reacting shocks for different detonation thicknesses. Effects of the propagation
Mach number, chemical heat release, and burn rate are analyzed.
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I. INTRODUCTION

The interaction of reactive and nonreactive shock waves
with nonuniform flows is of practical interest for many areas
that include hypersonic flight [1–3], propulsion [4–8], and
astrophysics [9–11]. Although the effect of the shock passage
has been studied extensively by theoretical, numerical, and
experimental methods (see Refs. [1–3,12–26] and the addi-
tional literature entries found therein), a precise understanding
of the physical mechanisms that modify the turbulent flow
has not yet been accomplished due to the wide range of
temporal and spatial scales involved and the effect of the
sudden transformations of the aerothermal fluid properties.
The reactive case, however, has received considerably less
attention, in part due to the inherent complexities involved in
the combustion-process modeling [27–33].

In continuous detonation engines, such as shcramjets
and pulse detonation engines, the propulsion device must
confront adversities related to the high flow velocity that limits
the mixing time between the reactant and oxygen. As the
residence time of the reactants in the combustor is short in
supersonic regimes, ignition typically cannot be achieved by
relying on diffusion and heat conduction alone [6]. Shock
waves positively contribute to ignite the mixture through the
inherent temperature rise across the shock wave, and mixing
enhancement by the turbulence amplification across the shock
[4,5]. The critical conditions for shock-induced ignition, which
may later lead to an anchored detonation wave as the main
mechanism for sustained combustion, were studied in [34]
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for a laminar configuration adopting a simplified one-step
irreversible reaction in the large-activation-energy limit. Even
if satisfactorily formed, the detonation wave must prove
stable against turbulent fluctuations that are conveyed by the
incoming air and amplified through the previous shock waves.

In addition to propulsion applications, the interaction of
detonation waves with nonuniform patterns also is of interest
in astrophysics, where ionization fronts resemble combustion
waves in many respects, with the so-called R-type fronts
being qualitatively similar to strong chemical detonations
[9]. For example, regular shock-turbulence-interaction models,
as that one proposed here, have been used to characterize
the interaction of strong shocks arising from core-collapse
supernovae with turbulence originated by the nuclear shell
burning [10,11]. Dissociation effects, affecting the energy
balance across the shock, modify the total mass compres-
sion ratio and then the postshock turbulent flow properties.
Similar analogies are found in inertial confinement fusion,
where strong shocks travel through a nonuniform deuterium-
filled CH foam, triggering ionization or radiation of thermal
energy [35].

For nonreactive shock waves, linear interaction analysis
(LIA) predictions have been found to be consistent with
direct numerical simulation (DNS) results, with the latter
converging to the former as the turbulent Mach number and
the shock thickness become sufficiently small, even for low
Taylor-microscale Reynolds numbers Ret [22,23]. For reactive
shock waves, however, an analogous study that involves both
DNS, capable of capturing the wide range of scales involved
in the problem, and LIA has not yet been accomplished.
As the parameters that would characterize the interaction of
detonation waves with real turbulence flows are too numerous,
a simplified version of the problem is conveniently selected
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in this work: the weak turbulent flow is assumed to be
isotropic and incompressible (upstream density perturbations
are disregarded) and the detonation wave is described with
a one-step Arrhenius model for DNS analysis. For LIA, the
detonation wave is taken as a pure discontinuity, as previously
done in Refs. [27,28], although some results involving the
opposite thick-detonation limit [32] are retrieved and com-
mented. Thus, the governing nondimensional parameters that
affect the turbulence amplification ratio for LIA reduce to the
adiabatic gas index γ , the dimensionless heat release q, and the
propagation Mach number M0. DNS involve more potentially
relevant parameters such as the detonation thickness � (or,
equivalently, the reaction rate) and the activation energy Ea .

The small-amplitude perturbation approach adopted in LIA
is only applicable to situations where viscous and nonlinear
effects are neglected across the detonation wave, then con-
straining the applicability of the model to weak turbulent
perturbations and stable detonation waves. In this sense,
realistic LIA results are expected for sufficiently overdriven
detonations [36,37], with the Mach propagation number M0

being significantly higher than the Chapman-Jouguet value
MCJ. Previous LIA-based works relevant to this paper on
reactive shocks can be cataloged based on the relative value of
the detonation thickness to the characteristic turbulence length.
The limit that assumes the induction layer to be much thinner
than the most representative turbulent structures upstream was
taken in Refs. [27,28,31], while the opposite limit, focused
on small-scale perturbations, was studied in Ref. [32]. The
LIA carried out in this paper, which pertains to the former
configuration, employs the linearized Euler equations and the
perturbed reacting Rankine-Hugoniot relationships. Focusing
most directly on the results of greatest interest, asymptotic
analysis is carried out to compute the long-time effects of
vortical disturbances on the burnt-gas flow. Fourier superpo-
sition for three-dimensional isotropic turbulent fields is later
employed to provide integral formulas for the amplification of
the kinetic energy, enstrophy, and the degree of anisotropy in
the downstream kinetic energy.

An exhaustive simulation of compressible turbulence re-
quires numerical methods that simultaneously avoid excessive
damping of spatial features over a large range of length scales
and prevent spurious oscillations near shocks and shocklets
through robust shock capturing. In this paper, a numerical code
validated in Ref. [33], which uses a high-resolution bandwidth-
optimized scheme (WENO-BO4) with eighth-order-accurate
standard central differences, is employed to compute the
reactive Navier-Stokes equations. The third-order TVD (total
variation diminishing) Runge-Kutta multistage method is used
for time integration. Numerical results are used to provide
further insight on the detonation-turbulence phenomenon and
to address configurations where LIA can not be applied. For
example, with the aid of DNS, the impact of self-induced
oscillations and the effect of the finite reaction rates in the
downstream turbulent structures has been analyzed.

The paper begins by introducing the LIA formalism in
Sec. II. The properties of the perturbation-free detonation
wave are first shown. Then, the interaction with a single-mode
vorticity field is addressed by integrating the Euler equations in
the burnt gas. The long-time response of the detonation wave
is analyzed and the far-field acoustic and rotational-entropic

perturbations in the burnt-gas flow are characterized. The
dependence of the amplitude of the perturbations with the
interaction properties is provided explicitly. Section III shows
the interaction of the reacting shock with three-dimensional
isotropic vorticity fields. The study includes results obtained
with the linear fast-reaction model and DNS. LIA provides
integral formulas for the overall kinetic energy and vorticity
amplification as a function of the adiabatic gas index γ , the
relative heat release q, and the propagating Mach number
M0. Results rendered by the opposite slow-reaction limit
are commented too. The degree of anisotropy in the down-
stream flow is investigated for both nonreactive and reactive
shock waves. DNS are performed to display the detonation
shape and the influence of the detonation parameters on
the vorticity structures. The amplification of the streamwise
and lateral Reynolds stresses through the detonation wave
are computed, along with the total kinetic energy and the
vorticity-amplification ratios. A discussion on both LIA and
DNS is offered at the end of this section. Finally, concluding
remarks are provided in Sec. IV. The transitory evolution of the
planar detonation wave and the Laplace-transform formalism
used to calculate it is shown in Appendix A. Details of the
DNS are given in Appendix B.

II. INTERACTION WITH A TWO-DIMENSIONAL
MONOCHROMATIC VORTICITY FIELD

A. Steady, one-dimensional, ZND detonation front

Following the seminal works of Zel’dovich [38], Neumann
[39], and Döring [40] (ZND) developed independently in
the early 1940s, the perturbation-free detonation structure is
described as a nonreactive planar shock wave followed by
a nonviscous diffusionless reactive layer. The evolution of
the different flow variables across a steady planar detonation
moving with velocity D in a stagnant gaseous mixture is
determined by the reacting Rankine-Hugoniot (RH) jump
conditions. In particular, for a perfect gas with constant
specific-heat ratio γ , the values of the density, pressure,
velocity, and sound speed immediately behind the detonation,
denoted by ρd , pd , Ud , and ad = (γpd/ρd )1/2, can be expressed
in terms of the detonation Mach number

M0 = D/a0 (1)

in the form

Rd = ρd

ρ0
= D

D − Ud

= (γ + 1)M2
0

(γ − κ)M2
0 + 1

, (2)

Pd = pd

ρ0D2
= γM2

0 (1 + κ) + 1

γ (γ + 1)M2
0

, (3)

and

Md = D − Ud

ad

=
√

(γ − κ)M2
0 + 1

γM2
0 (1 + κ) + 1

, (4)

where ρ0, p0, and a0 = (γp0/ρ0)1/2 represent the density,
pressure, and sound speed in the unperturbed fresh mixture
ahead of the detonation, and Md is the downstream Mach
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FIG. 1. Schematic view of a planar detonation wave interacting with a monochromatic shear wave in the fast-reaction limit [27] (left) and
in the slow-reaction limit [32] (right).

number. The parameter

κ = [(
1 − M−2

0

)2 − 4qM−2
0

]1/2
(5)

is a function of the detonation Mach number and of the
dimensionless heat-release parameter q = (γ 2 − 1)q ′/(2a2

0),
with q ′ denoting the amount of chemical heat released in the
detonation per unit mass of gas mixture. For detonations, the
minimum stable propagation Mach number, determined by
the sonic condition downstream Md = 1, is the Chapman-
Jouguet (CJ) value

MCJ = (1 + q)1/2 + q1/2, (6)

for which κ = 0, whereas very strong detonations with M0 �
1 correspond to κ − 1 � 1. Reaction-zone development de-
pends on the properties immediately behind the shock front.
Those, the so-called Neumann values (identified with subscript
N ), are obtained from (2)–(4) by using κ = 1 − M−2

0 , i.e., with
q = 0 in (5). Integration of the steady conservation equations,
with Y indicating the reaction progress variable 0 � Y � 1 as
reactants (Y = 1) proceed to products (Y = 0), yields

p

pN
= 1 + γM2

N

γ + 1
+ γ

γ + 1

√(
1 − M2

N

)2 − 4M2
N

T0

TN
q(1 − Y ),

(7a)

u

uN
= ρN

ρ
= 1 + γM2

N

M2
N(γ + 1)

− 1

M2
N(γ + 1)

×
√(

1 − M2
N

)2 − 4M2
N

T0

TN
q(1 − Y ), (7b)

upon providing the shock boundary condition: p = pN, u =
uN, and ρ = ρN at Y = 1. In a reference frame moving with the
steady precursor shock wave, with xs indicating the distance
from the shock, the spatial-dependent functions for p, u, and ρ

are obtained by simple integration of the conservation equation
for the reaction progress variable

ρu
dY

dxs

= −r (8)

with

r = BρYe−Ta/T (9)

being the reaction rate for one-step Arrhenius-type chemistry,
B referring to the pre-exponential factor, and Ta describing the
activation temperature, defined as the ratio of the activation
energy to the gas constant Ea/Rg . The half-reaction length
�, the distance measured from the shock front at which Y =
1
2 , is taken as the characteristic detonation length, which is
computed as

� = a0

B

M0

RN

∫ 1/2

1

u

uN
exp

(
β

TN

T

)
dY

Y
, (10)

where u/uN and T/TN = (p/pN)(u/uN) are explicit functions
of Y , previously provided in (7).

B. Formulation of the linearized equations
in the fast-reaction limit

In the same manner as in Refs. [27,28,31], the dynamics
of the detonation front excited by weak disturbances upstream
will be described in the fast-reaction limit. In this limit (called
by Korobeinikov [41] “detonation-wave model”), the deto-
nation thickness (∼�) is much smaller than the characteristic
upstream perturbation length λt = 2π/kt , with λt denoting the
Taylor scale of the inflow turbulence and kt the corresponding
wave number. As depicted in Fig. 1 (left), the detonation wave
is then considered a discontinuity wave across which back-
ground and perturbation variables change, with the exclusion
of the tangent velocity that remains invariable. The opposite
limit sketched in Fig. 1 (right), corresponding to relatively
small-size disturbances in comparison with the detonation
thickness � kt � 1, has been addressed in [32] and will not
be considered here explicitly, although a parallel discussion
will be carried out. In that limit corresponding to a relatively
slow reaction velocity, disturbances are mainly governed by
the inviscid weakly reactive Euler equations subject to the
nonreacting Rankine-Hugoniot perturbation equations. Upon
detonation and shock-induced distortion, a set of shear-entropy
and acoustic waves is generated downstream, as sketched in
Fig. 1 for the case of purely rotational perturbation upstream.

As explained in Chu and Kovásznay [42], the upstream and
the downstream linear disturbances can be characterized in
terms of acoustic, entropy, and vortical modes. The upstream
monofrequency perturbation in the fresh-gas reference frame

053104-3



HUETE, JIN, MARTÍNEZ-RUIZ, AND LUO PHYSICAL REVIEW E 96, 053104 (2017)

(x0,y) is determined by the divergence-free velocity perturba-
tion wave, namely,

ū0(x0,y) = u0 − 〈u0〉
ε〈ad〉 = cos(kxx0) cos(kyy),

v̄0(x0,y) = v0 − 〈v0〉
ε〈ad〉 = kx

ky

sin(kxx0) sin(kyy),
(11)

for the streamwise and crosswise perturbations, respectively.
The brackets denote the time-averaged value of the flow
variable, which is effectively null for the upstream velocity
in the stagnant gas reference frame. The dimensionless
factor ε stands for the amplitude of the longitudinal velocity
disturbances and �k = (kx,ky) is the upstream wave-number
vector. The associated nondimensional vorticity wave is

ω̄0(x0,y) = 1

ky

(
∂v̄0

∂x0
− ∂ū0

∂y

)

=
(

1 + k2
x

k2
y

)
cos(kxx0) sin(kyy). (12)

As a result of the interaction with the upstream vorticity
field, the steady and planar front ripples and the burnt-gas fluid
variables are affected consequently. The nondimensional value
of the detonation position is εξ̄ = ky[x0,d (t) − D t], as shown
in Fig. 1. The dimensionless time is defined as τ = adkyt .
Pressure, density, and velocity perturbations downstream,
namely,

p̄ = p − 〈pd〉
εγ 〈pd〉 , ρ̄ = ρ − 〈ρd〉

ε〈ρd〉 ,

ū = u − 〈ud〉
ε〈ad〉 , and v̄ = v − 〈vd〉

ε〈ad〉 (13)

are employed to write the linear conservation equations in
terms of dimensionless order-unity variables. Provided that
p̄ and v̄ are always proportional to cos(y) and sin(y), and
that Reynolds number is sufficiently high for the flow to be
considered inviscid, the linear Euler equations read as

∂ρ̄

∂τ
+ ∂ū

∂(kyx)
+ v̄ = 0,

∂ū

∂τ
+ ∂p̄

∂(kyx)
= 0,

∂v̄

∂τ
− p̄ = 0,

∂p̄

∂τ
= ∂ρ̄

∂τ

(14)

for mass, x momentum, y momentum, and energy. They are
rearranged to yield

∂2p̄

∂τ 2
= ∂2p̄

∂(kyx)2
− p̄ (15)

as the two-dimensional periodically symmetric wave equation
written in the burnt-gas reference frame x = x0 − Udt .

The problem reduces to that of integrating (15) for τ � 0
and within the domain delimited by the leading reflected
sonic wave traveling backwards kyx = −τ and the shock
front moving upwards kyx = Mdτ . One boundary condition
is provided by the isolated-detonation assumption, which
translates into not considering the effect of the acoustic waves
reaching the detonation front from behind. The other boundary

condition is given by the linearized RH relationships

dξ̄

dτ
= Rd (1 − �d )

2Md (Rd − 1)
p̄d + ū0, ūd = 1 + �d

2Md

p̄d + ū0,

ρ̄d = �d

M2
d

p̄d , v̄d = Md (Rd − 1)ξ̄ + v̄0,

(16)

where p̄d , ρ̄d , ūd , and v̄d are values of the nondimensional
perturbations, defined in (13), right behind the detonation
front. The equations involve the density ratio Rd and the Mach
number Md defined in (2) and (4), and the function

�d =
[
1 + M2

0 (1 − κ)
]2

4M2
0 (1 + q)

(17)

that accounts for the exothermicity effect in the perturbation
equations, yielding �d = M−2

0 for nonreactive shock waves.
The initial conditions are readily obtained by knowing

that the detonation is initially planar, so that ξ̄ = v̄d = 0.
Correspondingly, the initial perturbations of pressure and
streamwise velocity must satisfy ūd + p̄d = 0, as dictated by
the first acoustic wave emitted backwards, thereby giving

p̄di
= − 2Md

1 + �d + 2Md

, (18)

as the initial pressure perturbation at the detonation front.

C. Evolution of the detonation front and the burnt-gas flow

In absence of self-induced oscillations characteristic of
unstable detonations, the isolated detonation front exhibits an
asymptotic time-dependent response

p̄d = P cos (ωdτ + φp), (19)

with ωd = MdRdkx/ky indicating the nondimensional oscil-
lation frequency and involving the order-unity function P and
the phase shift φp. It is convenient to define

ζ = ωd(
1 − M2

d

)1/2 = RdMd(
1 − M2

d

)1/2

kx

ky

= RdMd(
1 − M2

d

)1/2

1

tan θ

(20)

as the characteristic oscillation frequency, with θ being the
angle between the incident wave number �k and the direction
of propagation of the unperturbed detonation (see Fig. 1)

The transient evolution and the asymptotic long-time
response of the detonation can be derived by employing
the Laplace-transform technique to the previously mentioned
differential equations. Details of this analysis are shown
in Appendix A, along with computations for the transient
detonation behavior. However, the long-time effects that will
be later used to compute the interaction with an isotropic
spectrum are provided in this section.

The asymptotic behavior of the corrugated detonation can
be inferred from the Laplace-transform expression provided
in (A6), with the poles indicating the type of evolution of the
perturbations, in the dispersion relationship[

2Md

(
1 − M2

d

)
s
√

s2 + 1 + (1 + �d )
(
1 − M2

d

)
s2

+ (1 − �d )RdM
2
d

]
(s2 + ζ 2) = 0, (21)
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where s refers to the Laplace variable applied to the scaled temporal variable r = (1 − M2
d )1/2τ . In this case, as (1 + �d )(1 −

M2
d ) � (1 − �d )RdM

2
d , the first product in (21) owns no poles, then indicating that the only source of asymptotic oscillations

comes from the upstream disturbances through the frequency ζ .
The residues of the Laplace transform (A6) provide the corresponding amplitudes right behind the reactive shock, with P

taking the form of

Phf = −2M2
d (Rd − 1)

2Md

(
1 − M2

d

)
ζ
√

1 − ζ 2 + (
1 − M2

d

)
(1 + �d )ζ 2 − M2

dRd (1 − �d )

(
1 − M2

d

RdM
2
d

ζ 2 − 1

)
(22)

in the high-frequency regime (ζ � 1) and the associated phase shift being null.
On the other hand, in the low-frequency regime (ζ � 1), the asymptotic pressure function is conveniently rewritten as

p̄d = Plf1 cos (ωdτ ) + Plf2 sin (ωdτ ), so that Plf = (P2
lf1

+ P2
lf2

)1/2 in (19), with

Plf1 = −2M2
d (Rd − 1)

[(
1 − M2

d

)
(1 + �d )ζ 2 − M2

dRd (1 − �d )
]

4M2
d

(
1 − M2

d

)2
ζ 2(1 − ζ 2) + [(

1 − M2
d

)
(1 + �d )ζ 2 − M2

dRd (1 − �d )
]2

(
1 − M2

d

RdM
2
d

ζ 2 − 1

)
(23)

and

Plf2 = 4M2
d

(
1 − M2

d

)2
ζ
√

1 − ζ 2

4M2
d

(
1 − M2

d

)2
ζ 2(1 − ζ 2) + [(

1 − M2
d

)
(1 + �d )ζ 2 − M2

dRd (1 − �d )
]2

(
1 − M2

d

RdM
2
d

ζ 2 − 1

)
(24)

being the two orthogonal contributions and φp =
arctan(Plf2/Plf1 ) referring to the phase shift in (19).

Once the amplitude of the pressure perturbations is de-
termined, the rest of the flow variables are subsequently
derived. For instance, the detonation ripple, which asymp-
totically oscillates with the same frequency ωd , is expressed
as ξ̄ = Jlf1 sin (ωdτ ) + Jlf2 cos (ωdτ ) for ζ � 1, and ξ̄ =
Jhf sin (ωdτ ) for ζ � 1, with the corresponding coefficients
being obtained through the RH equations (16) as

Jlf1 = Rd (1 − �d )

2Md (Rd − 1)

1

ωd

Plf1 + 1

ωd

,

(25)
Jlf2 = − Rd (1 − �d )

2Md (Rd − 1)

1

ωd

Plf2

for the long-wavelength regime, and

Jhf = Rd (1 − �d )

2Md (Rd − 1)

1

ωd

Phf + 1

ωd

(26)

for the short-wavelength regime.
To compute the far-field perturbations behind the detonation

front, it is convenient to write separately the contributions
coming from the acoustic fluctuations (which are irrotational
and isentropic) and the steady rotational-entropic perturbations
(that are isobaric) according to

ū(x,τ ) = ūa(x,τ ) + ūr (x), ρ̄(x,τ ) = ρ̄a(x,τ ) + ρ̄e(x),

v̄(x,τ ) = v̄a(x,τ ) + v̄r (x), p̄(x,τ ) = p̄a(x,τ ). (27)

1. Acoustic perturbations downstream

The sonic perturbations satisfy the bidimensional wave
equation (15) that yields the well-known adiabatic dis-
persion relationship ω2

a = (ka/ky)2 + 1. The condition that
the detonation remains isolated from downstream influences

ωd = ωa − Md (ka/ky) is used to obtain

ka

ky

=
Mdωd −

√
ω2

d − 1 + M2
d

1 − M2
d

and

ωa =
ωd − Md

√
ω2

d − 1 + M2
d

1 − M2
d

(28)

as the dimensionless acoustic wave number and the associated
frequency, respectively. It is readily seen that acoustic per-
turbations downstream behave differently when ωd is lower
or greater than (1 − M2

d )1/2, being the latter the condition
for stable acoustic radiation downstream, i.e., the one that
provides real values in (28). In this manner, the down-
stream pressure perturbation field splits into two distinguished
regimes, namely, ζ < 1 or slow frequency regime, where the
amplitude of the acoustic perturbation exponentially decays
with the distance from the detonation front, and ζ > 1 or high
frequency regime, where the acoustic radiation travels in form
of constant-amplitude waves. The critical value ζ = 1 then
indicates the condition at which stable sonic perturbations
move parallel to the detonation front. This breakdown is
similar to that shown in Refs. [1,26,27], where subsonic
and supersonic regimes for acoustic waves downstream are
obtained upon reference frame transformation that yields a
steady interaction with an oblique shock or detonation.

The stable-radiation condition is conveniently rewritten in
terms of the incident shear angle θ . Then, for values of tan θ <

tan θcr = RdMd/(1 − M2
d )1/2 the oscillating detonation front

emits constant-amplitude sonic waves. As pointed out in Fig. 5
of Ref. [27], the value of tan θcr (our definition for θ is the
complementary angle of that used in [27]) is found to reach
a constant value for highly overdriven detonations, while
it grows steeply for weakly overdriven detonations, reach-
ing θcr = π/2 for M0 = MCJ. The corresponding analytical
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expressions for tan θcr in both limits are, respectively,

tan θcr |M0�MCJ =
(

γ + 1

γ − 1

)1/2

and

tan θcr |M0−MCJ�1 ∝
(

M0

MCJ
− 1

)−1/4

. (29)

The asymptotic far-field solution of the acoustic distur-
bances is written in terms of monofrequency functions, rep-
resenting stable traveling fronts in the high-frequency domain
only (ζ > 1). Then, the functions for the sonic contributions
of pressure, density, and velocity variables are

p̄ = ρ̄a = P cos (ωaτ − kax),

ūa = Ua cos (ωaτ − kax), (30)

v̄a = Va sin (ωaτ − kax),

respectively. The acoustic velocity-perturbation amplitudes
are proportional to the pressure changes through Ua =
P (ka/ky)/ωa and Va = P/ωa , with P provided in (22). The
value of the dimensionless wave number ka/ky and frequency
ωa associated to the traveling acoustic waves can be found in
(28). It is seen that ka/ky can be either negative or positive, the
former representing the sonic waves propagating downwards
in the burnt-gas reference frame, and the latter denoting
the waves moving upwards, although never catching up the
detonation wave as dictated by the isolated-front boundary
condition. The detonation oscillation frequency ωd = 1 marks
the standing acoustic wave regime, therefore separating the
left-traveling solution ωd > 1 from the right-traveling regime
(1 − M2

d )1/2 < ωd < 1 in the burnt-gas reference frame.
The dimensionless kinetic energy associated to the sonic

perturbations is given by 1/2(|ūa|2 + |v̄a|2) = 1/2P2, with
the value of P computed in Fig. 2 as a function of the relative
incident shear angle θcr − θ , in degrees, for different values of
overdrive M/MCJ. The value of θcr , corresponding to ζ = 1,
shows little variation with the overdrive factor, yielding 64.52◦,
65.45◦, and 67.33◦ for M/MCJ = 1.5, 2, and 5, respectively.
The right-side panel corresponds to the stable detonation
radiating condition ζ > 1, then representing the long-time
value of the pressure perturbations amplitude downstream
within the domain (−τ < kyx � Mdτ ). The acoustic waves
at the leading edge downstream kyx ∼ −τ , however, convey

FIG. 2. Pressure perturbation P as a function of the relative
incident shear angle θcr − θ for ζ < 1 (left) and ζ > 1 (right). The gas
properties are determined by γ = 1.4 and q = 1, and the overdrive
degree is M/MCJ = 1.5, 2, and 5. Red points represent the neutral
transmission conditions.

information of the transient evolution derived in Appendix A
and computed in Fig. 16. There exists a neutral-transmission

mode corresponding to P = 0, or ζ ∗ = Md

√
Rd/

√
1 − M2

d >

1 as seen in (22). In this condition, the reacting shock oscillates
with no generation of sound. For ζ > ζ ∗ the phase reverses
giving negative values for P . The left-side panel corresponds
to values for nonstable radiating condition ζ < 1, so this
amplitude is only representative of pressure perturbations right
behind the reacting front x = Mdτ . It is readily observed that
P decreases with the overdrive factor and that most of the
acoustic kinetic energy is generated in a very narrow zone
within the domain |θcr − θ | � 1 or |ζ − 1| � 1.

The acoustic disturbances stably radiated from the detona-
tion wave (ζ > 1) propagate with velocity �va = ad k̂a in the
burnt-gas reference frame (see Fig. 1). The sonic wave points
in direction

k̂a = (cos θa, sin θa)

=
⎛
⎝Md ζ −

√
ζ 2 − 1

ζ − Md

√
ζ 2 − 1

,

√
1 − M2

d

ζ − Md

√
ζ 2 − 1

⎞
⎠ (31)

so that the sound energy flux �� carried by a planar acoustic
wave in the system of coordinates in which the fluid is at rest
is �� = adEsk̂a , with Es = ρda

2
d p̄2 accounting for the energy

density of the sonic wave.
Written in the detonation-front reference frame, the normal

to the sound wave is not aligned with the direction of prop-
agation of energy �va = ad (k̂a − Mdx̂) and the energy density
is modified according to (Md − cos θa)Es . The streamwise
component of the sound energy flux is conveniently scaled
with the incident turbulent flux, namely, 1/2ρ0D(|u2

0| + |v2
0 |),

yielding

φx = �x

1/2ρ0D
(∣∣u2

0

∣∣ + ∣∣v2
0

∣∣)
= M−1

d (1 − Md cos θa)(Md − cos θa)P2 sin2 θ, (32)

with φx being a dimensionless order-unity quantity. The value
of φx is computed in Fig. 3 as a function of the angle θ ′ formed
between streamwise component and the vector �va , which
reads as

cos θ ′ = cos θa − Md√
1 + M2

d − 2Md cos θa

, (33)

there exhibiting two maxima (a two-wing shape in the polar
inset similar to that shown in Ref. [18] for nonreactive shock
waves). The plot has rotational symmetry around the x̂ axis.
The value of φx is zero for θ ′ = π/2 and θ ′ = π , the former
representing the radiation frontier ζ = 1 or θa = cos−1(Md ),
and the latter corresponding to the limit ζ � 1 or θa − π �
1. The other value that produces no sound energy flux is
determined by the condition P = 0, which corresponds to ζ =
ζ ∗. This value, along with the angle of emission corresponding
to the maximum energy flux in each wing, depends on the
overdrive factor, as can be inferred in Fig. 3.

It was found in Ref. [18] that stronger shock waves generate
more intense energy flux pointing backwards, while crosswise
wings are barely affected by shock intensity. By way of
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FIG. 3. Dimensionless acoustic energy flux φx as a function of
the angle θ ′. The gas properties are determined by γ = 1.4 and q = 1,
and the overdrive degree is M/MCJ = 1.5, 2, and 5. The inset shows
the same curves in a polar plot.

contrast, when heat release is considered, the amplitude of
both quasistreamwise and crosswise wings are appreciably,
and contrarily, affected by the overdrive. Higher overdrives
are seen to produce noise whose intensity is mainly pointing
backwards, while detonation with smaller overdrives tend to
produce noise moving parallel to the detonation surface.

2. Vortical-entropic perturbations in the burnt gas

As viscous and heat transport processes can be neglected
in first approximation for very large Reynolds numbers, the
rotational-entropic disturbances generated behind the reacting
shock are isentropically convected downstream with the fluid
particles. The monochromatic functions

ρ̄e = Re cos (Rdkxx + φe),

ūr = Ur cos (Rdkxx + φr ), (34)

v̄r = Vr sin (Rdkxx + φr )

represent the spatial dependence of the far-field entropic-
rotational perturbations in the burnt-gas reference frame, with
Re being the amplitude of the isobaric density disturbances,
and Ur and Vr being the amplitudes of the streamwise and
transverse solenoidal velocity perturbations. The asymptotic
monofrequency functions shown in (34) are computed in
Fig. 18 along with the spatial distribution that accounts for
the transient effects for kyx ∼ 1. It is there observed that the
approaching time towards the asymptotic solution significantly
depends on characteristic frequency.

The amplitude Re is determined by the RH relation-
ship upon acoustic contribution subtraction, yielding Re =
P(�d − M2

d )/M2
d in absence of upstream density perturba-

tions. For upstream isentropic conditions, downstream density
perturbations are all generated at the detonation front, then
yielding φe = φp = arctan(Plf2/Plf1 ) for the associated phase
shift. Similarly, temperature perturbations, obtained through
the perfect gas equation of state, are produced by the perturbed
detonation, yielding T̄a = (γ − 1)p̄ and T̄e = (1 − �d/M

2
d )p̄

for the acoustic and entropic contributions, respectively.

The amplitude of the longitudinal and transverse rotational
velocity disturbances are

Ur = M2
d

M2
d + (

1 − M2
d

)
ζ 2

� and

Vr =
ζMd

√
1 − M2

d

M2
d + (

1 − M2
d

)
ζ 2

�, (35)

respectively, with � indicating the amplitude of the
dimensionless vorticity disturbances ω̄ = (∂v̄r )/(∂kyx) −
(∂ūr )/(∂kyy) = g(kyx) sin(kyy). Linear analysis, detailed in
(A12), provides

g(kyx) = � cos (Rdkxx + φr )

= �1 cos (Rdkxx) + �2 p̄d (τ = kyx/Md ) (36)

for the far-field dimensionless vorticity perturbations. As
dictated by (36), there exist two sources for the vorticity
disturbances in the burnt gas, namely, the direct amplification
across the detonation wave due to the overall compression
effect and the contribution due to the detonation front
corrugation. The former, represented by the factor �1 =
Rd (1 + k2

x/k2
y) = Rd/ sin2 θ , is noticeably affected by the

relative chemical energy as the value of the mass compression
ratio Rd increases with the overdrive, being RN the maximum
value for a given M0. The latter, which includes the factor
�2 = (Rd − 1)(1 − �d )/(2Md ), is responsible of vorticity
perturbations generated by the discontinuity front rippling.
This factor, neglected in rapid distortion theory (RDT) [12],
may interact constructively or destructively with �1 in forming
the total vorticity perturbation amplitude �. In particular, it
is found that � = �1 + �2 Phf for ζ � 1, and � = (�2

r +
�2

i )1/2 for ζ � 1, with �r = �1 + �2 Plf1 and �i = �2 Plf2

representing the two orthogonal contributions. The associated
rotational phase shift, null in the high-frequency regime, is
φr = �2 Plf2/(�1 + �2 Plf1 ) for ζ < 1.

Computations for � reveal that this factor diverges for
values of θ � 1 (ζ � 1), as this limit corresponds to highly
stretched solenoidal structures upstream that are further com-
pressed downstream. It is therefore convenient to compute
the actual vorticity amplification factor, that is |ω′|/|ω′

0| =
� sin2 θ , as shown in Fig. 4. It is also computed the factor
�1 sin2 θ = Rd as a measure of the compression ratio of
the vortices when front-corrugation effects are neglected, as
assumed in RDT. The curves show that intensity of the total
vorticity field is generally smaller than the contribution pre-
dicted by RDT alone, except for very narrow zones close to the
critical angle θcr (ζ = 1). This is in agreement with Ref. [12],
where the authors found overestimated values for the turbulent
amplification ratios, which are dominantly proportional to
the value � shown in Fig. 4. In the low-frequency limit
corresponding to θ ∼ π/2 or ζ � 1, the factor � approaches
to unity, indicating that upstream vorticity perturbations are
not modified by the detonation passage. On the other hand, the
factor � tends to �1 in the high-frequency limit, indicating
that detonation-rippling contribution is negligible. In neutral-
transmission regime ζ = ζ ∗, the vorticity field is only affected
by overall one-dimensional compression �1 sin2 θ = Rd , as
no pressure perturbations (nor entropic) are generated. The net
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FIG. 4. Total vorticity amplification ratio � sin2 θ (black lines)
and �1 sin2 θ = Rd (thin gray lines) as a function of the incident shear
angle θ . The gas properties are determined by γ = 1.4 and q = 1, and
the overdrive degree is M/MCJ = 1.5, 2, and 5. Red points represent
the neutral transmission conditions.

effect of overdriving is seen to amplify the amplitude of the
vorticity perturbations, an expected result that is in consonance
with Fig. 6 in Ref. [27]. The effect of heat-release increase for a
constant Mach number, then weakening of overdrive degree, is
found to be in agreement with LIA results in the thick-reaction
limit [32].

The longitudinal and transverse rotational velocity per-
turbations are used to define the rotational kinetic energy
1/2(U2

r + V2
r ). The values of Ur and Vr tan θ are plotted

in Fig. 5 as a function of the incident shear angle θ for
q = 1, γ = 1.4, and different overdrive values M0/MCJ =

FIG. 5. Longitudinal (upper) and transverse (bottom) rotational
velocity amplitudes Ur and Vr tan θ , respectively, as a function of the
incident shear angle θ . The gas properties are determined by γ = 1.4
and q = 1, and the overdrive degree is M/MCJ = 1.5, 2, and 5.

1.5, 2, and 5. Computations show that each of the amplitudes
develops a pronounced finite-amplitude peak at the critical
angle θcr corresponding to ζ = 1. The variation of the different
amplitudes with θ is rapid in the near-transition region, in
consonance with Fig. 2. The amplitude Ur decreases with the
overdrive intensity except for incident angles close to π/2
(ζ � 1), where the value of Ur asymptotically approaches to

Ur |ζ−1�1 =
(2 + γ )M2

0 − 1 +
√

M4
0 + 1 − 2M2

0 (1 + 2q)

(γ + 1)M2
0

+O(ζ ). (37)

That limit is representative of situations where the upstream
perturbation field is dominated by highly stretched vortices
in the longitudinal direction, with no or very little variation
on the streamwise direction. On the other hand, the limit
associated to vortices highly stretched in the crosswise
direction yields Ur |ζ�1 = R−1

d + O(ζ−1) for the streamwise
rotational velocity disturbances, indicating that longitudinal
perturbation is only affected by the overall compression ratio
Rd , as observed in Fig. 5. This is in agreement with Fig. 4
that shows that shock-corrugation effect does not play any
role in downstream eddies setup for ζ � 1, where the only
contribution for the rotational field behind comes from the
overall mass-compression effect.

Computations forVr reveal that it approaches to 0 for ζ � 1
and diverges for ζ � 1 since the downstream perturbation
amplitude |v′

r | is scaled with upstream longitudinal perturba-
tion ε. It is therefore convenient to investigate the function
|v′

r |/|v′
0| = Vr tan θ as a measure of the direct amplification

factor, as shown in Fig. 5. The corresponding low-frequency
limit for the transverse rotational contribution provides

Vr tan θ |ζ−1�1

=
(2 + γ )M2

0 − 1 +
√

M4
0 + 1 − 2M2

0 (1 + 2q)

1 + γM2
0 −

√
M4

0 + 1 − 2M2
0 (1 + 2q)

+ O(ζ ),

(38)

while that corresponding to the high-frequency limit simply
yields Vr tan θ |ζ�1 = 1 + O(ζ−1). As expected, detonation-
rippling effect is negligible when ζ � 1 so that vortices
downstream are only affected by the wave-compression effect.
The transverse contribution is found to remain unaltered after
the detonation in this limit. It is important to remark that the
limit representing high-frequency disturbances may arise from
very small eddies upstream and/or very fast detonation waves,
the former situation being possibly out of the limits of validity
of the fast-reaction domain.

III. INTERACTION WITH THREE-DIMENSIONAL
ISOTROPIC VORTICITY FIELD

A. Turbulent kinetic energy

As in previous works [31,32], the three-dimensional up-
stream flow is assumed to be homogeneous and isotropic,
so the analysis is easily conducted by direct superposition
of linear perturbations [43], whose amplitude has been
computed in the previous section. Therefore, in this case, the
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amplitude of the incident shear wave ε depends exclusively on
the wave-number amplitude |�k| = k. The three-dimensional
problem is conveniently formulated in spherical polar coordi-
nates, so that the upstream velocity field holds (ū0,v̄0,w̄0) =
ε(sin θ sin ϕ, cos θ sin ϕ, cos ϕ) and the associated wave-
number vector is �k = k(− sin θ, cos θ sin ϕ, cos θ cos ϕ). The
upstream mean-square disturbances are

〈
ū2

0

〉 =
∫

k3
|ū0|2dk3 = 8π

3

∫ ∞

0
ε2(k)k2dk,

〈
v̄2

0

〉 = 〈
w̄2

0

〉 =
∫

k3
|v̄0|2dk3 = 2π

3

∫ ∞

0
ε2(k)k2dk (39)

and the corresponding turbulent kinetic energy (TKE) is

1

2

(〈
ū2

0

〉 + 〈
v̄2

0

〉 + 〈
w̄2

0

〉) = 1

2

∫ ∞

0
E(k)dk , (40)

with E(k) representing the three-dimensional energy spec-
trum, as provided in (B6) for DNS. Although it is true that
post-detonation turbulence spectrum depends on the function
E(k), the kinetic energy amplification ratio does not as long as
E(k) is isotropic. After some straightforward algebra involving
the reduction of the three-dimensional geometry into an
equivalent two-dimensional case (see Ref. [18] for details),
the amplification ratio across the detonation wave takes the
form

K = 〈ū2〉 + 〈v̄2〉 + 〈w̄2〉〈
ū2

0

〉 + 〈
v̄2

0

〉 + 〈
w̄2

0

〉 = 1

2

∫ π/2

0
(ū2 + v̄2) sin3 θ dθ + 1

2
.

(41)

As the far-field amplitude of the velocity perturbations is
explicitly written as a function of the frequency ζ , the
normalized probability-density distribution

P(ζ ) = 3

2
sin3 θ

dθ

dζ
= 3

2

M4
dR4

d

√
1 − M2

d[
M2

dR2
d + ζ 2

(
1 − M2

d

)]5/2
, (42)

satisfying
∫ ∞

0 P(ζ )dζ = 1, is introduced to rewrite the kinetic
energy as

K = 1

3

∫ ∞

0
(ū2 + v̄2)P(ζ )dζ + 1

2
. (43)

Equivalently, the amplification ratios for the longitudinal
and transverse kinetic energy contributions can be computed
with the aid of the probability density distribution. They are
conveniently split into rotational and acoustic contributions,
yielding

L = Lr + La =
∫ ∞

0
U2

r P(ζ )dζ +
∫ ∞

1
U2

a P(ζ )dζ (44)

for the longitudinal part, and

T = Tr + Ta = 1

2

[∫ ∞

0
V2

r P(ζ )dζ +
∫ ∞

1
V2

a P(ζ )dζ + 3

2

]
(45)

for the transverse contribution. The value of the amplitudes
Ur and Vr are provided in (35) as a function of ζ , and the
acoustic amplitudes are Ua = P (ka/ky)/ωa and Va = P/ωa .
It is straightforward to obtain the total turbulent kinetic

FIG. 6. La (dotted-dashed line), Ta (dashed line), and Ka (solid
line) as a function of the overdrive parameter M0/MCJ for γ = 1.4,
q = 1 (red), and q = 0 (black).

energy through K = Kr + Ka , with Kr = (Lr + 2Tr )/3 and
Ka = (La + 2Ta)/3 representing the rotational and acoustic
contributions, respectively.

The acoustic kinetic energy contribution, computed in Fig. 6
for La (dotted line), Ta (dashed line), and Ka (solid line),
is found to be relatively important uniquely for detonation
regimes close to Chapman and Jouget. Both longitudinal and
transverse components for the acoustic kinetic energy diverge,
a token of the failure of linear theory in reproducing long-
time responses in the limit M0/MCJ − 1 � 1. Computations
also reveal that longitudinal contribution grows much faster
when the overdrive factor approaches unity. It is seen that,
for order-unity values of M0/MCJ − 1, acoustic kinetic energy
is negligible when compared to rotational contribution, the
latter being computed in Fig. 7. It has been found in [32]
that sonic perturbations generated by sufficiently small-size
perturbations are not affected by exothermicity, then providing
an acoustic kinetic energy as that shown in Fig. 6 for q = 0.

Figure 7 shows computations for Lr (dotted-dashed line),
Tr (dashed line), and Kr (solid line) for nonreactive q = 0
(black) and reactive shock waves q = 1 (red) traveling through
diatomic gases, γ = 1.4, as a function of the propagation
Mach number for MCJ < M0 < 10. The curves in black, which
correspond to the canonical case of nonreacting shock waves
propagating through an isotropic vorticity field, have been
widely shown in literature since Ribner seminal work [2]. The
arrows represent the effect of exothermicity in the limit of
small-size rotational disturbances, according to Ref. [32]. To
compute the total kinetic energy in the slow-reaction limit, the
amplitude of the arrow must be multiplied by the factor q̇|k| =
� dq/dt/uN |k| � 1, defined in [32], which measures the
relative rate of change of the perturbation variable with respect
to base-flow changes. It is observed that both fast-reaction and
slow-reaction limits predict nearly similar qualitative results
for the effect of exothermicity on the turbulent perturbations.
It is only for sufficiently low Mach numbers that longitudinal
kinetic energy exhibits an opposite response.

Figure 8 displays shaded contours for Lr and Tr as a
function of q and M0/MCJ. Isocontour curves exhibit a nearly
vertical trajectory for q > 3, revealing a very weak dependence
of the turbulent kinetic energy with heat release for relatively
large values of q. It should be noticed that q ∼ 3 is a relatively
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FIG. 7. Lr (dotted-dashed line), Tr (dashed line), and Kr (solid
line) as a function of the detonation Mach number M0 for γ = 1.4,
q = 0 (black), and q = 1 (red). Arrows represent the effect of small-
scale disturbances on the dominant nonreactive results [32].

small value in conventional reactive mixtures. As a matter
of example, the dimensionless heat release of stoichiometric
methane-air mixtures is about q ∼ 5 in standard conditions.
Both Lr and Tr approach a plateau regime for M0/MCJ � 1,
corresponding to the nonreactive strong-shock limit, whose
analytical-closed expressions can be found in Ref. [18].

The linear fast-reaction theory is useful for predicting
general trends and for quantifying scaling laws for the
turbulent kinetic energy within a wide range of parameters.
The breakdown of perturbations into the so-called Kovásznay
modes enables the study of the kinetic energy, split into
rotational and acoustic contributions, and the derivation of
analytical-integral expressions. However, the model presented
cannot address situations where the upstream characteristic
length is of the same order as the detonation thickness and/or
in where nonlinear changes arise. It is therefore convenient

Lr Tr

M0/MCJ

q

1

2

3

4

0
1 2 3 4

M0/MCJ

q

1

2

3

4

0
1 2 3 4

FIG. 8. Shaded contours for the longitudinal (left panel) and
transverse (right panel) kinetic energy ratios as a function of q and
M0/MCJ.

TABLE I. Computational parameters employed on the different
numerical simulations performed.

Case Mt q M0
M0
MCJ

E0
RgT0

β B (1/ns) � (mm) �/λt

NR 0.1 0 3.62
RU 0.1 1 3.62 1.5 50 14.35 5519.1 0.047 ∼1
RS1 0.1 1 3.62 1.5 10 2.87 0.0973 0.048 ∼1
RS2 0.1 1 3.62 1.5 10 2.87 0.973 0.005 ∼0.1

to complement previous results with numerical simulations
capable of capturing these effects. With this aim, the reactive
Navier-Stokes equations are integrated in four distinguished
scenarios that include the interaction of isotropic turbulence
with a nonreactive shock (NR), a reactive unstable detonation
(RU), reactive stable thick detonation (RS1), and a reactive
stable thin detonation (RS2). The details of the numerical code
and computations employed here can be found in Appendix B,
with the computational parameters collected in Table I.

Numerical results of longitudinal and transverse compo-
nents of the kinetic energy are shown in Fig. 9 as a function
of the dimensionless streamwise coordinate xt . The curves
correspond to average-computed values along the two other
orthogonal coordinates yt and zt . The spatial coordinates are
scaled with the Taylor microscale λt . The asymptotic value for
the longitudinal and transverse kinetic energy amplification
predicted by LIA is also shown. As expected, the amplitude of
the perturbations in the reactive-unstable case is much stronger
than those in stable situations. For stable situations, which are
separately shown in the right-hand side panel of Fig. 9, the
effect of heat release is found to increase the amplitude of
perturbation right behind the shock front, with the smaller �/λt

exhibiting higher peaks. This effect is, however, diminished far
behind the shock, product of the flow expansion and the strong

FIG. 9. DNS for the longitudinal (upper panels) and transverse
(lower panels) kinetic energy, scaled with preshock values, as a
function of the streamwise direction for M0 = 1.5MCJ, q = 1, and
γ = 1.4. Circles denote nearly complete depletion of reactant Y =
0.01. Left panels display the reactive unstable scenario RU.
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FIG. 10. DNS for the turbulent kinetic energy K , scaled with
preshock values, as a function of the streamwise direction for
M0 = 1.5MCJ, q = 1, and γ = 1.4. Circles denote nearly complete
depletion of reactant Y = 0.01. The left panel displays the reactive
unstable scenario RU.

dissipative effects. The longitudinal and transverse kinetic
energy shown in case RS1 is in qualitative agreement with LIA
in the slow-reaction limit, where amplification factors at the
end of the reactive zone are smaller than those generated by the
shock front for the same Mach number M0. Nonetheless, such
comparison may be coincidental due to the strong numerical
dissipation within the reaction zone. For case RS2, longitudinal
kinetic energy amplification is found to be in fair agreement
with LIA in the fast reaction limit, while crosswise kinetic
energy computed by DNS is higher than that predicted by LIA.

The combination of longitudinal and transverse kinetic
energy provides the total kinetic energy K = (L + 2T )/3,
shown in Fig. 10 for the same DNS cases used in Fig. 9. Since
longitudinal and transverse kinetic energy display an opposite
response to heat release in LIA, total kinetic energy shows little
variation with heat release for this particular Mach number.
The effect of detonation thickness in the burnt-gas turbulent
kinetic energy is found to reduce the intensity of perturbations
as a result of numerical dissipative effects. Right behind the
shock, the turbulent kinetic energy is seen to be greater for
shorter detonation thicknesses. When compared to nonreactive
shocks, cases RS1 and RS2 predict higher turbulent energies
for the same xt , although case RS1 prognosticates smaller val-
ues for K when looking at the values at the end of the reaction
zone. As expected, reactive unstable detonations exceed the
linear perturbation regime by one order of magnitude.

B. Vorticity amplification factor

The average rotational motion behind the detonation is
appropriately measured by the so-called enstrophy W defined
as the square of the vorticity modulus, nondimensionalized
with (kad )2. As the normal component of the vorticity remains
invariable after detonation passage, the total contribution is
conveniently split into the longitudinal and perpendicular
parts, namely,

W =
〈
ω̄2

x + ω̄2
y + ω̄2

z

〉
〈
ω̄2

o,x + ω̄2
o,y + ω̄2

o,z

〉
= 1

3
+ 2

3

〈
ω̄2

y + ω̄2
z

〉
〈
ω̄2

o,y + ω̄2
o,z

〉 = 1

3
+ 2

3
W⊥, (46)

FIG. 11. Wz (dotted-dashed line), W⊥ (dashed line), and W (solid
line) as a function of the detonation Mach number M0 for γ = 1.4,
q = 0 (black), and q = 1 (red).

with W⊥ being the amplification factor of the averaged squared
vorticity, normal to the direction of detonation motion. The
two-dimensional equivalent factor

Wz =
〈
ω̄2

z

〉
〈
ω̄2

o,z

〉 =
∫ ∞

0
�2 R2

dM
2
d

R2
dM

2
d + (

1 − M2
d

)
ζ 2

P(ζ )dζ (47)

is conveniently employed in computing W⊥ = (Rd + 3Wz)/4.
Computations for the breakdown components Wz, W⊥, and
W are provided in Fig. 11 as a function of the detonation
Mach number M0 > MCJ for γ = 1.4, q = 0 (black), and q =
1 (red). The curve for W⊥ (black) is the similar to Fig. 5
in Ref. [14] for nonreacting shock waves in air γ = 1.4. As
Wz and Rd decreases when increasing q, the effect of heat
release is found to be same for all contributions including W .
This trend is in agreement with Fig. 4, where monochromatic
vorticity perturbations are found to reduce their intensity with
q in the whole domain of the incident angle θ . The lowering
effect of exothermicity on downstream vorticity disturbances
in the fast-reaction limit is found to be in qualitative agreement
with slow-reaction-limit results [32].

Results of DNS are displayed in Fig. 12 for the same four
scenarios investigated in Figs. 9 and 10. It is found that DNS for
nonreactive (NR) and reactive-thin detonation (RS2) provide
the following amplification factors for the perpendicular
contribution: W⊥ ∼ 13.6 and W⊥ ∼ 8, respectively, which
agree fairly well with LIA results 14.02 and 8.72, respectively.
The total vorticity amplification is also well captured by the
numerical simulations, providing W ∼ 9.2 and W ∼ 5.8 for
NR and RS2, which do not differ much from the values 9.7
and 6.1 obtained with the fast-reaction LIA. The case RS1,
corresponding to relatively thick detonations, is affected by
viscous dissipation within the reaction region, so that the
level of enstrophy is relatively low when the combustion is
completed. Excluding the unstable case, which is particularly
different from the other scenarios, the values of the vorticity
perturbations collapse far behind the leading shock due to
viscous dissipation processes.

Further information is nonetheless depicted in the three-
dimensional (3D) computational results presented here. For
instance, the mean vorticity perturbations ωt = (ω2

x + ω2
y +

ω2
z )1/2, scaled with ut/λt , are shown in Fig. 13 in a slice

plane at the center of the computational box yt = (6.61π )/2
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FIG. 12. DNS for the perpendicular (upper panels) and total
(lower panels) enstrophy, scaled with preshock values, as a function
of the streamwise direction for M0 = 1.5MCJ, q = 1, and γ = 1.4.
Circles denote nearly complete depletion of reactant Y = 0.01. Left
panels display the reactive unstable scenario RU.

as a function of the streamwise xt = x/λt and vertical zt =
z/λt coordinates at a given instant. We can infer from the
DNS output that both postshock (NR) and post-detonation
(RU, RS1, RS2) vortical structures look qualitatively similar
in all cases when excited with the same isotropic turbulent
preshock flow (note the invariant field in xt ∈ [0,5]), although
they reveal several particular features of each computed case.

FIG. 13. Instantaneous vorticity patterns for NR, RU, RS1, and
RS2 obtained at the cut plane yt = (6.61π )/2. Black contour lines
on the reactive cases correspond to the isolines of nearly complete
depletion of reactant Y = 0.01.

The energy liberated by reactant consumption conforms
a thermal source that modifies the density of the fluid,
advection capacity, and momentum transport coefficients,
which come into an interplay with pressure perturbations to
affect vortex structures. However, sufficiently weak reactions
may not affect the vorticity field behind the shock wave to a
substantial extent, as can be noted from comparison between
NR and RS1-RS2 cases in Fig. 13, where structure size and
composition are comparable as well as their amplitude. There,
vortices are compressed across the shock wave and then slowly
expanded due to the decay of turbulence. Nevertheless, sharper
kinetics of the chemical reaction, given by drastic changes
of the chemical-reaction parameters in RU, drive a stronger
amplification of the vorticity field in addition to a higher spatial
perturbation frequency in the transverse direction.

A measurement of combustion progress can be inferred
from the mass fraction of reactant at each stage, essential to
describe the detonation process. Isocontour lines are drawn
on Fig. 13 to represent a Y = 0.01 mass fraction of reactant,
proving the unstable reaction to produce intricate structures of
reacting scalar shown by the closed contour lines. These pock-
ets of unburnt fuel are found further downstream than an earlier
depletion stage of Y = 0.01 and caused by strongly enhanced
perturbations, which portrait the coupling between exothermic
reactions and vorticity perturbations mentioned above. On the
other hand, stable configurations display continuous depletion
of scalar yielding a smooth character in terms of reaction
process and localized continuous isocontour lines, which as
shown in Fig. 9 are related to postshock longitudinal and
transverse perturbations of the kinetic energy much smaller
than in the precedent case. The moderately larger value of
the frequency factor B in RS2 with respect to RS1 (BRS2 ∼
10BRS1) increases the amplitude of vortical perturbations but
keeps their structure almost unaltered. However, consistent
with this variation, the fuel-depletion distance from the shock
is reduced from ∼7 to ∼0.8 length units in the streamwise
direction.

In absence of perturbations, the evolution of the fuel mass
fraction as a function of the distance from the shock is
trivially obtained through the 1D integration of (8) and (9).
Upstream perturbations, however, impose nonhomogeneous
conditions that distort the detonation front and affect the
average burning rate. Computations for the interaction of the
planar reacting shock, in the four scenarios displayed in Table I
with the upstream turbulent flow described above, provide
averaged values for the turbulent half-reaction length �turb.
An unexpected outcome is that the value of the half-reaction
length in turbulent conditions is found to be larger than that
computed in perturbation-free conditions, providing �turb/� =
1.28, 1.35, and 1.23 for RU, RS1, and RS2, respectively. For
sufficiently weak perturbations behind the shock, LIA results
in the slow-reaction limit may apply. By direct inspection
of the temperature perturbations behind the shock, T̄s/p̄s =
γ − (M2

0 M2
d )−1, it is found that they are mainly negative for

incident angles below θcr and positive otherwise. It gives
the possibility of finding both accelerating or decelerating
regimes in the overall burning rate depending on the upstream
spectrum. In the high-activation-energy limit β � 1, where
the reaction region is clearly differentiated from the induction
zone, the amplitude of the weak perturbations ε might be
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of the same order as β−1 � 1, then leading to order-unity
changes in the reaction rate. Consequently, the reaction front
and the leading shock are effectively coupled by the entropic
and acoustic modes. The Newtonian approach γ − 1 � 1
provides two distinguished limits: strongly overdriven det-
onations (entropic coupling) or low-exothermic detonation
in CJ conditions (acoustic coupling) [37]. The computa-
tions conducted in this work are placed within these two
limits.

C. Anisotropy degree

The effect of the detonation passage on the turbulent kinetic
energy, computed in Figs. 6–8, reveals different responses for
longitudinal and transverse contributions, then breaking the
predetonation isotropic condition. After detonation, it is found
that the kinetic energy of the perturbations is mainly stored
in transverse perturbations for sufficiently strong detonations.
In order to compute the degree of anisotropy downstream, the
factor

� = 〈v̄2
⊥〉 − 2〈v̄2

‖〉
〈v̄2

⊥〉 + 2〈v̄2
‖〉

= 1 − 4〈ū2〉
〈v̄2〉 + 〈ū2〉 = 1 − 4L

3K + L

(48)

is conveniently introduced in a similar fashion as in Ref. [18].
This factor is bounded by � = −1 and +1, with the former
representing turbulent flows dominated by streamwise velocity
perturbations. The opposite limit represents turbulent flows
whose longitudinal contribution is negligible. The value � = 0
then represents isotropic velocity perturbations downstream.

The anisotropy factor is quantified in Fig. 14 for nonreactive
and reactive shock waves as a function of M0/MCJ − 1.
In order to characterize the degree of anisotropy corre-
sponding to rotational disturbances only, the value of �r =
1 − 4Lr/(3Kr + Lr ) is also computed. The graph reveals
that lateral contribution is dominant for most representative
situations, being the longitudinal contribution dominant for
weak detonation conditions only, where acoustic influences
peak, in consonance with Fig. 6. A distinguishing feature
of the reacting case is that � is a monotonic function of
M0/MCJ, departing from a longitudinal-dominant turbulent
flow. Computations for the effect of the adiabatic index show

FIG. 14. Anisotropy factor � as a function of the overdrive
M0/MCJ − 1 for nonreactive (black) and reactive (red) cases. Dotted
lines represent the value of the rotational anisotropy factor �r .

that low-compressible gases γ ∼ 2 are found to remain mainly
isotropic after shock (detonation) passage for finite shock
(detonation) intensities. It is worth commenting that � = 1
is theoretically obtained in the high-compressibility strong-
wave limit γ − 1 � 1 and M0 � 1. Isotropic conditions
downstream are marginally found; for instance, LIA predicts
� = 0 at M0 = 1.93 for nonreacting shock waves, while
reacting shock waves with q = 1 are found to create isotropic
turbulent flows for M0/MCJ = 1.24 (M0 = 2.98). Numerical
simulations show that dissipative effects, when considered,
do not play any significant role in the energy transfer
between streamwise and lateral perturbations, then rendering
a degree of anisotropy that remains fairly constant with time
[17,22].

D. General comments on LIA and DNS results

Quantitative comparison between DNS and LIA results is
a difficult task even for canonical configurations. LIA does
not account for nonlinear nor viscous effects and fails in
reproducing the wide range of scales involved if a reactive flow
is considered. On the other hand, DNS account for viscous
dissipation, which makes the turbulent kinetic energy decay
behind the leading shock. DNS also encounter difficulties
in reproducing ideal discontinuities. The former issue was
addressed in Larsson et al. [22], who proposed a modified
far-field turbulent kinetic energy computed by neglecting
the dissipation term, which renders results in fairly good
agreement with LIA. The latter aspect was investigated in
Ref. [23], and it was found that only when there is a significant
difference in scale between the shock thickness and the
incoming disturbances, viscous and nonlinear effects become
negligible during the interaction process, making LIA coherent
with DNS. This condition, which is not easily satisfied in
computations due to numerical-diffusive effects reproducing
the shock front, is even harder to fulfill when detonation waves
are contemplated.

It is known that for nonreactive shock waves, LIA estima-
tions, in comparison with DNS results, overpredict the inten-
sity of lateral disturbances and underpredict the longitudinal
perturbations, although total kinetic energy rendered is in good
agreement [17,22]. Compared to previous results found in
literature, however, the effect of heat release on the turbulent
kinetic energy does not portray a clear trend. For instance,
the thick-detonation limit developed in Ref. [32] and finite-
reaction-rate numerical results performed in Refs. [29,30]
predict a lowering effect of exothermicity on the longitudinal
kinetic energy for sufficiently low Mach numbers. These nu-
merical investigations show that solutions with nonharmonic
response may arise when the size of upstream perturbations are
of the same order of the detonation thickness, for which the
present fast-chemistry linear analysis would become clearly
inaccurate. It suggests that perturbation dynamics within the
reaction region is pivotal, resulting in lowering or increasing
streamwise perturbations when the reaction occurs gradually
or suddenly behind the shock, respectively. By way of contrast,
both thin- and thick-detonation limits agree in the lowering
effect of exothermicity in the transverse kinetic energy and
in the amplitude of the average vorticity disturbances. When
looking at the amplitude of the vorticity perturbations behind
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the detonation, both nonreactive and fast-reaction-limit results
obtained through LIA agree fairly well with DNS. This
accordance is better than that seen for the turbulent kinetic
energy computations.

A plausible explanation for the almost-general lessening
effect of heat release prognosticated by LIA might be rendered
by the mass compression ratio factor Rd , which is always
smaller than that found across the shock due the postshock
gas expansion. This is clearly observed when looking at
the post-detonation vorticity perturbations since a dominant
contribution of the vortex transformation is due to the shrinking
response across the detonation front. As shown in Figs. 4
and 5, weaker overdrives result in stronger longitudinal
velocity perturbations, yet weaker transverse velocity and
vorticity disturbances. In addition, the globally exothermic
reaction involved in the combustion process is sensitive to
temperature perturbations as those generated across the shock
front. The leading shock, subsonic with respect to the reacting
gas, responds to such perturbations, then conforming an
acoustically coupled system that evolves with time as shown
in Fig. 13. For relatively thin detonations �/λt ∼ 0.1, a value
that still stands far from being the idealized discontinuity
condition [23], the amplitude of turbulent perturbations is
found to be higher than that computed when �/λt ∼ 1, and
then closer to those values predicted by LIA as shown for
the longitudinal kinetic energy on Fig. 9. Further studies, as
those conducted in [23], would be needed in this direction
to confirm that LIA results are reliable in a wider range of
parameters.

IV. CONCLUSIONS

The LIA on detonation-turbulence interaction is an exten-
sion to previous theoretical works [27,28,31] that includes
transient histories for single-mode perturbations and overall
transfer functions associated with isotropic vorticity spectra.
The results presented, including explicit analytic formulas for
all quantities of interest, are used to test the linear response of
detonations to weak vorticity perturbations, for conditions that
render the basic planar solution stable with the characteristic
size of the disturbances much larger than the detonation
thickness. The effect of overdrive and relative heat release on
the turbulent kinetic energy, vorticity, and anisotropy degree
has been investigated in a wide range of the parametric domain.
It is found that the heat release in the detonation mostly
reduces the relative fluctuation intensities downstream below
the levels that would exist behind the inert leading shock,
in consonance with the thick-detonation limit [32]. In terms
of the qualitative response of the detonation against weak
perturbations, it is found that downstream disturbances are
mainly generated through the leading wrinkled shock for
small-scale perturbations [32], and across the detonation front
for large-scale perturbations.

DNS are performed to take into consideration the effect
of similar-size perturbations and nonstable dynamics in the
detonation evolution. These two effects are incorporated in
the model through the frequency-collision factor and the
activation energy in the reaction rate equation. Numerical
viscous dissipation within the reaction zone hampers the
comparison with LIA. An expected finding is that nonstable

detonation waves, those occurring in detonations characterized
by weak overdrive factors M0/MCJ − 1 � 1 and relatively
high activation energy Ea/(RgT0) � 1, generate downstream
perturbations that are stronger, by one order of magnitude, than
upstream perturbations. They are not a result of upstream ex-
citement but rather of self-induced oscillations that ultimately
lead to very strong waves traveling perpendicular to the leading
shock. By way of contrast, when the detonation is stable
(steady for perturbation-free conditions), the amplitude of the
perturbations generated through the detonation wave is of the
same order as upstream perturbations. For the cases considered
in the computations, heat release is found to increase the
amplitude of the perturbations right behind the shock front,
with respect to the nonreactive case with similar propagation
Mach number. The effect of detonation thickness reveals
that thicker detonations generate weaker turbulent fluctuations
right behind the shock.
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APPENDIX A: TRANSIENT EVOLUTION FOR
TWO-DIMENSIONAL MONOCHROMATIC

VORTICAL DISTURBANCES

Computations for the interaction with 3D isotropic turbu-
lent flows consider the long-time response of the detonation
wave as that responsible of the perturbations downstream. It
is therefore convenient to analyze the transient response of the
detonation wave so that the validity of asymptotic analysis is
quantified.

Figure 15 depicts the interaction of the detonation front with
the shear-wave sheet described in (11). Once the detonation
enters the perturbation region it is distorted and a set of
acoustic, entropic, and vortical perturbations are generated
behind the front. To describe burnt-gas flow dynamics, the
temporal evolution of the detonation front must be resolved

FIG. 15. Sketch of the interaction of an initially planar detonation
wave with a monochromatic vorticity field.
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from τ � 0, with τ = 0 being the moment at which the initially
planar detonation front encounters the perturbed field. This
evolution is governed by the sound wave equation (15) that
couples the detonation front with the burnt-gas conditions.
To this end, a similar approach as that used in Ref. [18] is
employed here, with the hyperbolic transformation

kyx = r sinh χ, τ = r cosh χ (A1)

conveniently applied. It is readily seen that χ = constant
represents a planar front moving in the burnt gas along
the x axis, then sweeping the burnt-gas domain from the
weak discontinuity kyx = 0 (χ = 0) to the detonation front
kyx = Mdτ (tanh χd = Md ). The sound-wave equation (15)
reduces to

r
∂2p̄

∂r2
+ ∂p̄

∂r
+ rp̄ = 1

r

∂2p̄

∂χ2
, (A2)

while the detonation boundary condition at the front becomes

dξ̄

dr
= Rd (1 − �d )

2(Rd − 1)Md

√
1 − M2

d

p̃d + 1√
1 − M2

d

cos (ζ r),

(A3a)

1

r

∂p̄

∂χ
= −1 + �d

2Md

∂p̄

∂r
− M2

d (Rd − 1)√
1 − M2

d

ξ̄

+ (Rd − 1)ζ

Rd

sin (ζ r). (A3b)

The development continues by applying the Laplace trans-
form to (A2) and (A3). In particular, as shown previously
[18], the condition that the detonation remains isolated from
downstream influences can be used in (A3) to generate from
(A2) the algebraic equations

s�d (s) = Rd (1 − �d )

2(Rd − 1)Md

√
1 − M2

d

Pd (s) − 1√
1 − M2

d

s

ζ 2 + s2
,

√
s2 + 1Pd (s) − p̃di

= −1 + �d

2Md

[
sPd (s) − p̃di

] − M2
d (Rd − 1)√
1 − M2

d

�d (s) + (Rd − 1)ζ

Rd

ζ 2

ζ 2 + s2
,

(A4)

where

Pd (s) =
∫ ∞

0
p̄d (r) exp(−sr)dr , �d (s) =

∫ ∞

0
ξ̄d (r) exp(−sr)dr (A5)

are the Laplace transforms of p̃d and ξ̄ with respect to the variable r , respectively, and p̃di
is the initial pressure perturbation at

the detonation front.
Eliminating �d (s) and solving for Pd (s) yields

Pd (s) =
(
1 − M2

d

)
(2Md + 1 + �d )s

2Md

(
1 − M2

d

)
s
√

s2 + 1 + (1 + �d )
(
1 − M2

d

)
s2 + (1 − �d )RdM

2
d

p̃di

+ 2Md

(
1 − M2

d

)(
1 − R−1

d

)
2Md

(
1 − M2

d

)
s
√

s2 + 1 + (1 + �d )
(
1 − M2

d

)
s2 + (1 − �d )RdM

2
d

(
ζ 2 − RdM

2
d

1 − M2
d

)
s

(s2 + ζ 2)
. (A6)

The transient evolution for the pressure perturbation behind the detonation wave is determined by the inverse Laplace transform
of (A6), and it is found that

p̄d (τ ) = − 2

π

∫ 1

0
cos

[
z
(
1 − M2

d

)1/2
τ
]
f (z)dz + 2(Rd − 1)

πRd

(
ζ 2 − M2

dRd

1 − M2
d

)∫ 1

0

cos
[
z
(
1 − M2

d

)1/2
τ
] − cos (ωdτ )

ζ 2 − z2
f (z)dz,

(A7)

with

f (z) = 4M2
d

(
1 − M2

d

)2
z
√

1 − z2

4M2
d

(
1 − M2

d

)2
z2(1 − z2)2 + [(

1 − M2
d

)
(1 + �d )z2 − M2

dRd (1 − �d )
]2 (A8)

being an auxiliary integration function. The shock-oscillation
frequency ωd = ζ (1 − M2

d )1/2. The solution given in (A7)
describes the evolution of the detonation pressure for τ > 0,
which approaches for τ � 1 a periodic solution [see Eq. (19)],
in which the detonation front oscillates harmonically with a
frequency proportional to ζ with a constant amplitude.

It is worth pointing out that the rate at which the transient
solutions (A7) approach the permanent periodic solutions for

large times is determined by the branch point associated with√
1 − z2 in (A8), i.e., with

√
s2 + 1 in (A6), which represents

the generation of evanescent sound-wave perturbations that
in the general case decay asymptotically in time like τ−3/2.
Observation of (A7) and (A8) indicates that this decay rate
changes, however, for infinitely strong detonations with M0 →
∞, for which, from (A6), poles lay on the branch points
since Rd → (γ + 1)/(γ − 1), Md → √

(γ − 1)/(2γ ), κ → 1,
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FIG. 16. Temporal evolution of pressure perturbations behind the detonation front traveling at M0 = 1.5MCJ, for q = 1 and γ = 1.4, for
two different upstream frequencies kx/ky .

and �d → 0. In this limit, the decay towards the permanent
solution would follow a τ−1/2 law, as determined by the new
mathematical structure of the integration function f (z), which
develops a factor

√
1 − z2 in the denominator. This effect was

first noticed by Fraley [44] for very strong shock waves, and
it is also recovered here for strong detonations. In addition,
irrespective of the strength of the detonation, the modes with
incident frequency ζ = 1 also show a slow decay from the
initial solution, proportional to τ−1/2, as can be inferred from
the factor ζ 2 − z2 appearing in the denominator of the second
integrals in (A7). Modes with values of ζ close to ζ = 1 will
therefore decay more slowly than those with either higher or
lower frequencies.

In Fig. 16 it is displayed the detonation pressure evolution as
a function of τ predicted by linear theory in the fast-reaction
limit for two different regimes: high-frequency (ζ > 1) and
low-frequency perturbations (ζ < 1). Similarly as found in
[18,31], the decay of the transient evolution towards the
asymptotic solution follows a τ−3/2 law for ζ �= 1. For ζ = 1,
however, the decay follows a τ−1/2 law as determined by the
new mathematical structure of the integration function (A8) in
this limit, then suggesting that the peak shown in Figs. 2, 5,
and 4 may not represent realistic conditions for the long-time
response. This, however, has very little impact on turbulent
kinetic energy averages.

The detonation rippling evolution is easily derived from the
linearized RH equations, yielding

ξ̄ (τ ) = − 2

π

∫ 1

0

sin
[
z
(
1 − M2

d

)1/2
τ
]

z
(
1 − M2

d

)1/2 f (z)dz + sin (ωdτ )

ωd

+ 2(Rd − 1)

πRdωd

(
ζ 2 − M2

dRd

1 − M2
d

)

×
∫ 1

0

ζ sin
[
z
(
1 − M2

d

)1/2
τ
] − z sin (ωdτ )

z(ζ 2 − z2)
f (z)dz.

(A9)

The transient effects of the detonation front in the burnt-gas
flow can be also addressed with analytical techniques. In

particular, the pressure field is described, in terms of the
Laplace variable s as

Pd (s,χ ) =
√

s2 + 1 cosh (χd − χ ) + s sinh (χd − χ )√
s2 + 1

P̂d (s,χ ),

(A10)

with P̂d (s,χ ) being the Laplace transform of the pressure
perturbations behind the detonation (A10), but evaluated at
Pd [s = s cosh (χd − χ ) + √

s2 + 1 sinh (χd − χ )]. The pres-
sure perturbation field in Cartesian coordinates kyx and kyy is
obtained through the inverse Laplace transform of (A10) and
using the hyperbolic transformation shown in (A1), namely,
r = √

τ 2 − (kyx)2 and χ = tanh−1(kyx/τ ). The distinguished
nonradiating and radiating regimes are clearly identified in
Fig. 17, where the pressure field has been computed for ζ < 1
(left) and ζ > 1 (right). For low-frequency oscillations, the
amplitude of the pressure perturbations at the detonation front
exponentially decays behind it. On the other hand, stable
sonic radiation is obtained for high-frequency oscillations, as
predicted by the asymptotic analysis described in (28) and the
posterior paragraph. Although not shown in the paper, DNS
have been performed with the same numerical parameters
as in Fig. 17. Both nonradiating and radiating regimes are
well captured by the simulations, with the only difference that
far-field amplitudes decay due to numerical dissipative effects.

As it has been shown in [18], the vorticity generated behind
the detonation wave at kyx = 0 seeds the unstable rippling of
the weak surface separating two clearly distinguished regions:
the vorticity-free zone within −τ < kyx < 0 (as reflected
sound waves that perturb this space are irrotational) and
the rotational region within 0 < kyx < Md τ (see sketch in
Fig. 15). The weak discontinuity evolves as a Richtmyer-
Meshkov unstable surface, with the amplitude of wrinkled
surface growing linearly with time. From that point forth, the
instantaneous vorticity and entropy disturbances deposited by
the detonation wave within the space 0 < kyx < Md τ remain
frozen to the fluid particles, in absence of diffusive effects.
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FIG. 17. Spatial distribution of pressure perturbations in the burnt gas for a detonation front traveling at M0 = 1.5MCJ, with q = 1 and
γ = 1.4, and for two different upstream frequency ratios kx/ky = 1/4 (left) and 1 (right).

The linear perturbations in the velocity field satisfy the
equation

∂2 �̄v
∂τ 2

= ∇ × ∇ × �̄v + ∇2 �̄v, (A11)

with the breakdown of irrotational-acoustic and steady-
rotational perturbations obeying, separately,

∂2 �̄va

∂τ 2
= ∇2 �̄va and ∇2 �̄vr = ∂ω̄

∂(kyy)
êx − ∂ω̄

∂(kyx)
êy .

(A12)

The function ω̄(x,y) = g(kyx) sin (kyy), with g(kyx) provided
in (36), represents the spatial distribution of the vorticity field.
It is seen that rotational perturbations are incompressible, and
then isobaric in the linear limit. The acoustic perturbations are
readily obtained through the Euler momentum equations

∂ūa

∂τ
= − ∂p̄

∂(kyx)
and

∂v̄a

∂τ
= p̄, (A13)

with the pressure function p̄ being computed in Fig. 17. The
spatial distribution of the rotational-velocity perturbations is
calculated by tracking the vorticity left behind by the oscillat-
ing detonation front from τ = 0. As described in Ref. [18], the
solenoidal disturbances generated by the detonation wave are

ūr (x,y) =
⎡
⎣ūp + exp (−kyx)√

1 − M2
d

Pd (s = sinh χd )

⎤
⎦ cos (kyy),

(A14)

v̄r (x,y) =
⎡
⎣ ∂ūp

∂(kyx)
− exp (−kyx)√

1 − M2
d

Pd (s = sinh χd )

⎤
⎦ sin (kyy),

(A15)

with the particular solution ūp being provided by

ūp(kyx) = −2�2

π

∫ 1

0
f (z)

cos
[(

M−2
d − 1

)1/2
z kyx

]
1 + (

M−2
d − 1

)
z2

dz

+ 2�2
(
1 − R−1

d

)
π

(
ζ 2 − RdM

2
d

1 − M2
d

)

×
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0

f (z)

ζ 2 − z2

{
cos
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M−2

d − 1
)1/2

z kyx
]

1 + (
M−2

d − 1
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− cos
[(

M−2
d − 1
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]
1 + (
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)
ζ 2

}
dz

+�1
cos

[(
M−2

d − 1
)1/2

ζ kyx
]

1 + (
M−2

d − 1
)
ζ 2

.

Similarly, provided that p̄d (τ ) is given in (A7), the entropic
perturbations generated by the detonation wave are

ρ̄e(kyx) = �d − M2
d

M2
d

p̄d

[
τ = (

M−2
d − 1

)1/2
kyx

]
, (A16)

with p̄d obtained previously in (A7). It is easily seen that
ρ̄e = 0 in absence of pressure perturbations, i.e., in neutral
transmission conditions occurring for ζ = ζ ∗.

The upper panel in Fig. 18 displays the transient and asymp-
totic predictions for rotational and entropic disturbances as a
function of the streamwise coordinate kyx. The conditions are
M0 = 1.5MCJ, M0 = 1.5MCJ, q = 1, γ = 1.4, and ζ = 1.5. It
is observed that the amplitude of ρ̄e decays asymptotically
towards P(�d − M2

d )/M2
d = 0.074. The rotational velocity

field is found to match the asymptotic solution in a shorter
distance. The lower panel shows the two-dimensional vector
field plot for rotational-velocity perturbations superposed to
the isocontours of the entropic-density disturbances for the
same conditions. The scale of the isobaric density perturba-
tions is bounded between 0.176 and −0.118, the maximum
and minimum value for ρ̄e in the domain kyx > 0.

APPENDIX B: DETAILS OF THE DIRECT
NUMERICAL SIMULATIONS

The absence of an accessible analytical theory that includes
nonlinear effects and situations where the characteristic length
of turbulence is comparable to the detonation thickness calls
for other techniques, such as accurate numerical simulations
capable of capturing these effects. With this aim, a set of
computations, with a bandwidth-optimized WENO scheme
that was presented in [33], has been performed.
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FIG. 18. Upper panel: entropic-density and longitudinal rotational-velocity perturbations as a function of kyx for M0 = 1.5MCJ, q = 1,
γ = 1.4, and ζ = 1.5. Lower panel: two-dimensional vector field plot for rotational-velocity perturbations superposed to the isocontours of
entropic-density disturbances for a detonation wave traveling at the same conditions.

The DNS algorithm computes the governing equations for
compressible reactive flows, including the three-dimensional
Navier-Stokes equations, the conservation equations of

chemical species Y , the conservation equation of the total en-
ergy Et = p/[γ (γ − 1)M2

0 ] + ρ[u2/2 + Q(1 − Y )], and the
perfect-gas equation of state:

∂ρ

∂t
+ ∂(ρui)

∂xi

= 0, (B1)

∂(ρui)

∂t
+ ∂(ρuiuj )

∂xj

= −∂
[
p/

(
γM2

0

)
δij

]
∂xj

+ ∂

∂xj

[
μ

Re

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)]
, i = 1,2,3 (B2)

∂(ρY )

∂t
+ ∂(ρujY )

∂xj

= ∂

∂xj

(
μ

RePrLe

∂Y

∂xj

)
− KρYe−Ta/T , (B3)

∂Et

∂t
+ ∂(ujEt )

∂xj

= −∂uj

[
p
/(

γM2
0

)]
∂xj

+ ∂

∂xj

[
uiμ

Re

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)]
+ ∂

∂xj

[
μ

RePr(γ − 1)M2
0

∂T

∂xj

]
, (B4)

p = ρRgT , (B5)

where the dimensionless heat release per unit mass of reactant
burnt is q = 50. A power-law approximation is used for the
viscosity-coefficient dependence with temperature variation
μ = (T/T0)0.7. The reference Reynolds number is Re =
(ρ0ut lt )/μ0 = 498.8, which has been determined with μ0 =

2 × 10−5 kg/(m s), the length scale lt = 1.154 × 10−4 m,
and velocity ut = 86.65 m/s, values to be employed in
the nondimensionalization of the Navier-Stokes equations
integrated numerically. The Reynolds number associated to the
Taylor microscale, computed with the root mean square of the
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preshock velocity fluctuations and λt = 3.49 × 10−5 m yields
Ret = 37.8. The Prandtl number is set to Pr = (μ0cp)/κ = 0.7
and Lewis number Le = κ/(ρ0cpD) = 1. As the Reynolds
numbers is significantly high in detonation-type flows, the
effect of species and temperature diffusion is expected to show
a subdominant effect in the reaction region. For this reason,
these dimensionless numbers are kept constant in the four
scenarios considered. As in (9), an Arrhenius-type one-step
global chemical reaction has been considered and the reference
frame is set to move with the steady detonation wave.

Periodic boundary conditions are imposed in all three
directions to produce the isotropic turbulence feed, enclosing
a 1923 mesh discretization of a cubic domain of size (2π )3.
The dimensional computation domain (2πlt )3 is scaled with
the upstream Taylor microscale λt to provide a volume
(6.61π )3 in dimensionless quantities. In consonance with the
isolated-detonation boundary condition employed in LIA, an
equivalent nonreflective boundary condition is used in the
numerical simulations to prescribe the outflow boundary and
avoid acoustic reflections in the subsonic flow.

The upstream turbulence employed to feed the flow compu-
tations is described by statistical values of the quantities that
characterize the flow field, which in turn may depend on both
position and time. Nevertheless, the turbulent flow upstream is
assumed to be isotropic and homogeneous in agreement with
the LIA developed in previous sections. With the same spirit as
in [33], a divergence-free velocity field with constant pressure
is used as an initial condition for the simulation decaying
turbulence characterized by the energy spectrum [45]

E(k) = Ak4 exp

(
−2k2

k2
0

)
, (B6)

where k stands for the wave number, k0 is the wave number at
which the spectrum peaks, and A is the free constant chosen
to tune a specified initial kinetic energy. In particular, the
values of A = 4.434 × 10−3 and k0 = 4 have been selected
in the performed simulations. The homogeneous isotropic
turbulence is characterized by a negative skewness of the

velocity derivative

Si = − 〈(∂u′
i/∂xi)3〉

〈[(∂u′
i/∂xi)2]3/2〉 , (B7)

which represents the rate of production of vorticity through
vortex stretching. Time decay is stopped after the fluctuating
fields are stabilized to a mean velocity derivative skewness
S = (S1 + S2 + S3)/3 = −0.5, that makes them reasonably
representative of real turbulence. The Kolmogorov length
scale η = (〈μ0/ρ0〉3/ε)

1/4
, with ε representing the rate of

dissipation of the kinetic energy, must be resolved with a
sufficiently fine spatial mesh where �x/η is small enough
or as commonly defined, where the dissipation spectra are
extremely small kη � 1.5, so that the simulations performed
with kmaxη = 4.69 adequately serve to describe isotropic
turbulence upstream [46]. It is clear that kmaxη changes behind
the detonation wave, yielding the most restrictive condition
kmaxη = 1.53 in the unstable case.

In particular, the simulations cover distinguished scenarios
that include the interaction with a nonreactive shock wave,
case NR, as a reference canonical situation and three different
reactive cases, whose computational parameters are collected
in Table I. The case RU describes the effect on the turbulent
flow of a reactive-unstable detonation wave, by considering
a relatively high activation energy Ea = 50RgT0 and a rela-
tively low overdrive factor M0 = 1.5MCJ, when the upstream
perturbation length scale is of the same order of the detonation
thickness �/λt ∼ 1, with � being the half-reaction length
provided by (10) in steady laminar conditions. In addition, two
stable scenarios are tested by varying the reaction parameter to
a lower temperature-sensitive case, that is, considering lower
activation energy instead, Ea = 10RgT0. Case RS1 is set to
represent situations where �/λt ∼ 1, while case RS2 computes
thinner detonation waves �/λt ∼ 0.1 by increasing the value
of the frequency factor of the reaction rate B. Then, the effect
of the induction length in the turbulent kinetic energy can be
studied independently, with the global detonation properties
kept invariant. Both cases RS1 and RS2 have been previously
proven stable with perturbation-free simulations.
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