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Role of matrix behavior in compressive fracture of bovine cortical bone
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In compressive fracture of dry plexiform bone, we examine the individual roles of overall mean porosity, the
connectivity of the porosity network, and the elastic as well as the failure properties of the nonporous matrix,
using a random spring network model (RSNM). Porosity network structure is shown to reduce the compressive
strength by up to 30%. However, the load-bearing capacity increases with an increase in either of the matrix
properties—the elastic modulus or the failure strain threshold. To validate the porosity-based RSNM model
with available experimental data, bone-specific failure strain thresholds for the ideal matrix of similar elastic
properties were estimated to be within 60% of each other. Further, we observe the avalanche size exponents to
be independent of the bone-dependent parameters as well as the structure of the porosity network.
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I. INTRODUCTION

The compressive failure of brittle materials with a preex-
isting porosity network, such as wood, rock, bone, etc., is a
complex process that involves a series of failure events, well
separated in time [1,2]. The fracture behavior of such materials
is typically characterized by using experimental data of the
macroscopic response, fracture paths, as well as avalanche size
distribution evaluated from the acoustic emissions. The power
law observed in the acoustic emission statistics implies the
process is “scale-free,” thus drawing analogies with critical
phenomena and self-organized criticality [3]. For predictive
modeling of large events or final failure of such materials,
it is of significance to understand the specific roles of the
porosity network, the heterogeneity of the matrix, etc., in the
signatures of the fracture data. Cortical or compact bone, found
in the midshaft of load-bearing bones such as femurs and
tibiae, is such a brittle, porous biomaterial. Being a living
tissue, the local microstructure and porosity network of the
cortical bone evolves in response to the mechanical stresses
to which the bone is subjected, and this in turn modifies the
local mechanical properties. Understanding the relationship
between microstructure and mechanical properties is crucial
for applications such as the extraction of bone grafts [4,5],
in designing mechanically compatible implants [6–8] and
porous scaffolds for bone tissue engineering [9,10], in order to
interpret loading history [11–13], evaluate the effectiveness
of chemical and physical therapeutical measures for bone
healing [14,15] etc. An important aspect of this understanding
is the development and testing of models that incorporate
microstructural features and predict material properties such
as failure strength, elastic modulus, fracture paths, etc. Such
models, if general enough, would also be of use in understand-
ing failure behavior of a wider class of brittle materials with
a well-defined porosity network, such as wood, rock [16,17],
etc.
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Compared to the detailed experimental characterization
of the microstructure-property relationship of the different
microstructures [18–31], the number of predictive microscopic
models that are able to reproduce characteristic features of the
complex fracture processes involved are few in number. This
is primarily because the fracture process in complex hetero-
geneous quasibrittle materials such as bone involves multiple
pores and microcracks that interact and evolve stochastically
prior to final failure [32], which is difficult to capture using
deterministic models. Thus, modeling such materials using
classical fracture mechanics theory or the standard finite-
element method restricts the scope mostly to finding effective
elastic behavior or to finding the resistance to growth of a single
macroscopic crack [33–35]. Statistical models such as the
random spring network model (RSNM), which approximates
the continuum using a network of springs with statistically
distributed characteristics, are much better suited for studying
fracture in such systems. The RSNM has been successful
in providing insight into the role of disorder in the fracture
behavior of heterogeneous material systems with no preex-
isting crack [3], reproducing features such as transition from
brittle to nonbrittle macroscopic response [36], avalanche size
distributions [37], and qualitative [38,39] and quantitative [40]
features of the fracture of composite materials. In the context of
bone, simple one-dimensional models of parallel springs with
statistically distributed properties have been used to simulate
the characteristic quasibrittle softening seen in tension and
bending [41] as well as in compression of cortical bone [42].
Including spatial effects, the three-dimensional RSNM has
been used to model cancellous bone, i.e., spongier bone found
near joints, to account for percolation effects in the power-law
variation of strength with porosity [43,44]. However, none of
these studies takes into account the role of the structure of
the porosity network. This is of particular importance since
the structure of the porosity network, and not merely the mean
porosity, is known to be important. Microstructures with larger
mean porosity have sometimes higher compressive strengths
than those with lower porosity [29,31,45].

Cortical bone has predominantly two distinct
microstructures—plexiform bone, which is brick-shaped
and has woven bone and vasculature sandwiched within
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regular lamellae, and Haversian bone, which has cylindrical
secondary osteons that run along the length of the bone [46].
Under compression it has been found that mechanisms of
failure are noticeably different between the microstructures.
In plexiform bone, damage is localized on weak radial planes
resulting in prismatic fracture surfaces, while in Haversian
bone the presence of osteons deflects the crack paths and
leads to meandering crack paths [31].

To model the splitting fracture of plexiform bone under
compression, recently we developed a RSNM model that
incorporates the details of the porosity network of the bone
[47]. In our porosity-based RSNM (see Sec. II for more
details), the local spring constants were determined based on
the experimentally obtained porosity network of the plexiform
bone. The effect of the porosity network on the macroscopic
compressive response of the bones was examined under
the simplifying assumption that material properties such as
Young’s modulus, Poisson’s ratio, and compressive strength
are independent of the bone. While the model reproduced
the overall force deflection curves, qualitative fracture paths,
and avalanche exponents reasonably well, the correlation
between the predicted and observed compressive strengths
was not good. However, material properties are expected to be
dependent on the bone, as well as the history of loading, and the
discrepancy between model predictions and experimental data
was attributed to ignoring bone-dependent material properties.
In this paper, we introduce bone-dependent material properties
into the model by performing a detailed parametric study of
the model by varying the model parameters systematically.
From experimental energy-dispersive spectroscopy, we find
that the elastic modulus is more or less independent of
the bone. However, to obtain the experimental macroscopic
response, we have to use sample-dependent strain thresholds.
We conclude that samples with similar mean porosity and
mineralization perhaps have different material organization,
leading to variations in load-bearing capacity. Further, the
role of the porosity network is examined by comparing the
predictions with results from the homogenized distribution
of equivalent porosities. While homogenization leads to an
alteration of the failure paths and strengths, it leaves the
avalanche exponents largely unchanged.

The remainder of the paper is organized as follows.
In Sec. II, we describe in detail the model and how the
porosity-based RSNM is obtained from the experimental CT
scan images. In Sec. III, results from parametric studies of
the model parameters are discussed in terms of their effect
on failure paths and load-bearing capacity. Bone-specific
properties are iteratively estimated to match with experiments,
and predictions are compared with simulations using bone-
independent parameters. The exponents of avalanche size dis-
tributions are also presented for networked and homogenized
porosity.

II. MODEL

In this section, we describe the formulation of the two-
dimensional spring network model for plexiform bone [47],
and the generalizations that will be studied in this paper. The
incorporation of the experimentally obtained CT scan images
into a porosity-based two-dimensional RSNM involves several

Plexiform bone

3-d
CT scan images

10 representative
volumes

2 dimensional
porosity network

2-d RSNM

Determine E, as a
function of porosity

Determine spring constants
as a function of porosity

E, determined
spring constants

Porosity based RSNM

FIG. 1. Flow chart detailing the steps involved in developing a
porosity-based RSNM.

steps that are summarized in the flowchart shown in Fig. 1. We
describe each of the steps below.

We use the experimental data, reported earlier in Mayya
et al. [47], in which cubical samples from the anterior section
of the mid-diaphysis of a bovine femur [see Fig. 2(a)] were
tested in compression along the length of the bone. CT scan
images of the samples were obtained before and after com-
pression failure [47]. Sample CT scan images of the pre- and
postcompression samples are reproduced in Figs. 2(c) and 2(d).
The samples were chosen from regions that have a plexiform
microstructure, as is evident from the brick-shaped layered
structure seen in the optical micrograph shown in Fig. 2(b).

FIG. 2. (a) Cubic sample of size 5 mm × 5 mm × 5 mm with
faces perpendicular to the longitudinal, radial, and transverse di-
rections. (b) Optical micrograph of the longitudinal face showing
plexiform bone. CT scan images (tangential view) of the specimen
(c) before fracture and (d) after fracture, where blue points indicate
higher porosity. Data are for sample III.
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FIG. 3. (a) Stack of representative domains, each spanning over
500 μm in the tangential direction, obtained from porosity analysis.
(b) Spring stiffness is based on the % porosity at the node (pixel). (c)
A typical representative domain and (d) corresponding homogenized
configuration for sample III.

The CT scan produces 500 slices, each slice corresponding
to 10 μm. The grayscale image in each slice is converted to
a binary image (0 or 1) by setting a threshold determined
from the valleys of the probability distribution function of the
grayscale. Here 1 corresponds to a pore and 0 to a nonpore. The
500 slices are now divided into 10 representative volumes, each
consisting of 50 slices, corresponding to 500 μm thickness
in the tangential direction [see Fig. 3(a)]. The thickness
was chosen such that it is much larger than the mean pore
size but less than the interpore distance. A representative
volume was mapped onto a two-dimensional square network
where the porosity at a given location was obtained as the
average of the binary data over the 50 slices. Thus, for each
location, a porosity value varying from 0% to 100% was
obtained. A typical representative volume, shown in Fig. 3(c),
is fairly dense, having mean porosity lower than 5%, and it
consists of fine pores that are evenly distributed and extend
across the height of the bone sample while being slightly
inclined to the longitudinal direction. The two-dimensional
porosity network, thus obtained from the CT scans, is an
input for the RSNM model constructed in the following
manner.

A representative volume is modeled using a (150 × 150)-
sized square lattice where the nearest- and next-nearest-
neighbor pairs of particles are connected by linear springs
(see Fig. 4). In addition to the energy due to extension of the
springs, we associate a bending energy for any deviation of the
angle between two adjacent linear springs [see θijk shown in
Fig. 4(b)] from the initial value of π/4. The potential energy of
the network, V , has contributions from an extension of springs,

FIG. 4. (a) Schematic diagram of the spring network model. (b)
Unit cell of the network showing the linear springs attached to a site.
Also shown is an example of an angle θijk whose distortion is resisted
by a bending spring.

a distortion of the angle between springs, and also a repulsive
contact force modeled as Hertzian contact between particles:

V =
∑

〈ij〉

kij

2
δr2

ij +
∑

〈ijk〉

cijk

2
δθ2

ijk

+α
∑

mn

(d − rmn)
5
2 �(d − rmn), (1)

where 〈ij 〉 denotes those pairs of particles that are connected
by linear springs, the spring constant being kij and the
extension being δrij . cijk is the spring constant that resists the
distortion in angle, δθijk , between a triad of particles, 〈ijk〉.
The contact between any two particles m and n is initiated
by a Heaviside function, �(x), only when the interparticle
distance, rmn, is less than the particle diameter, d. The elastic
contact force parameter α is a material constant [48]. If the
spring constants of the horizontal or vertical, diagonal, and
torsional springs are 2k, k, and c, respectively, then the system
is isotropic with an elastic modulus, E, and Poisson’s ratio, ν,
given by [49]

E = 8k(k + ca−2)

3k + ca−2
, ν = k − ca−2

3k + ca−2
, (2)

where a is the lattice spacing. We account for the elastic
compliance of the testing machine by connecting the sites
in the top and bottom rows of the spring network to springs
whose compliance matches with that of the machine used
in experiments. In the simulations, the displacements are
applied incrementally from the top. For every increment, the
system is equilibrated to its minimum-energy configuration by
numerically integrating the equations of motion in terms of the
position vectors, ri :

d2ri

dt2
= −∇ri

V − γ
dri

dt
, (3)

using the velocity-Verlet algorithm [50]. The damping coeffi-
cient γ dissipates energy as well as any transient elastic waves
that may be generated during breakage, and it brings the system
to its minimum-energy configuration [37]. For each increment
in the applied downward displacement, after equilibration, if
any spring is stretched beyond its corresponding threshold
strain εf , it and the bending springs associated with it are
broken. The system is reequilibrated until no further breakage
takes place within the increment.
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To incorporate the experimentally obtained porosity net-
work into the model, the spring constants and breaking strain
thresholds are assigned in accordance with the local porosity.
To find the porosity-dependent material behavior, first the
effective behavior of a porous network that has homogeneous
matrix properties is evaluated. The response is evaluated under
tension as the bone samples experience tensile transverse
strains that lead to splitting under longitudinal compression.
A RSNM of given porosity, P , is constructed by removing
voids (of size 50 μm for 0 � P � 5% and 100 μm for
5% � P � 20%) at random from a homogeneous matrix.
From the macroscopic response of such porous networks,
E(P ), ν(P ), and εf (P ) are obtained. The scaling of these
curves depends on the values of the spring constants and
breaking thresholds of the homogeneous matrix. These values
are chosen such that at 4% porosity, the known experimental
macroscopic response of bone is reproduced [29]. Next, for a
simulation of fracture in bone samples, the individual spring
characteristics of the RSNM are assigned on the basis of the
local porosity data from experiments using the corresponding
calibrated E(P ), ν(P ), and εf (P ) in Eq. (2) to achieve a
porosity-dependent RSNM.

To simulate the fracture process under compression loads,
in a previous work we developed a random spring network
model in which the matrix properties were taken to be
independent of bone and the failure was predicted accounting
for only the structure of the porosity network [47]. While the
porosity-based RSNM was shown to capture the characteristic
features of the quantitative macroscopic response as well
as the qualitative failure paths during the fracture process,
quantitative correlations were poor. To improve the predictive
capability of the model, here we evaluate the use of matrix
properties that are specific to a bone. For validation, we use
experimental data [47] on a total of six samples that were
harvested from three different bovine femurs. They are referred
to in the remainder of the paper as samples I and II from
bovine-1, samples III and IV from bovine-2, and samples V
and VI from bovine-3.

III. RESULTS AND DISCUSSION

Initially, a parametric study is performed to evaluate the
sensitivity of the predictions to the model parameters—elastic
modulus and failure strain. In the study, the matrix properties
of the homogeneous porous network are varied by ±10% of the
bone-independent parameters used in Mayya et al. [47], which
are considered here as base values. Based on each combination
of matrix properties, the porosity-dependent elastic modulus,
Poisson’s ratio, and the failure strain, as shown in Fig. 5, are
evaluated from a porous network, as described in Sec II, for a
range of overall porosity. For the cases when there is a 10%
increase in E and 10% εf from the base value, as expected, a
stiffer matrix results in a stiffer macroscopic response, and it
affects only the effective elastic behavior. In contrast, a change
in the failure threshold has an effect only on the effective
limiting strain and not on the elastic behavior. We note that,
for thermodynamic stability, the spring constants k and c must
be positive in Eq. (2), which bounds the Poisson’s ratio from
above by 1/3.
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FIG. 5. Variation of (a) the elastic modulus, (b) Poisson’s ratio,
and (c) failure strain with porosity for a different modulus and failure
strain of the matrix.

A. Effect on failure paths

Using a porosity-dependent RSNM, the effect of the
model parameters, i.e., elastic modulus and failure strain,
on the macroscopic response is shown for a typical sample
(sample III) in Fig. 6. For clarity, only the predictions based
on the base value and a 10% independent increase in each of the
model parameters is shown. The increase in E as well as εf is
shown to increase the overall load-bearing capacity, obtained
from the macroscopic response of the sample that has been
averaged over the 10 representative domains, by approximately
8%. Most of the individual sets exhibit a similar increase
in load-bearing capacity, as is evident in Fig. 6(b), which
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FIG. 6. (a) Macroscopic response of sample III and (b) for a
typical representative domain. The corresponding failure paths at the
first load drop with (c) base values, (d) 10% E, and (e) 10% failure
strain as input parameters.
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shows the macroscopic response of a typical representative
domain. The corresponding failure paths are presented in
Figs. 6(c)–6(e). The first bonds to fail for any combination of
parameters are from the regions of relatively higher porosity
(10–20 %), and they form the primary failure paths. An
increase in the failure threshold results in minimal changes in
the failure path as it involves no change in the load distribution,
and thus the most critical zones remain unchanged. However,
an increase in E could introduce differences in load-transfer
paths and could thereby lead to some variations in the
splitting paths. On rare occasions (one representative domain
out of the 10 considered here), the damage at the critical
defect localizes in a manner leading to the formation of a
large single crack resulting in a splitting fracture at lower
strains.

B. Effect on macroscopic response

To develop a comprehensive understanding of the effect
of model parameters on the macroscopic response under
compression, simulations were performed for all six samples
using the structure of their respective porosity networks.
Figure 7(a) shows the predicted load-bearing capacity for the
elastic modulus ranging between ±10% of the base value as a
function of the overall porosity of the sample. Also, for each
sample a corresponding homogenized network is developed
that has the equivalent porosity that is randomly distributed

0.6 0.7 0.8 0.9 1 1.1 1.2
3

4

5

6

7

8

Porosity(%)

)
Nk(

ecrof
ka e

P

0.6 0.7 0.8 0.9 1 1.1 1.2
3

4

5

6

7

8

Porosity(%)

)
Nk(

ecrof
kae

P

bovine 1
bovine 2
bovine 3

bovine 1
bovine 2
bovine 3

base value -10% E +10% E

base value -10% E +10% E

Porosity network

Homogenised dist.

(a)

(b)

FIG. 7. Variation of load-bearing capacity with mean porosity
levels and ±10% variation in the elastic modulus, E, accounting
for (a) the porosity network and (b) the homogenized distribution of
porosity.
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FIG. 8. Variation of load-bearing capacity with mean porosity
levels and ±10% variation in failure strain, εf , accounting for
(a) the porosity network and (b) the homogenized distribution of
porosity.

in the domain. The data generated are presented in Fig. 7(b).
Irrespective of the inherent differences in the structure of the
porosity network between samples, the load-bearing capacity
as predicted by the model decreases with increasing overall
porosity. Also, for the same porosities and model parameters,
the load-bearing capacity of the homogenized network is
approximately 28% higher than the corresponding networked
porosity. Varying the elastic modulus from −10% to +10%
of base value scales the predicted peak force, on average, by
27%, as shown in Fig. 7(a). Similar variations of the failure
strain have a relatively lower influence on the load-bearing
capacity—on average by 17%, as shown in Fig. 8(a). This
significant increase can be attributed to changes in the load
transfer paths that may occur as a result of an increase in the
elastic modulus, thereby resulting in differences in crack paths,
as discussed earlier. Homogenization of a porosity network
results in an overall increase in predictions of peak force
values, as shown in Figs. 7(b) and 8(b). As expected, the
increase in the load-bearing capacity of a homogeneously
porous network is more comparable for the increase in either
parameter: 22% for an increase in E and 18% for an increase
in εf .

C. Use of bone-specific properties

To determine the appropriate bone-specific matrix prop-
erties for each bone, we first examine the elastic behavior
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FIG. 9. Probability density of element counts from EDS line
scans of bone samples.

experimentally. The elastic properties of cortical bone are
known to be influenced by the mineral density [51,52].
The mineral density is typically characterized using various
methods, including electron microprobe techniques such
as energy-dispersive spectroscopy (EDS) [53,54]. Here, we
estimate the differences in the elastic behavior of the bone
matrix between bones by performing EDS line scans using
a Quanta-200 FEI scanning electron microscope on samples
that are mounted simultaneously. The sample measurements
are grouped on the basis of the bovine femurs from which
they are harvested. The probability density of calcium counts
obtained for each bone, shown in Fig. 9, are bell-shaped curves
with significant overlap. The expectation values for the counts
for the bones are with in 1% of the overall average count,
which may be because the bones are from healthy animals of
a similar age. Thus, for further analysis, the elastic behavior
of all the bones is taken to be the base value.

To incorporate the differences in the fracture behavior
of bone matrix, the threshold failure strain for each bone
was estimated iteratively until it compared well with the
experimental data, and it is presented in Table I.

For a given sample, five random realizations for each of
the 10 representative networks were performed. The strain

TABLE I. Bone-specific input parameters.

Bone Sample no. Parameter for simulations

bovine-1 I E and 1.13 × εf

II
bovine-2 III E and 0.9 × εf

IV
bovine-3 V E and 1.68 × εf

VI
* Base values: E = 18 GPa and εf = 0.0122

threshold for each bond was taken from a Gaussian distribution
with mean as in Table I and 5% standard deviation to account
for heterogeneity at length scales much smaller than the lattice
parameter. The macroscopic response, averaged over all 50
simulations per sample, is compared with the experimental
data in Fig. 10. The characteristic features of the macroscopic
response, such as the initial linear elasticity, the maximum
load-bearing capacity, multiple smaller events prior to final
failure, etc., are well reproduced. It is remarkable that for each
bone of the two samples tested, the same model parameters
are effective in predicting response that compares closely with
experimental data for both the samples.

A comparative summary of the maximum load taken by any
sample as per simulation based on bone-specific properties,
base values, and from experimental data is presented in
Fig. 11(a). Maximum loads as predicted using base values for
all samples, as seen earlier, tend to have a monotonic decrease
with increasing porosity, which is in contradiction to the
experimental data, in which there is no such consistent trend
with respect to porosity. While the samples from bovine-2,
bovine-1, and bovine-3 appear to be in order of increasing
porosity, the load taken by them has no direct porosity depen-
dence. In fact, the highest load is taken by the most porous of
the samples. However, when the bone-specific properties are
incorporated in the simulations, a significant improvement in
predictions is seen for both samples of each bone, as illustrated
in Fig. 11(b). The concordance correlation coefficients from
the simulations with bone-specific parameters (0.79) are
also significant as compared to base values (−0.12). The
differences in load-bearing capacity between samples within
a bone that are extracted from the same anatomical site can be
attributed primarily to the inherent differences in the porosity
network. However, between samples from different bones
with apparently similar elastic behavior, as per the model of
the present study, the fracture behavior prediction requires a
60–70 % difference in matrix failure strain threshold. These
inferences require validation through detailed characterization
of failure properties at smaller length scales.

D. Avalanche size distribution

One of the quantities that has been used in the literature to
characterize fracture in heterogeneous media is the avalanche
size distribution, which measures the incremental response of
the system to incremental increases in external loading. In
experiments, the response is measured through the energy of
acoustic emissions, E, that occur during the fracture process.
In simulations, it is measured by the number of events (broken
springs), s, that occur per increment of strain. The probability
distributions for these quantities are known to be power
laws, implying the absence of a typical avalanche size that
is independent of system size. The exponents characterizing
the acoustic emission and avalanche size distribution may be
related to each other. Let PE(E) and Ps(s) denote the respective
distributions. Asymptotically, they behave as PE(E) ∼ E−τE

and Ps(s) ∼ s−τs . However, it is known that E ∝ s2 [37].
Using the relation PE(E)dE = Ps(s)ds, arising from the
conservation of probability, it is straightforward to obtain τE =
(1 + τs)/2. Remarkably, these exponents are quite universal
and independent of details of material or modeling. For
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FIG. 10. Comparison of macroscopic response from simulations and experiments of bovine samples, where (a) is for sample I, (b) is for
sample II, and so on.

example, τE is known to be 1.3–2.0 for many brittle materials
such as synthetic plaster [55], wood [1,56], fiberglass [57],
cellular glass [58], and rocks [59]. For bone under compressive
loading, it has recently been reported for porcine bone that
τE = 1.3–1.7 [2]. For comparison with the experimental data
on porcine bone, in the determination of the avalanche size
distribution, we use the integrated data over the entire range
of strain. We also confirm that the distribution is independent
of the range of strain that is used. We now measure τs from
our simulations, and we ask whether and how the exponent τs

depends on the choice of bone-dependent material properties,
or the porosity network.
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FIG. 11. Load-bearing capacity from experiments and simu-
lations: (a) variation with porosity and (b) correlation between
experiment and simulations.

The avalanche size distribution for a typical sample is
shown in Fig. 12. For each of the representative domains,
for all five realizations, avalanche sizes are obtained for all
increments in displacement. As can be seen from Fig. 12,
the distribution is insensitive to whether the bone-specific
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FIG. 12. Avalanche distribution P (s) for sample III from
simulations.
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TABLE II. Power-law exponents τs and τE for all samples.

Bone Sample no. τs τE

bovine-1 I 1.93 ± 0.04 1.47 ± 0.02
II 1.92 ± 0.04 1.46 ± 0.02

bovine-2 III 1.91 ± 0.06 1.46 ± 0.03
IV 2.12 ± 0.08 1.56 ± 0.04

bovine-3 V 1.80 ± 0.04 1.40 ± 0.02
VI 1.83 ± 0.05 1.42 ± 0.02

parameters or base values are used. This is understandable,
as the bone-specific parameters involve only a change in εf ,
and this does not appreciably change the load distribution in
the network during compression. We determine the avalanche
exponents using the maximum-likelihood method [60] for
avalanches in the range 100–5000. For the sample shown in
Fig. 12, we find τs ≈ 1.91 corresponding to τE = 1.46. For
the other samples, the exponents that we obtain are shown
in Table II. The mean exponent values for τE lie in the
range 1.4–1.55, consistent with the values of 1.3–1.7 obtained
experimentally for porcine bone [2]. We also do not detect any
significant correlation of the values of the exponent with the
porosity of the sample. In Fig. 12, we also present the avalanche
size distribution associated with an equivalent homogenized
porous network. Surprisingly, the avalanche exponent does
not change noticeably. However, the distribution for small
avalanche sizes is different, reflecting the contrast in the
network at small scales. We also observe an anomalous bump
in the avalanche size distribution for large avalanches that
correspond to the near failure events. This overestimation of
probability is an artifact of simulating the fracture process of
a three-dimensional solid with ten independent representative
volumes. If the representative volumes were not independent,
then the final catastrophic failure would be just one event with
not only a significantly larger avalanche size but with much
lower probability. However, nucleation and subcritical growth
of microcracks, corresponding to smaller avalanches, would
still remain largely unaffected with unchanged probabilities.
Thus, since the distribution near the bump is nonuniversal,
we have excluded these events in the estimation of the
exponents.

IV. SUMMARY AND CONCLUSIONS

Complex fracture processes in porous brittle materials are
controlled by several factors. Using a porosity-dependent
RSNM, in the present study we examine the individual roles
of overall mean porosity, the networking of the porosity,
the elastic behavior of a nonporous matrix, and the failure
behavior of the nonporous matrix on the compressive strength
of dry plexiform bone. As per the model, increasing mean
porosity results in reduced compressive strength. Porosity
network structure, as seen in plexiform bone, reduces the
compressive strength further by up to 30%. While the initiation
of the fracture process is typically at regions of highest
porosity, the crack pathways are predominantly controlled by
the connectivity of the porosity network. Among the multiple
competing porosity pathways, the damage localizes in only

a few of them, as driven by the load distribution, which
in turn is influenced by the elastic properties of the model
matrix and not by the failure strain threshold of the matrix.
However, the load-bearing capacity increases with increase in
either the elastic modulus or the failure strain threshold of the
matrix.

To validate the porosity-based RSNM model with available
experimental data, bone-specific properties were applied. Of
the six samples (two each from three different bones), the
elastic properties were found to differ minimally, as reflected in
the mineral composition determined by EDS. Assuming elastic
similarity, bone-specific failure strain thresholds for the ideal
matrix were estimated to be within 60% of each other. It should
be noted that the compressive strengths differ between the
two samples of the same bone, and yet identical bone-specific
model parameters achieve excellent concordance correlation
between experiment and simulations for both samples of each
bone. To provide an accurate input for the model, it would
therefore be of importance to develop an experimental scheme
that characterizes the strain threshold of the matrix at small
length scales.

We find that the avalanche size exponents are independent
of the bone-dependent parameters and in the range of the exper-
imental values obtained for porcine bone [2]. Surprisingly, the
exponent is also independent of the structure of the porosity
network as the avalanche size distribution exponent for the
equivalent homogenized network has a similar value. This may
be the reason why the avalanche exponent is universal and has
a similar numerical value for many different kinds of material.
In particular, the avalanche exponents from recent experiments
on wood [1] match very closely with that for porcine bone [2].
The avalanche exponents obtained in this paper are for the
reduced two-dimensional model, and it is possible that the
results could change for a three-dimensional model. However,
the fracture paths are prismatic, i.e., they run through the
tangential direction, and the pores lie in the radial longitudinal
plane, making the problem essentially two-dimensional. Since
the fracture paths and stress-strains curves compare well
with the experimental data, it can be concluded that the
interactions between the different representative volumes are
weak. Thus, we would expect that the avalanche exponents
will not change significantly even if a three-dimensional model
was constructed. We also note that the exponents obtained in
this paper for the avalanche size distribution (1.8–2.12) are
significantly different from that for a homogeneous RSNM
under tension (∼2.5) [37]. Whether this difference is due
to the difference in the nature of loading, or to the strong
correlation between the values for the spring constant and
its strain threshold, as in the current study, remains to be
answered.

It should be noted that the inferences drawn from the
RSNM-based simulations of compressive failure of plexiform
bone obtained in this paper are also applicable to a wider
class of problems pertaining to the failure of brittle, porous
material with organized porosity structure, such as rock,
wood, geological material, other biological material, etc.
While the avalanche exponents appear to be universal to the
extent that they are independent of the correlations in the
porosity network, the fracture paths and the bulk mechanical
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response require pore- as well as material-specific details
incorporated in the model. Extending this model to describe
fracture of other brittle materials is a promising area for future
study.

It would also be interesting to study the predictions
of the model for Haversian bone, which has a distinctly
different microstructure from plexiform bone. Unlike layered
plexiform bone, both the porosity network characteristics and
the material constitution are different, which may influence the

load-bearing capacity. A similar analysis for Haversian bone
is part of ongoing studies.
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