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Headward growth and branching in subterranean channels
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We investigate the erosive growth of channels in a thin subsurface sedimentary layer driven by hydrodynamic
drag toward understanding subterranean networks and their relation to river networks charged by ground water.
Building on a model based on experimental observations of fluid-driven evolution of bed porosity, we focus on
the characteristics of the channel growth and their bifurcations in a horizontal rectangular domain subject to
various fluid source and sink distributions. We find that the erosion front between low- and high-porosity regions
becomes unstable, giving rise to branched channel networks, depending on the spatial fluctuations of the fluid
flow near the front and the degree to which the flow is above the erodibility threshold of the medium. Focusing
on the growth of a network starting from a single channel, and by identifying the channel heads and their branch
points, we find that the number of branches increases sublinearly and is affected by the source distribution. The
mean angles between branches are found to be systematically lower than river networks in humid climates and
depend on the domain geometry.
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I. INTRODUCTION

Channel networks which carry fluid through a heteroge-
neous medium and evolve as they erode, transport, and deposit
sediments are common in nature [1–3]. For example, river
networks formed due to the confluence of tributaries drawn
from a wide basin as they follow the gradient of the land are an
enduring feature across the face of the earth [3–5]. Though less
obvious, channel networks can also develop in the subsurface
in natural aquifers and in enhanced oil recovery [6–8]. While
dissolution of the medium can play an important role in the
development of subterranean channels and sinkholes [9–11],
the internal erosion of sedimentary grains by the drag of the
fluid flow can by itself lead to evolution of porosity in the
subsurface [8,12–17]. Thus, the growth of channels due to
erosive fluid flow through a sedimentary medium is a problem
of wide-ranging interest.

A number of models have been developed to examine
evolution of channel networks at the earth’s surface coupling
hill slope and fluid flow [18–20]. It has been shown that
river channel branches in humid climate areas of the United
States appear to meet distributed around an angle of 72◦
[21]. This angle corresponds to the stable angle in which
headward growing channels can be expected to evolve in a
domain in which the fluid flow is governed by the Laplace
equation. More acute angles are observed in more arid climates
[22]. It is noteworthy that the equation that governs the flow
of the fluid in a two-dimensional (2D) porous medium is
similar to that used to describe ground water flow in the
Dupuit approximation [23]. While statistical comparison with
venation patterns in leaves [24] among branching networks
has been conducted [25], we are unaware of any detailed
comparison with subsurface channels because of lack of
appropriate data. Thus, the connection of channel networks
observed on the earth’s surface and those that develop due to
internal erosion in the subsurface remains far from clear.
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Recently, a model system was developed to investigate the
growth of heterogeneity due to erosion when a fluid is forced
across a granular bed [6]. The solubility and the cohesivity of
the granular medium in these experiments are negligible by
design. Channels were observed to form over time because of
a feedback of increased fluid flow drawn to regions with higher
porosity resulting from bed erosion. It was further shown that
the fluid flow through the medium can be modeled using
Darcy’s law. Hence, the equation which describes the flow
through the heterogeneous medium is given by

∇ · (κ∇P ) = 0, (1)

where P is the local pore pressure, and κ is the local
permeability, which varies spatially and temporally as the
bed evolves. This equation can be solved for given boundary
conditions, which in this case correspond to constant pressure
in the inlet and outlet reservoirs, and a prescribed flow rate
through the system. Then the mean fluid flow is given by

vf = −κ∇P. (2)

The calculated fluid flow was shown to be consistent with
experimental observations, and the interface between the
regions with low and high porosity was observed to erode,
on average, when the local fluid velocity exceeded a critical
value Jc corresponding to the erodibility of the medium.

Building on these observations, a hybrid erosion model
was also developed [6] in which the porous medium was
divided into three components consisting of the immobile
granular phase corresponding to the porous solid phase, mobile
granular phase, and fluid phase following Ref. [26]. By solving
Eq. (1) for a given spatial porosity distribution and boundary
conditions, and then calculating the fluid flow using Eq. (2), the
hydrodynamic stress acting on the medium is found throughout
the system. We test for regions which are above the threshold
of erosion of the medium drawn from a random distribution
with the same mean and standard deviations as observed with
single grain motion. Then the immobile solid phase in these
regions is converted to the mobile granular phase provided
they exceed the critical value and are not locked in because
of the presence of other grains which impede their motion.
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The dislodged granular phase is moved along with the fluid
for a given time interval, but with a fraction of the speed
because of frictional losses. The granular phase is assumed to
be deposited if the local fluid flow falls below a critical value,
or if the path of the grain is blocked by the presence of other
grains. Using this model, it was demonstrated that erosion
develops at interfaces between regions with low and high
porosity, with channels developing in regions with concave
interfaces, which increasingly focus fluid flow. Thus, erosion
can occur at average flux J through the medium at significantly
lower flux compared to the mean flux required to erode a single
grain Jc depending on the interface curvature [6].

In this paper, we build on those results by focusing on the
growth of channels and their bifurcations in response to fluid
flow under various imposed boundary conditions. In order
to further simplify the analysis, we modify the system so
that grains exit only at a narrow outlet. A similar geometry
has been used to examine channel growth driven by ground
water flow at the bed surface to understand the growth of their
transect [27], and contribution of local rainfall on the shape
of channel growth versus far field groundwater sources [23].
Further, we examine two conditions near the outlet: one in
which the fluid is also forced to exit through the narrow outlet
giving rise to convergent fluid flow, and the other where the
fluid is not imposed to converge through the outlet. In the
latter case, convergence of the fluid flow occurs as a channel
grows and thus can be thought to occur naturally. We show that
the interface between high- and low-porosity regions becomes
unstable with channels growing depending on the imposed
flux. Both coarsening and bifurcation dynamics is observed as
the branched channel network grows. Focusing on the growth
of a network starting from a single channel, we examine
the number distribution of branches and the angle between
branches, and compare and contrast them with branched river
networks.

II. MODEL SYSTEM

Figure 1(a) shows a schematic diagram of the experimental
system in which water is driven through a porous medium
inside a thin horizontal Hele-Shaw cell and is modified from
the one used previously to study curvature-driven growth of
channels in an erodible porous medium [6]. As in that work, we
use a quasi-2D geometry to simplify the experimental system
to enable us to identify the regions which erode, and where
grains deposit as the porosity evolves. Further, it allows us
to link more quantitatively the experimental parameters with
those that have to used in the complementary simulations to
understand the progress of erosion and channels. The length
L of the system is 28.5 cm, and the width W is 28.5 cm.
The porous medium consists of glass beads with diameter
d = 1.21 ± 0.1 mm with density 2500 kg m3. The fluid is
injected into the inlet reservoir with a prescribed flow rate Q

using a peristaltic pump. Then it is allowed to enter the medium
either all across the top boundary or near the corners by placing
a physical barrier across most of the top boundary as shown
in the schematic diagram. These two fluid source conditions
are called uniform and nonuniform injection, respectively, in
the following discussion. In either case, the grains are allowed
to leave the cell only through a Wo = 2.5 cm wide gap at the

FIG. 1. (a) Schematic of the experimental system. Fluid enters the
porous granular bed through the top boundary from a reservoir either
all across or near the two corners. An image of the initial medium
corresponding to the area that can be visualized in the experiments
is also shown. The fluid is injected into the inlet reservoir with a
prescribed flow rate and is allowed to exit from an outlet at the center
into a reservoir which can also collect the eroded material. (b, c) The
calculated magnitude of the fluid velocity for the prescribed boundary
conditions along with streamlines (black and blue lines). The gray
scale bar and the numbers corresponds to the velocity V scaled by
the injection flux J .

center of the bottom side wall. By allowing the grains to exit the
cell, we focus on the dynamics of channel growth from a point
which serves as an ideal sink, beyond which sediment transport
can be considered to be unimportant to the development of the
channels upstream.

The medium is prepared by slowly pouring and spreading
the grains evenly in a monolayer on a horizontal optically
smooth glass plate and then covering the bed with a parallel
transparent glass plate to allow imaging. The system is then
sealed to prevent leaks. The top and bottom surfaces of the
resulting Hele-Shaw cell are separated by distance h = 1.5d,
allowing the grains to move freely when they are dislodged.
We find this to be an optimal separation distance based on
preliminary experiments. If a larger distance is used, then
the grains have a tendency to stack in two layers in a
hexagonal close-packed structure, which makes it difficult to
track the local volume fraction besides making them difficult
to dislodge. If a smaller distance closer to d is used, some
of the larger grains in the sample can get stuck between the
plates, overall increasing the threshold to dislodge grains and
decreasing their mobility.

To characterize the amount of disorder in the initial bed
packing, we measure the local packing fraction of the prepared
bed. An image is taken of the bed where individual grain
positions can be identified to within a tenth of the grain
diameter. As seen from Fig. 2(a), the packing fraction of the
grains φg defined as the volume of the grains in a Voronoi cell
is observed to be distributed around a mean volume fraction
φm = 0.41, where the Voronoi cell volume corresponds to the

052904-2



HEADWARD GROWTH AND BRANCHING IN SUBTERRANEAN . . . PHYSICAL REVIEW E 96, 052904 (2017)

0

0.2

0.4

0.6

0.8

1

0 1 2 3

v g
/ J

J/Jc

(a)

(b)

FIG. 2. (a) The distribution of the local granular packing fraction
φg measured using the Voronoi cell size. The mean volume fraction
φm = 0.41. (b) The ratio of the mean grain speed vg and the prescribed
mean fluid flux J as a function of J/Jc. The vertical dashed lines
indicate range of critical flow required to erode a grain at rest on the
substrate. The error bars indicate the percentage range of measured
vg from grain to grain.

area in the horizontal plane which is closest to a grain center
compared to its nearest neighbors times the separation between
top and bottom surfaces of the experimental cell. This observed
distribution of values corresponds to φg between 0.37 and
0.45 is somewhat greater than in previous experiments [6].
The differences arise because of the slight variation in the
preparation technique. In that study the initial grains were
rolled down a slightly inclined substrate to more uniformly fill
the experimental cell. That exact protocol is not possible with
the current boundary conditions used here and thus results in
slightly higher fluctuations. The permeability of the medium κ

depends on the volume fraction of the grains φg , and is given
by the function κ = 0.285 (1 − 2.14φg) mm−2 [6]. We find it
convenient to define a fluid flux J = Q/Wt , which is easier to
compare across systems with different dimensions rather than
the flow rate Q.

By performing further experiments with a few isolated
grains in the same cell, but with uniform inlet and outlet so that
the fluid flow is uniform across the cell, we find that the average
fluid flux required to dislodge a particle is Jc = 26.3 mm s−1

due to the friction with the substrate. Further, because of the
size distribution of the grains and their roughness, the grains
are observed to dislodge over a wide range of flux which is of
order ±Jc/3. The Reynolds number Re of the fluid flow at the
grain scale is given by Re = Ud/η, where U is the fluid speed,
and η = 0.89 mm2s−1 is the kinematic viscosity for water at

25 ◦C. Then we have Re ≈ 40 for U ≈ Jc. At these Re, the
drag has both viscous as well as inertial contributions [28].
The grains dislodge when the torque due to the hydrodynamic
drag increases above the torque due to gravity about a pivot
point given by the roughness of the grains [28,29].

Once dislodged, the grains are observed to move rapidly
along with the fluid flow speed. To quantify the speed relative
to the fluid flux, we measure the speed of the grains vg as a
function of imposed average fluid flux J by placing individual
grains in an otherwise empty cell with a rectangular cross
section for which the fluid flow profile is known [30]. A
sequence of images was recorded with a frame rate of 1 per
second while the grain were in motion, and the speed obtained
by measuring the distance moved between frames. The grains
were observed to move with a constant speed very soon after
being dislodged.

Figure 2(b) shows the measured speed of the grains as a
function of the prescribed flux. The grain speed vg is observed
to be approximately half the critical flow speed fluid flow
speed required to dislodge the grain. While the recorded speed
was observed to fluctuate from grain to grain as shown by
the error bars, the speed of a grain was more or less constant
as it moved across the cell. Further, no systematic difference
was noted if the particle moved down the center of the cell or
near the sides of the cell. This is consistent with the fact that
the fluid flow is essentially uniform in a thin Hele-Shaw cell.
From this observation, we conclude that the grain speed can
be assumed to be approximately 50% of the fluid flux, once
dislodged, irrespective of the location within a channel.

We numerically solve Eq. (1) using the method of relaxation
after discretizing the system in a square grid corresponding
to a 2d × 2d area to obtain the coarse-grained fluid flow
through the porous medium. The local magnitude of the local
fluid velocity V = |vf | is then obtained using Eq. (2). The
magnitude of the fluid velocity and the streamlines are plotted
in Fig. 1(b) in the case of uniform injection, and in Fig. 1(c)
in the nonuniform injection case in otherwise identically
prepared beds with φg = 0.41 ± 0.04. One can observe that
the flow in the top half near the inlets are quite different, while
the flow near the outlet is similar.

To quantitatively compare the velocity profiles, we plot
the magnitude of the fluid velocity V across the width of the
cell corresponding to y = 0.67L in Fig. 3(a), and at a fixed
distance 0.1L as a function of the angle θ from the x axis in
Fig. 3(b) for the uniform injection case. Similarly, we plot V

for the nonuniform injection case corresponding to y = 0.67L

in Fig. 3(c), and at a fixed distance r = 0.1L in Fig. 3(d).
We observe that the profiles are different at the top, but look
identical down to the fluctuations near the outlet in Figs. 3(b)
and 3(d). Thus, the effect of the details of the injection profile
is unimportant by the time the fluid reaches the area near the
outlet, and the spatial variations in the fluid velocity there are
dominated by the local medium fluctuations.

Further, to understand the effect of volume fraction
fluctuations on the measured fluid velocities, we performed
simulations with φg = 0.41, where fluctuations are absent,
i.e., �φg = 0. We plot V as a function of width corresponding
to y = 0.67L in Fig. 3(e), and at a fixed distance r = 0.1L

from the center of the exit in Fig. 3(f). We observe that while
V has several shallow peaks in the case of �φg = ±0.04
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FIG. 3. (a) The fluid velocity V obtained using numerical
simulations normalized by the maximum velocity Vmax at y =
0.67L (uniform injection, �φ = ±0.04). (b) V/Vmax at distance
r = 0.1L from outlet (uniform injection, �φ = ±0.04). (c) V/Vmax

at y = 0.67L (nonuniform injection, �φ = ±0.04). (d) V/Vmax at
r = 0.1L from outlet (nonuniform, �φ = ±0.04). (e) V/Vmax at
y = 0.67L (nonuniform, �φ = 0.0). (f) V/Vmax at r = 0.1L from
outlet (nonuniform, �φ = 0.0). Velocity V/Vmax is observed to be
large along multiple directions when φg fluctuates, but the velocity is
peaked along the symmetry axis when fluctuations are absent.

shown in Figs. 3(b) and 3(d), a single broad peak occurs
corresponding to �φg = 0 shown in Fig. 3(f). Thus, the
presence of fluctuations leads to symmetry breaking and
several possible directions for initial erosion of channels. As
we shall see, the velocity profiles and the fluctuations can be
used to understand the spatial distribution of the channels.

III. GROWTH OF CHANNELS

A. Experiments

We now discuss the erosion observed in the experiments
performed with the two different injection geometries shown in
Figs. 1(b) and 1(c). The flux through the system was increased
with a ramp rate αJ = 0.1 mm s−2, and the bed was imaged as
a function of time. Because of the convergent nature of the flow
near the outlet, the mean fluid speed decreases approximately
inversely as the distance to the outlet for distances up to
W/2. Thus, the flux through the system has to be ramped
up to continue erosion even after the channel is initiated as
the channel moves into regions which have lower velocity.
We coarse-grain the images in 2d × 2d area to obtain the
average volume fraction of the grains φg and then plot the
contour corresponding to φ = 0.35 which separates regions
with high- and low-volume fraction of grains in Figs. 4(a)
and 4(b). We observe in both cases that channels form near
the outlet which appear to initially radiate out in multiple
directions. Unlike previous work where deltas form near the
mouth of the channels [6], the eroded grains are observed to be
carried out of the system as the fluid moves more rapidly as it
converges to the outlet. Over time, channels develop headward
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FIG. 4. A contour map of the front between volume fraction
region corresponding to φg = 0.35 observed in the experiments as
the flux J/Jc is increased in (a) the uniform injection case and
(b) the nonuniform injection case. The channels develop at a lower
value of J compared with Jc because of the convergence of the flow
near the outlet. Several channels develop near the outlet, but only a few
advance upstream toward the inlet. The bounding box corresponds to
the viewing area shown in Fig. 1(a).

toward the fluid source as the bed continues to eroded because
of the action of the fluid.

In comparing the two examples, we observe that the
initial development of channel appears similar but over time,
channels grow more toward the corners in the nonuniform
injection case where the fluid is injected in the corners.
Furthermore, one observes that the growth of the channel
toward one of the corners grows faster due to spontaneous
symmetry breaking that leads to more fluid being drawn to it
resulting in still faster growth. Thus, the boundary conditions
and the resulting distribution of the fluid flow inside the
medium play a significant role in the development of the
channels in the experiments.

B. Simulations

To understand the spatial growth of the channels in relation
to the fluid flow and the disorder, we performed a set
of simulations with the erosion model using the size and
boundary conditions used in the experiments. Figures 5(a)–
5(d) and Figs. 5(e)–5(h) show the result of example simulations
corresponding to uniform injection and nonuniform injection,
respectively. As in the experiments, one notes that the channels
appear to radiate out from the outlet initially before curving
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(i) (j) (k) (l)

FIG. 5. (a–d) Evolution of channels observed in the simulations
for the uniform injection case. (a) ts = 250, J/Jc = 0.13, (b) ts =
350, J/Jc = 0.18, (c) ts = 600, J/Jc = 0.29, and (d) ts = 800,
J/Jc = 0.37. (e–h) Evolution of channels observed in the simulations
for the nonuniform injection case. The ramp rate αJ = 0.1 mm s−2.
(e) ts = 250, J/Jc = 0.13, (f) ts = 500, J/Jc = 0.24, (g) ts = 800,
J/Jc = 0.38, and (h) ts = 900, J/Jc = 0.42. (i–l) Evolution of
channels observed in the simulations for the nonuniform injection
case with �φ = 0. The ramp rate αJ = 0.1 mm s−2. (i) ts = 250,
J/Jc = 0.13, (j) ts = 500, J/Jc = 0.24, (k) ts = 800, J/Jc = 0.38,
and (l) ts = 900, J/Jc = 0.42. The channel is not observed to
bifurcate under the same driving conditions when the volume fraction
is uniform.

toward the boundary with the inlets. The reason for this
trajectory of the channel head becomes clear by examining the
streamlines, which are also plotted in Fig. 5. The streamlines
are observed to converge symmetrically initially near the outlet
of erosion, but then get increasingly focused to the channel
head as it grows further into the bed.

While more than one channel starts to grow initially, we find
a single channel eventually spans across the porous medium,
as in the experiments shown in Fig. 4. As is clear from the
streamlines, this occurs because the channel which grows
further draws more water away from the smaller channels,
leading them to eventually stop growing as the fluid flow to
those channels falls below the threshold for erosion. Further
sets of simulations were performed corresponding to the
applied conditions but using different random initializations of
the spatial volume fraction distribution of the porous medium
and the threshold for the erosion of the medium. We find that
the initial number of channels and the order in which they grow
can fluctuate from run to run as in the experiments. Irrespective
of these details, it was observed that a single channel would
eventually dominate and grow toward one of the inlets for this
system size.

Comparing and contrasting the development of the channels
under the two boundary conditions shown in Fig. 5, one
observes that channels appear to grow more toward the middle
of the bed in the uniform injection case, whereas the channels
grow toward one of the corners in the nonuniform injection
case. Further, two channels grow initially in the examples

shown, but only one of the channels dominates as it draws
increasingly more fluid as it grows.

In the case of the growth of channels with nonuniform
injection, one also observes that the channel which eventually
spans the system in fact was initiated at a later time before
eventually growing faster and drawing more fluid compared
to the other incipient channels. Similar randomness in the
order of the evolution can be noted in the experimental data
as well. While a channel grows initially faster in one direction
in Fig. 4(b) up to J/Jc = 0.5, a second smaller channel that
develops later grows faster and eventually spans the system
as it grows toward the fluid source. Thus, grain-scale disorder
also plays a significant role in the eventual evolution of the
channels in addition to the coarse-grained spatial distribution
of the fluid velocity obtained from Eq. (2).

We also performed simulations by assuming that φg was
the same throughout the domain, i.e., φg = 0.41, but otherwise
similar driving parameters. As shown in Figs. 5(i)–5(l), a single
channel was observed to develop across the symmetry axis in
this case even when the flow is injected in the corners. This
occurs because V has a maxima along the axis of symmetry
as shown in Fig. 3(d). Because there is no variation in the
erodibility properties of the medium, the area near the outlet
starts to erode symmetrically. As this draws more water along
the axis of symmetry, a channel still develops as opposed
to a uniformly expanding amphitheatre shape, even in this
homogeneous volume fraction case. Since the eroded channel
is symmetric, the resulting flow is symmetric, and the channel
is not observed to bifurcate and continues to erode along
the axis of symmetry of the domain. Thus, the presence of
fluctuations in the porosity of the medium is crucial to the
overall spatial development of the channels.

C. Evolution of channel length

In order to quantify the growth of the channels, and
the phenomena discussed above, we identify channels using
methods discussed in the Appendix. We then obtain the length
of the longest channel le, and plot it as a function of imposed
flux J normalized by the mean flux Jc for uniform and for
nonuniform injection in Fig. 6(a). Because we cannot visualize
the medium close to the boundaries as shown in Fig. 1(a), the
lengths of the channels are shown only when they enter the
viewing area and up until they leave the viewing area toward
the inlet. Thus, it should be noted that the channels start to
grow at a lower J/Jc than is apparent from Fig. 6(a). This
value can be estimated from the fact that all the fluid injected
into the system is forced out through the narrow outlet with
width Wo. Thus the fluid flow near the outlet is a factor W/Wo

higher than the mean flux J across the entire width of the
system.

In both cases, we observe that the length of the channel
shows stick-slip motion. We performed additional sets of
experiments corresponding to each boundary condition. While
the features discussed above were observed in each of these
experiments, considerable differences were also observed in
the onset of erosion and the detailed development of channels
that we attribute to variation in the preparation of the bed, i.e.,
the higher overall flux required to erode a channel of a given
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(a)

(b)

(c)

FIG. 6. The length le and the width we of the main channel in the
experiments shown in Fig. 4 as a function of flux J/Jc in the case
of uniform and nonuniform injection. (b) The length ls of the main
channel in the five different simulations each shows stick-slip motion
as in the experiments, but increases faster than in the experiments
(see text). (c) The length and width of the channels averaged over
the five simulations for uniform and nonuniform injection cases grow
similarly, although somewhat systematically faster in the uniform
injection case as the length grows.

length in the nonuniform injection case is within the variation
observed in the case of each boundary condition.

To quantify the width of the channels, we plot the average
width of the main channel observed in the experiments we and
in the simulations ws in Figs. 6(a) and 6(c). We observe the
widths grow significantly more slowly than the length, and
the channels become essentially one-dimensional objects as
the channels reach the domain size.

We also plot the length ls of the longest channel for the
two cases as a function of J/Jc in Fig. 6(b) for five example
simulations prepared with different spatial initialization of the
porous medium and erodibility thresholds but with nonetheless
the same mean values. It can be observed that the channel
length in the simulations also displays stick-slip motion
in each run, but with somewhat small step sizes than in
the experiments. Furthermore, the channel length increases

t = 30 t = 50 t = 70t = 20

t = 40 t = 100 t = 200 t = 250

t = 20 t = 50 t = 90 t = 120

t = 20 t = 30 t = 50 t = 70

(d)

(a)

(b)

(c)

FIG. 7. Evolution of erosion patterns starting from various fluid
flux Jo. (a) Jo/Jc = 0; t = 640 s, 1600 s, 3200 s, and 4000 s.
(b) Jo/Jc = 0.22; t = 320 s, 500 s, 1440 s, and 1920 s. (c) Jo/Jc =
0.44; t = 320 s, 480 s, 800 s, and 1120 s. (d) Jo/Jc = 0.66; t = 320 s,
380 s, 800 s, and 1120 s. Higher initial flux gives rise to more branched
patterns.

more rapidly with J/Jc in the simulations compared to
the experiments. These differences appear to be due to the
inherent nature of the simulations where the permeability
is coarsened over the scale of a few grain diameters, and
thus the calculated fluid velocities have fewer fluctuations
compared to the experimental system. Additional important
factors are that the erosion model is local and does not take into
account frictional aging and collective jamming effects present
in the experimental system. Even with these simplifications,
the simulations capture the overall effect of the boundary
conditions on the spatial and temporal evolution of the erosion
channels.

D. Erosion front instability

We next examine conditions which give rise to a single
channel versus branched-channel growth. Focusing on the
uniform injection case, a set of simulations were performed
where the total prescribed flow rate was increased starting
at initial flux Jo as shown in Fig. 7. In these simulations,
the bed was initialized identically in terms of the spatial
distribution of the volume fraction and erodibility to isolate the
effect of the imposed flux on the channel network evolution.
Further, the simulation size was increased to a 300 × 300 grid
to obtain a more detailed evolution of the patterns. Figure 7
shows examples as the flux is increased linearly starting from
Jo, i.e., J = Jo + αr t , with αr = 0.1 cm s−2. When the flux
is increased from zero, one observes that a single channel
develops and then grows across the domain toward the fluid
source. As Jo is increased, one observes from Fig. 7 that the
erosion front separating regions with high and lower porosity
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(a)

(b)

FIG. 8. (a) The perimeter of the region where erosion has
occurred and φg < 0.25 compared to its area (L = 28.5 cm). The
ratio is observed to decrease corresponding to growth of linear
structures, i.e., channels. (b) The total number of channel heads
as a function of length of the longest channel is observed to grow
with increasing Jo/Jc. The rate of growth of number of channels is
observed to decrease as the channel length grows.

expands out uniformly at first, before becoming unstable with
an increasing number of fingers developing over time.

To quantify these trends, we identify the properties of the
eroded regions using the volume fraction maps as discussed
in the Appendix. To check that bifurcated network is indeed
channel-like, we extract the perimeter of the eroded region
P and the its area A as a function of time. We then plot the
ratio P/A as a function of the length of the longest channel ls
in Fig. 8(a). In the case of the lowest Jo/Jc, we observe that
the ratio smoothly decreases as the erosion progresses, and
the eroded region becomes increasingly longer compared to
wider, leading to a channel-like object. As Jo/Jc is increased,
where the pattern looks increasingly bifurcated, we observe
that the ratio also decreases overall and starts approaching
similar values as in the case of a single channel.

Figure 8(b) shows Nh plotted as a function of ls/L for each
of the cases shown in Fig. 7. In the case of Jo/Jc = 0, we
identify a single channel as it grows across the system. As
Jo/Jc is increased, two channel heads are observed to form
consistent with the bifurcated pattern observed in Fig. 7(b).
The number of channel heads are observed to increase rapidly
as Jo/Jc is increased further and channels start to bifurcate.
One can understand the development of the increasing amount
of branching with flux by examining the variation of the fluid
velocity V with angle θ in Fig. 3(b). Because of the spatial
variation of φg , V has multiple local maxima as a function of θ .

(a)

(b)

-0.5 0.5

0.5

1.0

0.0
0.0
x/L

y/
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FIG. 9. (a) The positions of the main channel heads over time
corresponding to Jo/Jc = 0.44 shown in Fig. 7(c) plotted in time
increments of 12 seconds (L = 28.5 cm). The tracks show that the
channels grow radially outward initially. The ones closer to the water
source are observed to grow further and bend toward the water source.
(b) The evolution of the corresponding angle α between the direction
that the channels grow and the y axis as a function of the length ls of
the longest channel.

Nonetheless, a unique maximum does exist corresponding to
Vmax along which one can expect the fluid to erode the medium
when the imposed total flux is increased slowly to always be
near the threshold of erosion. However, if the flux is stepped
up rapidly, the medium is above the erosion threshold to an
increasing distance from the outlet. This leads to a uniformly
expanding erosion front at early times. However, as the front
advances upstream, V on average decreases inversely as the
distance to the outlet because of the convergent nature of
the flow near the outlet. Thus, one expects the erosion to
become increasingly sensitive to the local variation of V as
the front advances. Any perturbation of the front can then lead
to regions with varying concavity. Because regions with higher
concavity draw relatively more fluid as shown previously [6],
such regions erode faster at the expense of neighboring regions
leading to the formation of a channel. The initial uniform front
expands outward to a larger distance with Jo before giving
rise to an increasing number of sites along the front which
encounter fluctuations in the medium. Thus, the number of
channels grows with Jo as can be noted from Fig. 8(b).

This can be quantitatively noted from the positions of
the channel head of the main channels that develop when
J0/Jc = 0.44 as shown in Fig. 9(a). The main channels are first
identified here when the length becomes at least as long as their
width, and show that they form after the eroded region expands
out somewhat uniformly in all directions from the outlet. One
observes that the channels then radiate outward as they grow
upstream, with the channels closer to the source growing faster.
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FIG. 10. Evolution of a branched channel when grains are only
allowed to leave near the center of the bottom side boundary but
fluid is allowed to flow out everywhere along the bottom boundary in
the case of uniform injection (a–d) and nonuniform injection (e–h).
The imposed flow corresponds to (a) J/Jc = 0.45, (b) J/Jc = 0.55,
(c) J/Jc = 0.61, and (d) J/Jc = 0.69. (h) (a) J/Jc = 0.45, (b)
J/Jc = 0.57, (c) J/Jc = 0.69, and J/Jc = 0.72.

Further, a subtle turning of the channels can also be noted as
they grow. To quantify this, we plot the angle α between the
orientation of the channels and the y axis in Fig. 9(b). One can
note that in each case α decreases toward zero as they grow,
the only exception being the channel on the side, which stops
growing after a while. As these central channels evolve, they
appear to further exhibit bifurcations as they grow in length,
while the growth of the channels on the sides appears to cease
at later times. Thus, a complex interaction of fluid flow and
porosity is observed to develop over time giving rise to a rich
set of bifurcating channels depending on the initial driving
flux.

IV. DEVELOPMENT OF FLUID CONVERGENCE
AND BIFURCATIONS

We now examine how channels grow and bifurcate starting
from conditions where convergent flow is not imposed initially
as in the experiments and simulations discussed in the previous
sections. We implement this in our system by allowing the fluid
to leave the domain everywhere across the bottom boundary,
and not just through the central outlet where grains are
allowed to erode. Examples of the initial flow before erosion
occurs are shown in Figs. 10(a) and 10(e) for uniform and
nonuniform injection, respectively. Under these conditions,
a single channel can grow upstream initially, enabling us to
examine its growth and bifurcation without the complexity of
channel-channel interactions near the outlet.

Simulations were performed corresponding to L/W = 2,
besides with L/W = 1 as in the simulations discussed in the

previous sections, to examine the development of the channel
network over a larger domain. Figure 10 shows snapshots
corresponding to branched channel networks which develop
in simulations corresponding to L/W = 2 for both uniform
and nonuniform injection cases. Here the imposed flux is
ramped up with αJ = 0.1 mm s−1, the same as in the previous
simulations. The eroded regions are denoted in black, and the
fluid streamlines are indicated by solid lines. We find that a
single channel forms initially, leading to a convergent flow
near its head as the fluid is diverted to regions with higher
porosity. Thus, by contrasting the initial development here
versus those discussed in the previous sections, one can readily
note the initial spatial development of channels clearly carries
the impact of the presence or absence of convergent flow near
the outlet.

Further examining Fig. 10, one notes that branches grow
over time in both cases as the channel advances. For distances
sufficiently far away from the inlet, the differences in the
source distribution does not affect the spatial distribution of the
fluid flow. However, it is clear that channels appear to branch
somewhat more broadly in the nonuniform injection case as the
branched network continues to evolve toward regions where
the fluid enters the domain. One can also observe that the
side branches, which form at earlier times, stop evolving
significantly as the fluid is drawn away by the advancing
branches nearer to the source. These channels can be also
closed-off by sediment that accumulate near their mouths,
giving rise to isolated voids.

A. Growth rates

To quantitatively analyze the observed branched channel
networks, we identify the branching points and channel heads
with image processing methods discussed in the Appendix. We
plot the length of the longest channel ls observed as a function
of the flux J in Fig. 11(a) for uniform injection. Five examples
are plotted corresponding to different medium preparation but
otherwise identical driving conditions. We observe that the
length of the channels increases starting at different imposed
flow rates. This occurs because of the different randomization
of the initial local volume fraction distribution and erodibility
in the medium even though the overall distributions and driving
are identical. Nonetheless, once initiated, ls appears to increase
roughly similarly in each case.

It can be also noted the J/Jc at which channels form are
also overall higher than in the cases discussed in the previous
section for which ls versus J/Jc is shown in Fig. 6(b). This
is because the flow near the outlet is not convergent before
channels form as opposed to the case in Fig. 4, where the fluid
flow is forced to leave only through the outlet. This means that
the mean flow at the outlet is higher in those cases by a factor
given by the ratio of the width of the domain W and the width
of the outlet compared with flow in the simulations discussed
here, where the flow leaves more or less uniformly all along
the bottom boundary as shown in Figs. 10(a) and 10(e).

To compare across the various simulations for the same
driving conditions, we plot in Fig. 11(b) the mean length of
the channel 〈ls〉 as a function of time t from when the channels
are first initiated to along with the error bar corresponding to
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(a)

(b)

(c)

FIG. 11. (a) The length of the channels ls/L as a function of
imposed flow rate J/Jc for the five example simulations. The lengths
increase steadily above a critical J/Jc with small variations from run
to run with the different medium initializations. (b) The averaged
〈ls/L〉 over the five runs plotted after a time when the channel is
initiated is observed to nearly overlap for uniform and nonuniform
injection. (c) The channel length growth rate is observed to increase
initially and then remain more or less constant as the channel length
increases before decreasing somewhat.

the mean square deviations. Thus, we find that the growth of
the main channel is remarkably consistent from run to run.

We plot the mean rate of growth of the channel length dls/dt

averaged over the five simulations as a function of the channel
length ls in Fig. 11(c) to examine the growth of the channels
across the two conditions more closely. We observe that the
rate increases at first before being essentially constant as the
channel grows longer. The initial increase occurs because
of the development of flow convergence as the channel first
forms at the outlet. Plotting ls and dls/dt in the nonuniform
injection case in Figs. 11(b) and 11(c), respectively, one can
note the overall growth over most of the length of the domain
is similar. The nonuniform case is, however, somewhat lower

(a)

(b)

FIG. 12. (a) The number of channel heads Nh as a function of
length of the longest channel ls in the case of uniform and nonuniform
injection. (b) Probability distribution function (PDF) of the angle
between branches β in the case of uniform and nonuniform injection.

as the channels grow and bifurcate, and the source distribution
becomes important.

B. Branching statistics

To characterize the observed channel bifurcations, we next
examine the number of channel heads Nh as a function of ls in
Fig. 12 in the case of uniform and nonuniform injection. We
note that Nh initially equals one before the channel bifurcates.
Then Nh is observed to grow somewhat sublinearly with ls
as the channel branches and spreads wider before appearing
to saturate. Now, exponential growth of branches may be
expected if the rate of channel bifurcations is proportional
to the number of channels present at a given time as appears to
be the case in river branching distributions [31]. In those river
networks, fluid can enter the system not only at the boundaries,
but also throughout the domain via rainfall. Thus, screening
plays an important role in our system with the number of
branches stopping to grow, as older branches are coarsened out
nearly at the same rate as the development of new branches.

Comparing the uniform and nonuniform injection cases,
one observes that the initial bifurcations progress similarly
because the influence of the fluid inlet distribution is negligible
near the outlet. However, as ls increases, one observes that
Nh grows in the nonuniform injection case at a higher rate
and saturates at a higher value compared to the uniform
injection case. This is consistent with the example of the
branched channel network for the two cases shown in Fig. 5,
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where the branches in the nonuniform injection case appear
more widely spread due to the fluid being injected at the
corners.

We further characterize the branching observed in the net-
work by measuring the angle β between neighboring branches.
The distribution of angles observed in the five sets of simula-
tions for the uniform and nonuniform injection cases is shown
in Fig. 12(b). We observe that the distributions are similar
but with slightly different mean angles βm = 61.3◦ ± 18◦ and
βm = 61.4◦ ± 20◦ in the uniform and nonuniform injection
case, respectively, for L/W = 2. Further, βm = 64.5◦ ± 17◦
and βm = 65.2◦ ± 17◦ in the uniform and nonuniform injec-
tion case, respectively, for L/W = 1. The distribution and
the average value βm is not found to depend significantly on
the length of the channel beyond the bifurcation used to
calculate the angles. The changes were found to be less than a
degree if one uses points corresponding to 25%, 50%, and 80%
of the channel length to calculate the angles. Thus, the angles
are smaller than found in river networks, where βm = 72◦ have
been reported in the case of river networks in humid climates
[21]. In such climates, rainfall can be expected to replenish
the ground water across the system, unlike the case in our
system where the fluid enters the domain from one of the
boundaries. The systematic difference between the lower and
higher domain aspect ratio also indicates that the branching
angles depend on the geometry of the flow in the domain and
are not universal in our system.

V. CONCLUSIONS

In conclusion, by performing experiments and simulations,
we show that narrow channels develop in unconsolidated
granular medium due to hydrodynamic forces exerted by the
fluid flow moving through the medium. In the system studied,
dissolution and cohesion are absent, and the fluid flow has to
overcome only friction forces and local packing constraints in
order to erode the medium. A curvature-driven feedback exists
in these systems whereby erosion of the medium increases the
conductivity in that region, thus drawing more fluid leading to
a narrow channel which invades the medium [6]. Channels are
observed to initiate at the outlet and develop headward toward
the fluid source. Calculating the fluid flow in the medium, we
demonstrate that spatial variations of the fluid flow can occur
even with a narrow grain size dispersion and packing of the
medium that has consequences for the development of internal
erosion.

The conductivity variation within the medium can cause
the channels not only to grow nonuniformly, but also bifurcate
depending on the flow structure near the channel head. A single
channel is observed to develop upstream if the flow is uniform.
Branching is observed to occur when convergent flow develops
near the channel head and when the flow is well above the
threshold required to erode a channel. Under these conditions,
the flow activates more than one site along the front causing
it to erode in multiple directions. As these incipient channels
occur, they draw fluid and thus erode faster at the expense
of neighboring regions. This leads to coarsening whereby a
single channel eventually dominates unless the bifurcation is
driven by nonuniform source distribution.

While the branched channel network eroded by fluid flow
may resemble a river network, their network characteristics
show some similarities and differences. The number of
branches are observed to grow sublinearly with the length
of the channel, unlike river networks where the number of
branches appear to grow exponentially [31]. This appears to
be due to the fact that the fluid sources are located at the
boundaries. Thus, side branches which grow earlier in the
evolution are screened by the branches which grow later, closer
toward the source. Hence, while new branches are created near
the channel heads, the ones farther down are coarsened out as
the main branches get wider or close off the branches with
sediments. Further, the angles between neighboring branches
are found to be distributed about a lower mean compared to
river networks in humid climates, but more similar to those in
arid climates [22]. The mean branching angles observed in our
study vary with domain aspect ratio and thus do not appear to
be universal.

(a)

(c) (d)

(b)

β

FIG. 13. (a) An example of an eroded channel observed in a
simulation. (b) Corresponding filtered image where isolated eroded
regions have been removed. (c) The skeleton of the channel network
with bifurcation and channel heads identified. (d) Segments are used
to join the branch points to the next branch points in the network
or channel head. The angle between adjacent segments are use to
identify branch angle β as shown.
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APPENDIX: IDENTIFICATION OF NETWORK
CHARACTERISTICS

In order to analyze the growth of the channels, we use the
Image Processing Toolbox in MATLAB to extract the main

branches of the channel network, their heads, and bifurcation
points. The main steps used in the image processing is outlined
in Fig. 13. We first convert the raw image shown in Fig. 13(a)
to a binary image as shown in Fig. 13(b). Then we reduce
the binary image to a single-pixel-wide object by applying the
morphological thinning function, which is an erosion-based
process that removes the foreground pixels without breaking
connected objects [32]. The branch points and end points of
this object are then identified as shown in Fig. 13(c). We
compute the angle between neighboring branches as shown
in Fig. 13(d) by using the line segments joining the branch
point to the next branch points in the hierarchy.
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