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Local and global avalanches in a two-dimensional sheared granular medium
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We present the experimental and numerical studies of a two-dimensional sheared amorphous material composed
of bidisperse photoelastic disks. We analyze the statistics of avalanches during shear including the local and global
fluctuations in energy and changes in particle positions and orientations. We find scale-free distributions for these
global and local avalanches denoted by power laws whose cutoffs vary with interparticle friction and packing
fraction. Different exponents are found for these power laws depending on the quantity from which variations
are extracted. An asymmetry in time of the avalanche shapes is evidenced along with the fact that avalanches are
mainly triggered by the shear bands. A simple relation independent of the intensity is found between the number
of local avalanches and the global avalanches they form. We also compare these experimental and numerical
results for both local and global fluctuations to predictions from mean-field and depinning theories.
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I. INTRODUCTION

Yield-stress granular media flow if a sufficient shear stress
is applied to them. Under certain conditions this flow can
be spatially heterogeneous and intermittent in time. Although
such behavior is widely observed in nature during avalanches,
landslides, and earthquakes, there are few quantitative ex-
perimental measurements of these intermittent dynamics at
the local scale in frictional systems [1–4]. Because of this,
there is currently little understanding of the coupling between
the evolution of mesoscale force chain networks and the
macroscale mechanical response. This article aims to provide
a first step in achieving this goal.

Many experiments [1,4–11], numerical simulations
[12–16], and models [17,18] involving systems that are subject
to slow continuous loading exhibit global intermittent dynam-
ics characterized by a slow buildup and more rapid release
of stress in the system. These systems include disordered
molecular solids, metallic glasses, and granular materials,
among others. A fundamental feature of dynamics in these
systems is that the system remains near the yield-stress curve,
alternating between jammed and unjammed states [19,20]. The
yield surface of granular materials is sensitive to the presence
of intergrain friction [21], and for a substantial range of the
friction coefficient ν, the yield-stress curve forms the upper
boundary of the shear jamming phase diagram sketched in
Fig. 1. When a frictional granular system at low pressure and
shear stress τ is sheared at constant volume, its global pressure,
the Reynolds pressure [26], increases. If the initial state is
stress free, force chains appear and grow in the system [27]
during this process; as shown in Fig. 1(b), as the shear stress
increases, the system transitions from stress-free to fragile (F)
and then from fragile to shear jammed (SJ). When τ , the shear
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stress in the system, increases above the yield stress, τc(φ)
on the yield-stress curve, the system unjams and τ falls to a
jammed state with lower shear stress τ < τc. In general, the
shear stress at failure and the shear stress to which the system
returns following a failure are stochastic variables. These
values of τ before and after the avalanche are both random
variables, whose means determine the average yield stress. The
yield-stress curve τc(φ) represents an appropriate mean repre-
sentation of the shear stress at failure for a given φ. The rapid
system evolution immediately following failure is an avalanche
and a macroscopic measure of its strength can be the associated
energy drop. However, the triggering of an avalanche occurs
at a microscopic or mesoscopic scale. For systems that are
close to force balance, due to the divergence of the length
scale in the stress response of a jammed medium when
approaching jamming from above [28], a local failure can
lead to a relatively-long-range response in the force network,
but relatively local changes in grain positions and orientations.

In frictional granular materials, forces propagate nonuni-
formly along filamentary structures called force chains [29].
The stability of the force chains, hence the stability of jammed
frictional granular materials, can be understood in terms of
the number of contacts per particle Z. In the vicinity of
the jamming transition, it can be shown from generalized
isostaticity [30] that the number of contacts per force-bearing
particle is 3 (Z ∼ 3) in two dimensions for systems composed
of highly frictional disks. Force chains are not typically
straight; instead there is weak coupling between grains in a
given force chain and neighboring chains. When a segment
of force chain fails, i.e., when contacts between the grains
constituting the segment fail, other neighboring force chains
crossing the failed segment or supported by the segment
can fail as well. Thus, there exists an additional coupling
between neighboring regions of the system. In the case of
stress-controlled dynamics, a failure in one part of the system
will cause the force exerted by the boundaries elsewhere to
increase, which leads to an additional coupling on a larger
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FIG. 1. (a) Schematic view of the evolution of the shear stress τ

in a sheared granular system at constant volume, for slowly loaded
stiff grains (the x axis increases to the left). After a transient regime
where the stress grows elastically, the shear stress fluctuates about the
yield stress τc, as observed in several experiments and simulations
[2,5,6,22,23] . (b) Shear jamming phase diagram (adapted from [21])
including jammed (J) [24], unjammed (uJ), fragile (F) [25], and shear-
jammed (SJ) regimes. A frictional granular system slowly sheared at
constant packing fraction φ follows the vertical line with arrows until
reaching the yield stress τc, where it will fluctuate between jammed
and unjammed states below and above τc. The fluctuations above
τc(φ) give rise to intermittent dynamics [see (a)].

scale. As the present experiments and simulations are strain
controlled, this additional boundary-related coupling does not
occur. However, the strong coupling of forces along chains,
the weak coupling between chains, and the accompanying
anisotropy in the stress and fabric tensors are key features of
granular packings.

Regev et al. proposed a mean-field model to capture key
features of the avalanche process [22] for a range of systems ex-
hibiting avalanches. In addition, studies of sheared amorphous
materials commonly use molecular-dynamic simulations and
mean-field theory; the results of these numerical simulations
in terms of avalanches of rearrangements have been contrasted
with depinning models [31–33]. In more conventional amor-
phous solids, the microscopic plastic deformation is thought
to come from local rearrangements of particles involving
shear transformation zones (STZ) [34–38]. For these systems,
described by linear isotropic elasticity, a local failure results
in an Eshelby-like elastic field [23,39]. This mechanism,
which describes the jamming-unjamming process as a kind of
dynamic attractor, was suggested some time ago by Dickman
et al. [25] in the conclusion of their paper invoking self-
organized criticality [19,20,40]. In these models, the processes
occur around a critical point [41] and some observables
undergo significant fluctuations, leading to the violence of
the avalanche phenomenon and to power-law statistics.

We emphasize that the physical picture described in Fig. 1
is specific to sheared, frictional granular systems. At the global
scale, the material needs to be close to failure and only shear
provides such a state [25] in the steady-state regime. In the
case of frictional granular materials, failure can occur either
because the system is fragile or because it is driven across
the yield-stress surface. These are fundamentally different
processes. Note that, here, “fragile” refers to an instability
under shear strain reversal and occurs in the region marked F
in Fig. 1(b). In this regime, if the direction of the shear strain
is reversed at constant volume fraction φ from a direction that
has established a weak network of force chains, all stresses,

including the shear stress, drop substantially, possibly to zero,
before a new network is established and the stresses once again
increase. This type of failure corresponds to a switch from a
largest principal stress σ1 in one direction to a major principal
stress σ2 in a direction that is (nominally) orthogonal to the
first. By contrast, failure at the yield surface occurs via a reduc-
tion in stresses that does not reverse the major principal stress
direction. In both of these cases, the density or packing fraction
typically remains fixed. By contrast, in the compression case,
φ increases; τ is not controlled, but compression tends to make
the material more isotropic and it is possible that τ = σ1 − σ2

may decrease [Fig. 1(b)]. The loading rate, which is constant
and slow enough to be in the quasistatic regime for the present
study, is an important physical parameter; however, the effect
of finite loading rate is outside the scope of the present study
and will be left to future work.

Since our grains are frictional, the jamming diagram
[Fig. 1(b)] presents a region of volume fraction below the
isotropic jamming packing fraction for frictionless particles
(volume fraction φ < φJ ), in which states ranging from stress-
free to fragile, robustly shear jammed and flowing coexist at
the same time. The statistical behavior of the system differs
depending on the driving along the shear stress direction in
this phase diagram. Indeed, in stress-controlled protocols,
the system can be loaded (i) at constant stress above the
yield stress or (ii) with continuously increasing stress; the
system will not display a continuous avalanching regime in
either of these cases. In case (i), the system becomes stuck
after a transient regime (τ < τc) or never stops (τc < τ ) and
flows indefinitely. In case (ii), the system moves outside the
jammed regime after a transient regime and flows indefinitely.
In (iii) strain-controlled experiments, the statistical behavior
of the system reaches steady-state behavior after a transient
regime; during this steady state, the system oscillates around
the yield-stress curve. Although the dynamics of both regimes
(i) and (ii) involve strong fluctuations, their statistics differ
from those induced by (iii), where for the fluctuation dynamics
remain unchanged as long as the strain is increased.

To understand, predict, and potentially control the occur-
rence of avalanches, it is important to detect and track the
physical mechanisms from the smallest scale, a particle size,
where localized triggering occurs, to the system scale, where
the effect of the avalanche is often detected. Hence, in this
article we present experiments and numerical simulations
where the full range of scales is studied. In both cases, we
consider two-dimensional (2D) granular materials consisting
of bidisperse disks that are quasistatically sheared at constant
volume fraction φ. In particular, we track the energy and
pressure stored in the system, as well as the particle-scale
properties, including particle positions and rotations. We
also present alternate methods to measure the intensity and
position of local and global avalanches. We then use these
methods to determine statistical measures of avalanches and
the interdependence of global and local events.

II. METHODS

A. Experimental setup

A typical experiment involves cyclically shearing a set of
bidisperse 2D circular particles in a pure shear apparatus.
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FIG. 2. (a) From top to bottom, evolution of the dimension of the
pure shear cell during one cycle. An initial 44 × 40 cm2 rectangle
is progressively shrunk in one direction and expanded in the other
one to form a 55 × 32 cm2 rectangle [green (dark) rectangles] and
the motion is then reversed [red (clear) rectangles] to achieve a
20% shear amplitude. (b) Three-dimensional schematic of the biaxial
experimental cell. Moving walls shear, step by step, a set of bidisperse
photoelastic particles with a UV-ink bar on them. At each step the
system is imaged with white light, between crossed polarizers and
with UV light.

Particles are photoelastic disks of thickness equal to 6.35 mm
and diameters of 12.7 and 15.9 mm (diameter ratio d ≈ 1.25)
made of Vishay PSM-4, as shown in Fig. 3. We use a bidisperse
mixture to avoid crystallization and the ratio between the
number of small to large particles is kept constant at 3.3:1 for
all experiments. One set of particles is wrapped with Teflon R©
tape to reduce the friction coefficient between particles [see
Fig. 3(d)]. The static friction coefficient are ν = 0.7 and 0.2 for
unwrapped (bare) and wrapped particles, respectively. In order
to track rotations, each particle is marked along its diameter
with UV ink.

These particles rest on a transparent Plexiglas R© plate
slightly covered with talc to reduce the basal friction. The
experiment is illuminated from below by a circularly polarized
uniform white light and from above by a less intense UV
light source. An 18 megapixel single-lens reflex camera is
placed 2 m above the particles and can record pictures with
and without the circular polarizer [see Fig. 2(b)]. After each
pure shear step, the system is imaged without the top polarizer
[Fig. 3(a)], with crossed polarizers [Fig. 3(b)], and with the
white light off and UV light on [Fig. 3(c)]. Experiments have
been carried out for different packing fractions, for different
shear amplitudes, and for particles with different static friction
coefficients as summarized in Table I.

Pure shear strain [see the geometry in Fig. 2(a)] is applied
to the particle systems in small quasistatic steps, using the
biaxial device shown in Fig. 2(b). As showed in Fig. 2(a),
the boundaries of the cell compress the system in one
direction and expand it in the other, keeping the area constant.
Before each experiment, we prepare a stress-free packing of
a given density by gently rearranging the particles. The initial
boundary configuration is a 44 × 40 cm2 initial rectangle.
During each experiment, this boundary spacing is shrunk by
1 mm (0.25% strain) steps in the y direction and expanded
in the x direction to a 55 × 32 cm2 rectangle to reach a
20% shear amplitude (less for some high-density experiments)

FIG. 3. Top view of the granular system (a) in transmitted white
light, (b) between crossed polarizers, and (c) in UV light. (d) From
left to right, small and large Teflon R© wrapped particles and small and
large bare particles.

while keeping the overall area constant. The directions of
compression and dilation are then reversed back to the initial
boundary configuration. For each experiment, such a back and
forth cycle is repeated 50 times. During each step, (i) the
boundary walls move for 2 s, (ii) the system is allowed to
relax, and (iii) the imaging process is carried out which lasts
for ∼10 s in total. The loading is slow enough to be considered
as quasistatic.

B. Image postprocessing

As shown in Fig. 3(a), without the top crossed polarizer, the
color of the particles differs from the background (yellowish).
Using this property, the unpolarized pictures are converted
to a binary representation (black for the particles and white
for the background) with an adaptive threshold algorithm and
convolved with a disk of the size of the particles for both
particle diameters. The maximum of the convolutions for each
diameter gives the particle position. From the cross-polarized
pictures, we measure the pressure of each particle, using
an empirical approach introduced in Ref. [1]. If a quasi-2D
photoelastic object is observed between crossed polarizers,
then for a given wavelength, the fraction of the light going

TABLE I. Input parameters of the experiments. Particles can be
bare or wrapped with Teflon R© tape to change their static friction
coefficient. The total number of particles is changed to vary the system
density, but the number ratio between small and large particles stays
the same. The maximum shear amplitude is chosen so that the pressure
inside the system is low enough for it not to buckle.

Experiment Particles Packing fraction φ Shear amplitude

I bare 0.785 20%
II bare 0.790 17.5%
III bare 0.799 10%
IV bare 0.805 7.5%
V wrapped 0.808 20%
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through a portion of the material subjected to a local shear
stress τ = σ1 − σ2 has intensity

I ∼ sin2

(
πCT

λ
(σ1 − σ2)

)
, (1)

where σ1 and σ2 are principal stresses, C is the material stress
optic coefficient, T is the object thickness (here 6.35 mm), and
λ is the wavelength of the light (∼510 nm for the green filter we
use). To obtain information on grain pressure, we use the fact
that the contact forces acting on a grain create stresses inside
the grain, which changes the phase variable πCT (σ1 − σ2)/λ
inside the sine function of Eq. (1). Where the phase variable is
an integer multiple of π , the corresponding transmitted image
region is dark, and where the phase is an odd multiple of π/2 it
is bright. In a photoelastic image of a grain, increasing applied
contact forces increases the stresses (both pressure and shear
stress) within the grain and leads to an increasing density of
light and dark fringes. Since the pressure is a reflection of the
mean normal forces on a particle, hence the internal stress, it
is straightforward to calibrate a measure of the fringe density
against the pressure P [1,10,27,42]. To quantify the fringe
density we measure the squared gradient of the photoelastic
image intensity G2, integrated over a particle. This quantity
provides an empirical connection to the local pressure acting
on the grain. Since the material is purely elastic, the energy e

stored in the particle is proportional to P 2 or G4.
The orientation of each particle is also measured using

UV light imaging [Fig. 3(c)] after each strain step. A Hough
transform is performed locally on the binarized UV image of
each grain to detect the fluorescent bar. An angle θ between
0 and π is then attributed to each grain for each step and a
variation is deduced:

	θi = |θi(γ ) − θi(γ + 	γ )|. (2)

C. Numerical simulations

We also carry out corresponding discrete-element modeling
(DEM) simulations. We employ a contact force model first
developed by Cundal and Strack to describe the mechanical
behavior of disks [43] and more recently revised by Silbert
et al. [44]. Here we perform these numerical simulations using
the DEM code LIGGGHTS initially developed by Kloss et al.
[45]. In the Hertz-Mindlin contact model, the grain-grain and
grain-wall interactions are modeled using a spring-dashpot
description. The contact forces, both normal and tangential,
are represented by a purely repulsive Hertzian spring model
with velocity-dependent damping. To maintain close con-
tact with the experiments, we use a bidisperse mixture of disks
with diameters of 13 and 16 mm (diameter ratio d = 1.23).
We vary the packing fraction by adjusting the number of disks
in the simulation cell, and the particles are loaded in the same
geometry as the one described in Fig. 2. Normal and tangential
forces acting on a given particle i from a particle j are given
by

Fn
ij = knδnij − γnvn

ij , (3)

Ft
ij = ktδtij − γtvt

ij , (4)

TABLE II. Input parameters of the numerical simulations. The
static friction coefficient between particles is varied from perfectly
slippery (ν = 0) to highly frictional (ν = 1). For each static friction
coefficient that was near an experimental value, the total number of
particles was changed to vary the system density, but the ratio between
small and large particles stayed the same.

Simulation Static friction coefficient ν Packing fraction φ

1 0.7 0.780
2 0.7 0.784
3 0.7 0.788
4 0.7 0.792
5 0.7 0.796
6 0.7 0.800
7 0.7 0.805
8 0 0.788
9 0.1 0.788
10 0.2 0.788
11 0.3 0.788
12 0.4 0.788
13 0.5 0.788
14 0.6 0.788
15 0.8 0.788
16 0.9 0.788
17 1 0.788

where kn and kt are the stiffnesses for the normal and tangential
springs, γn and γt are the viscoelastic damping constants for
normal and tangential contacts, δnij and δtij are the normal
and tangential displacement vectors between particles i and j ,
and vn

ij and vt
ij are the relative normal and tangential velocities

between particles i and j . To mimic the basal friction present
in the experiments, the particles are also subjected to viscous
fluid damping in the plane of motion.

The grain properties are set to closely match the experimen-
tal values. We use a Young modulus E = 4 MPa, a Poisson
ratio μ = 0.49, a density ρ = 2500 kg m−3, and a coefficient
of restitution cr = 0.3, close to the experimental material.
We vary the friction coefficient common to grain-grain and
grain-wall contact interactions ν, as well as the packing
fraction φ by changing the number of particles for a given
load cell geometry. All of these conditions are summarized
in Table II. In order to implement Coulomb static friction,
we truncate the tangential displacement to fulfill the Coulomb
sliding condition at each contact:

F t
ij � νF n

ij . (5)

The Appendix details the relationship between materials
properties and the elastic and viscoelastic damping constants
used in the simulations.

We obtain stress-free initial configurations at each volume
fraction by isotropically growing particles randomly seeded in
the load cell at very low density. After each growth step, we
minimize the total potential energy using molecular dynamics
with viscous damping. We then load the cell at a constant shear
rate γ̇ = 10−5, which is in the quasistatic limit.
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FIG. 4. (a) The plain blue (dark) line is the global energy E stored
in the granular media measured experimentally as the sum of G4 over
the particles. The red (clear) dashed line is the power P dissipated
in the system computed as minus the negative part of the derivative
of the energy with respect to strain. Both quantities are plotted as a
function of the shear step. Each gray shaded box marks shearing in
one direction (shearing is reversed periodically). (b) Cartoon of the
threshold power (energy released per strain unit) P signal to extract
global avalanches. For each i avalanche we measure the beginning
strain Sbi

, ending strain Sei
, duration Di , and accumulated dissipated

energy Ei .

III. AVALANCHE DETECTION

A. Measurement of global avalanches

From the sum of the particle energies ej , we compute
the evolution of the global energy E = ∑

j ej stored in the
granular system [see Fig. 4(a)]. As expected from Fig. 1(a), we
observe fluctuations of the signal due to two different features:
very large fluctuations following reversal of the shear direction,
but also large spontaneous fluctuations (i.e., avalanches) due
to rearrangement of the grains inside the system.

We detect avalanches, measure their size and location,
and analyze their energy drops using conventional pinning-
depinning model approaches [46]. As shown in Fig. 4(a), we
compute the negative derivative of the energy with respect
to strain (P = −dE/dγ ) and consider only the positive part,
corresponding to the released energy. Then, as in Fig. 4(b),
we choose a threshold Pth and consider all peaks above this
threshold as avalanches. For each peak i, the strain Sbi

when
the signal crosses the threshold going up is considered as
the beginning of the avalanche, while the end corresponds
to the signal crossing the threshold going down, Sei

. The
strain difference between those two events is the duration
Di = Sei

− Sbi
(in units of strain rather than time). The size (in

energy) of the avalanche or energy drop Ei is given by the area
under the peak and above the threshold value as presented
in Fig. 4(b). We do not consider events that are caused by
the periodic reversal of the shear direction, since these are
not spontaneous events. We note that avalanches are detected
using the power (energy released by strain unit) instead of the
pressure derivative. Characterizing avalanches in terms of an
extensive quantity (energy, area, etc.) is better than measuring
them in terms an intensive one (pressure, force, etc.) because
the former does not intrinsically depend on any other quantity
in the system such as area of contact, material, stiffness, etc.

B. Measurement of the local avalanches

Avalanches at the global scale are created by rearrange-
ments of the grains and the granular force network triggered

FIG. 5. (a) Absolute value of the particle rotation 	θ measured
from step j0 to j0 + 1 in experiment I. The clusters of large
rotation corresponds to local grain rearrangements. (b) Nonaffine
displacement of grains between step j0 and j0 + 1 (motion due to
the boundary is removed). Particle positions after removing the affine
displacements, interpolated from the boundary motion. The direction
of nonaffine motion is indicted by arrows and the magnitude of
nonaffine motion is indicated by the color scale.

by structural evolution at the local scale. Here we define and
detect those rearrangements which we call local avalanches.
As in Figs. 5(a) and 5(b) and Fig. 6(b), when the global
energy varies strongly, particles in localized clusters undergo
strong rotations, displacements, and/or energy or pressure
variations, respectively. These dynamical heterogeneities are
reminiscent of the ones already observed in Refs. [47]

FIG. 6. (a) Energy G4 (arbitrary units) stored in each particle
before (step j0) and after (step j0 + 1) an avalanche for experiment
I. Step j0 corresponds to Fig. 5. We notice that some force chains
break. (b) Variation of the energy from step j0 + 1 to j0. Blue (dark)
particles are unloaded (lose energy), whereas red (clear) are loaded
(gain energy). (c) Schematic of the evolution of a particle undergoing
a strong energy drop after a shear step. Colors and signs stand for the
same particles from step to step. (d) Grains involved in an avalanche
at shear strain step j0. The same colors stand for the same avalanches.
We see that local avalanches detected with energy follow the force
chain structure (see the text for details).
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and [12], respectively. Here we isolate these sharp variations
in both space and strain and quantify their size and duration.

Local avalanches can be extracted from the pressure or
energy fields [Figs. 6(a) and 6(b)], the rotation field [Fig. 5(a)],
and the displacement field [Fig. 5(b)]. In this last case, we only
consider the nonaffine displacement, which is measured as the
displacement corrected by the affine displacement imposed
by the pure shear motion of the boundaries. For each of
those quantities, at each shear step, we consider the particles
with a value (energy drop, for instance) higher than a certain
threshold. In the schematic of Fig. 6(c), for example, six
particles are involved in a local avalanche at step j , whereas
no particles are involved in an avalanche at step j − 2 (no
significant rearrangement). Then, for each step we identify
these particles as part of a single cluster if they are all in mutual
contact. In Fig. 6(c) at step j , we identify two clusters. One is
formed by the red (circles), pink (triangles), blue (pentagons),
black (bars), and gray (squares) particles and the other includes
only the cyan (cross) particle. Finally, for the previous and
successive steps j − 1 and j + 1, respectively, we look for
clusters such that at least one particle belongs to a cluster
detected at step j . If we identify one, we connect these clusters
in time to form an avalanche with duration Di as in Fig. 6(d) at
step j0 for the energy drop. In Fig. 6(c), an avalanche formed
from the red (circles), pink (triangles), blue (pentagons), black
(bars), gray (squares), and brown (stars) particles is created at
step j − 1 and ends at step j + 1.

As for global avalanches, for each local avalanche i detected
with this method, we define the following: the strain at the
beginning Sbi

, the step where the first particle involved in
the avalanche crosses the threshold; the strain at the end Sei

,
for the next step after that, the last particle involved in the
avalanche crosses the threshold for the last time; the duration
Di , the difference between the ending and beginning strain
(Di = Sei

− Sbi
); the position (Xi,Yi), the center of mass of

all the particles involved in the avalanche, weighted by the
number of times they are above the threshold; and the intensity,
the number of particles involved in the avalanche Ni [6 in the
example of Fig. 6(c)] or the total energy or pressure drop or
change, rotation, or displacement Ei , summed over all the
steps and all the particles of the avalanche. As explained for
global avalanches, the best way to define an avalanche is to
use the energy drop, rotation, or displacement because they
are extensive quantities so the measurement does not depend
on any other quantity in the system. In the rest of this paper,
we will mainly use the energy drop as the fluctuating quantity
that defines the avalanche.

IV. RESULTS

A. Global avalanches

The probability density function (PDF) of the avalanche
size is a standard tool used for analyzing the dynamics
of a system displaying crackling behavior. For a typical
experiment and simulation, we plot in Fig. 7(a) the energy
E extracted from the global power signal P for both ex-
periment I (see Table I) and numerical simulation 2 (see
Table II). We note that in the rest of this paper we will use
arabic numbering for simulations and roman numbering for

FIG. 7. (a) Probability density function of the energy of global
avalanches P (E) for different threshold values Pth (color from blue
to brown) for experiment I and with a low threshold value (Pth = 10)
for simulation 2 (black). For experimental data, the statistics follow
a power law over 3 decades with exponent β = −1.24 ± 0.11. For
simulations, a power law is also observed over 2.5 decades with
β = −1.43 ± 0.14. (b) Probability density function of the energy
stored in the system E when an avalanche is triggered (depinning
energy Edep) for different threshold values for experiment I.

experiments. We find that these PDFs follow a power law with
exponent β,

P (E) ∼ Eβ. (6)

The value of the exponent measured in the experimental
case is β = −1.24 ± 0.11, while the simulations yield β =
−1.43 ± 0.14. We note that in the rest of this paper, quantities
with a bar are from simulations and ones without a bar are
from experiments. Although these exponents are somewhat
different, they agree within the 95% error bars. In the
experimental case, we also explored the effect of the avalanche
detection threshold Pth on the statistics; no effect on the
exponent or the upper cutoff of the PDF was observed.
This threshold only affects the lower cutoff because small
avalanches are below the threshold and are not detected for
high Pth values. Hence, to compare the statistical behavior
of different systems, it is important to keep this parameter
constant and low enough to avoid missing small events.

When an avalanche is triggered, not only the energy E

released by the system is relevant to characterize the avalanche
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FIG. 8. (a) Average shape of the global avalanches measured for
different avalanche duration. Although avalanches are symmetric
for short duration, they become progressively clearly asymmetric:
a strong acceleration at the beginning and then a slow deceleration.
(b) Average coordination number Z when an avalanche begins as a
function of the energy E of the avalanche. Avalanches happen equally
in the shear and fragile regimes, at both low and high coordination
numbers. Both figures are plotted with data from experiment I .

behavior, but also Edep, the total energy stored in the system.
Figure 7(b) shows the PDF of Edep for experiment I at strain
Sb when an avalanche is triggered. This energy is sometimes
called the depinning energy, and in the framework of the
pinning-depinning theory, several models predict Gaussian
statistics [48–51]. In our case, unlike these models, we observe
a power-law distribution and the measured experimental
exponent is close to 1: γ = −1.08 ± 0.1. As the detection
threshold Pth increases at a fixed upper cutoff, the distribution
tends to a Gaussian distribution. This suggests that only large
avalanches statistics can be described within the pinning-
depinning framework. Moreover, the fact that only the lower
cutoff is changed by the threshold value means that, unlike
other different crackling systems [52], by increasing Pth large
avalanches do not break up into smaller ones and just more
small avalanches will be excluded.

We also determine the average temporal avalanche shape
for experiment I of Table I. The avalanche shape provides a
useful characterization of the avalanche or crackling dynamics
and has been measured in a variety of systems [52–57]. We
adopt the standard procedure. First, we identify all avalanches
i of a given duration Di ; second, we average the shape P(S ∈
[Sbi

,Sei
])/ max{P(S ∈ [Sbi

,Sei
])} vs S/Di over all avalanches

i. Figure 8(a) shows the resulting shape and its dependence
on duration D. For short avalanches (small D), the average
shape is symmetric, but for longer avalanches (large D), it
evolves toward a maximum energy loss near the beginning of
the avalanche, followed by a slower rate of energy loss.

Figure 8(b) shows the energy E released during one
avalanche vs the average coordination number Z at the begin-
ning of this avalanche. The correlation between both quantities
is 41%, so no correlation can be drawn between E and Z, which
means avalanches happen equally in the fragile (Z < 3) and
jammed (Z > 3) regimes. Nevertheless, we observe an asym-
metry between the high-energy–low-coordination correlation
and the low-energy–high-coordination correlation

Z � 0.18 log10(E) + 1.9. (7)

This relation implies that smaller avalanches occur at lower
Z, corresponding to the fragile regime or the beginning of the

FIG. 9. Probability density function of the energy of global
avalanches P (E) measured in (a) experiments and (b) numerical
simulations. The particle packing fraction φ and the static friction
coefficient between particles ν are varied over the different experi-
ments and simulations. The energy P (E) follows a power law with
a constant exponent β = −1.24 ± 0.11 for experimental data and
β = −1.43 ± 0.14 for the numerical simulations. Here φ has no
effect on the statistics, while the upper cutoffs of the power laws
decrease with the friction coefficient ν. In order to characterize the
effect of the friction, P (E) is rescaled using the method described in
[58] (c) to collapse curves for different friction and upper cutoff. The
inset shows the scaling of the upper cutoff plotted as a function of ν.

jammed regime. Larger avalanches, including ones that are
nearly system spanning, occur at or above the jammed region.
This means that the coordination number has a particularly
strong effect on the upper cutoff of the avalanche energy PDF
and a weaker effect on the lower cutoff.

In the results below, we probe packing fractions spanning
0.785 � φ � 0.808, where throughout all experiments and
simulations we keep the ratio of small to large particles
constant. These packing fractions are below the frictionless
isotropic jamming point φ < φJ , but necessarily larger than
the lower limit of shear jamming φ > φS . We present P (E) for
each density in Fig. 9(a). We note that in the experiment, the
maximum shear amplitude is adjusted to avoid out-of-plane
buckling of the particle layer. We do not see any significant
effect of φ on P (E), which means that if the maximum total
stored energy Emax is higher for higher φ, it does not change
the value of the largest avalanches. As presented in Fig. 9(b),
we arrive at the same conclusion for the simulations, where
we consider φ’s spanning 0.780 � φ � 0.805; the packing
fraction does not change the avalanche energy distribution.

We next consider the effect of varying the particle friction
coefficient. We carried out two sets of experiments, one with
friction coefficient ν = 0.7 and the other with ν = 0.2. As
presented in Fig. 9(a), there is no noticeable difference in P (E)
for the different ν’s. In the numerical simulations, we varied ν

over a broader range: from ν = 0 (no friction) to ν = 1. The
overall scale of the PDFs, as measured by P (E), vary with the
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friction coefficient ν, while the overall shape and power-law
exponent are insensitive to changes in ν. In Fig. 9(b), we
show that the upper cutoff of the energy distribution power
law increases with ν for the simulations. This is explained by
the fact that the Reynolds pressure increases more slowly with
shear strain for low friction than for high friction, since grain
scale particle rearrangements occur more easily for lower ν.
To quantify this effect, P (E) in Fig. 9(c) is rescaled using the
method presented in Ref. [58]. For simulations with different
friction coefficients, energy PDFs collapse on a single power
law with an exponent β = −1.43 and an upper cutoff of a given
shape. According to [58], the cutoff E0 scales with 〈E〉1/(β−2).
As presented in the inset of Fig. 9(c), this quantity exhibits
a sharp increase with increasing ν and the functional form is
neither an exponential function nor a power law.

B. Local avalanches

For a typical experiment, we investigate the effect of the
different measures for avalanches at the local scale on the
statistical behavior of the system. For each loading step, a
grain is considered to be involved in an avalanche if one of
the following criteria is satisfied: The rotation from one step
to another is larger than 8◦, the nonaffine displacement from
one step to another is larger than 1.2 mm, the energy drop or
rise is larger than 60 (G4), or the pressure drop or rise is larger
than 3 (G2). These thresholds have the same effect on the
statistics of the local avalanches as the energy threshold has
on the statistics of the global avalanches, namely, it shifts the
lower cutoff. Hence, we have chosen these threshold values
so that the power laws display the maximum number of
decades. We then determined avalanche sizes in terms of N , the
number of grains involved in the avalanches determined by the
different physical quantities (i.e., angle, displacement, energy,
and pressure). The PDFs P (N ), presented in Fig. 10(a), display
power laws over two to three decades, with exponents that
depend on the physical quantity used to define the avalanche.
Measurements of particle rotation or pressure rise lead to
similar PDFs with exponents −3.24 ± 0.16 and −3.29 ± 0.15,
respectively. Probability density functions based on pressure
and energy drops are also power laws, but with exponents
−2.30 ± 0.13 and −2.26 ± 0.10, respectively. For avalanches
based on energy increases, we find a power law with expo-
nent −2.70 ± 0.11, which differs from all other exponents
measured. Finally, the exponent based on the displacement
(−1.89 ± 0.12) is the same, within error bars, of the exponent
based on energy drops (βl = −2.05 ± 0.09).

We also measured similar distributions in the simulations,
but focused on avalanches defined by energy drops (threshold
4 × 10−5 P 2), rotation (threshold 8◦), and displacement
(threshold 0.5 mm). Figure 10(b) shows that, as in the
experimental study, the power-law exponents depend on
the quantities that are used to define them. Avalanches for
displacements and rotations of particles display a power law
with exponents 1.82 ± 0.10 and 2.32 ± 0.17, respectively.
For displacements, the simulations and experiments yield
similar exponents. For avalanches determined from energy
drops, the exponent is −2.70 ± 0.13 if the avalanche size
is given in terms of number of particles, while the other
exponent is βl = −2.08 ± 0.1, similar to the value obtained in

FIG. 10. (a) Probability density functions P (N ) of the avalanche
sizes measured at the local scale in terms of the number of particles
involved in each avalanche for experiment I. Avalanches are detected
using a threshold on rotation, displacement, and pressure or energy
drop or increase. Power laws are found with exponents varying
from −2 to −3 (see the text for details). (b) Probability density
functions P (N) of the avalanche sizes measured in terms of the
number of particles involved in each avalanche for simulation 2.
Avalanches are detected using a threshold on rotation, displacement,
and energy drop. Power laws are found with exponents varying
from −1.8 to −2.5. In all cases the probability density function of
the avalanche energies P (E) detected from the energy drop is also
plotted for comparison. A power law spanning almost three decades
is observed with exponent βl = −2.05 ± 0.09 for experiment and
βl = −2.08 ± 0.1 for numerical simulation.

experiments. For the remainder of this paper, we will consider
avalanches based on energy drops. In Table III we summarize
all the exponents measure from local avalanches.

As shown in Figs. 5 and 6, avalanches based on local particle
rotation, local displacement, or local pressure drop tend to
be clustered in space and time. Thus, avalanches in local
particle rotation, displacement, and pressure drop represent
similar types of rearrangements. However, this tends not to
be the case for small rearrangements where few particles
move or rotate. Figure 11 shows data for all avalanches based
on particle rotation involving a given number of grains. For
these avalanches, we determine the ratio of avalanches that are
also associated with an avalanche based on the displacement
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TABLE III. Exponents of the probability density functions of avalanche sizes measured at the local scale in terms of the number of particles
involved in the avalanche and total variation of the field considered to detect the avalanche, for experiment I and numerical simulations 2.

Exponents Experiments Simulations

Measured by Measured Measured by Measured
Measured field intensity by number field intensity by number
from field variation of particles variation of particles

displacement −1.80 ± 0.05 −1.89 ± 0.12 −1.63 ± 1.2 −1.82 ± 0.10
rotation −2.21 ± 0.11 −3.24 ± 0.16 −1.62 ± 0.09 −2.32 ± 0.17
energy drop −2.05 ± 0.09 −2.26 ± 0.10 −2.08 ± 0.1 −2.70 ± 0.13
energy rise −2.35 ± 0.14 −2.70 ± 0.11
pressure drop −2.22 ± 0.15 −2.30 ± 0.13
pressure rise −2.15 ± 0.17 −3.29 ± 0.15

or energy drop. “Associated” means that among the grains
involved in the rotation avalanche, there is at least one that
is also involved in a simultaneously occurring displacement
or energy drop avalanche. Figure 11 shows that most of the
small avalanches in rotation are independent of any other kind
of rearrangement. However, the biggest avalanches involve
rearrangement in rotation, displacement, and stored energy
for the particles involved. Avalanches involving more than
20 grains are always detected based on both rotation and
displacement, but not necessarily on the variation of the energy.
This is mostly due to the fact that rearrangements of particles
involving translation and rotation need not involve strong
contacts with other grains.

As for global avalanches, we now investigate the effects
of the packing fraction φ and of the interparticle friction
coefficient ν on local avalanche energy PDFs. Figure 12(a)
shows experimental results for different φ and for particles that
were or were not wrapped with Teflon R© tape. As for global
avalanches, the PDFs follow power laws and the exponents
are unaffected by the variations in the packing fraction and
friction coefficient. Only the upper cutoffs change with φ or
ν. Simulations, shown in Fig. 12(b), have similar power-law
exponents as the experiments, but the upper cutoff E0 depends
on φ and ν. Figures 12(c) and 12(d) shows the upper cutoff

FIG. 11. For experiment I, we plot the ratio of the number of
avalanches based on the rotation to the number of avalanches based
on the displacement (or energy drop) provided the avalanches have
an overlap in space and time (see the text for more details).

determined using the scaling explained in Ref. [59]. This upper
cutoff increases with both ν and φ and obeys an exponential
form

E0 = 〈E2〉
2〈E〉 ∼ e(8.34±1.2)ν+(232.1±17)φ. (8)

We now consider local avalanche statistics as a function
of Z. For each avalanche of size Ei , a coordination value Zi

is attributed by measuring the average contact number per
grain for the whole packing at the beginning strain Sbi

of
the avalanche: Zi = Z(Sbi

). Figure 13(a), which gives energy
PDFs for different Z, shows that the range of Z has no effect on
the power-law exponent for the distribution of energy drops.
Nevertheless, it clearly has an effect on the upper cutoff E0,
which increases with the coordination number, as shown in the
inset of Fig. 13(a). Higher particle coordination corresponds
to higher pressure and larger variations in energy and other
quantities. We also note that higher E0 corresponds to values
of Z such that Z > d + 1 with d = 2 the system dimension.

FIG. 12. Probability density function of the avalanche energy
P (E) detected from the energy drop for different packing frac-
tions φ and particle friction coefficients ν in (a) experiments and
(b) simulations. Within the error bars, power laws with similar
exponents are observed. Also shown is the variation of the power-law
upper cutoff Ē0 as a function of (c) the interparticle friction ν at
φ = 0.788 and (d) the packing fraction φ at ν = 0.7.
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FIG. 13. (a) For experiment I, probability density function of the
avalanche energy P (E) detected from the energy drop for different
coordination numbers Z. The inset shows the evolution of the energy
upper cutoff E0 as a function of the coordination number Z. A sharp
increase in E0 is observed near Z = 3, which is the minimal number
of contacts for large-scale mechanical stability. (b) For experiment
I, probability density function of the number of local avalanches
detected during a global avalanche for different ranges of global
avalanche energy E.

This means that when the system is jammed, the upper energy
cutoff is distinctly larger.

To quantify the link between local and global avalanches
and to understand how local avalanches induce global ones,
we show in Fig. 13(b) the PDF of the number of local
avalanches included in a global avalanche. For each global
avalanche of experiment I whose energy E is in a given
range, we count the number of local avalanches between the
beginning and end of the global avalanche. The PDF of this
number of local avalanches contained in a global avalanche is
shown in Fig. 13(b) over a range of avalanche energies. The
average value of local avalanches per global avalanche, ∼15,
is surprisingly independent of the energy range of the global
avalanche. Hence, whatever the size of a global avalanche,
on average, it is composed of the same number of local
avalanches.

Finally, we consider the location and shape of the local
avalanches. To determine whether avalanches occur homo-
geneously throughout the whole system, we compute their
nonaffine position, defined as their actual position from
which the associated affine displacement is subtracted, and
determine the number of avalanches per unit area per shear
cycle. The map of this quantity is shown in Figs. 14(a) and
14(b) for experiment I and simulation 2, respectively. For
better accuracy of the avalanche position, we consider only
avalanches detected by thresholding the local displacement.
In both experiments and simulations, the highest density
occurs along diagonals that correspond to shear bands. This
means that avalanches are mainly triggered in this area, which
corresponds to highly turbulent granular flow. Also, in the
experimental case, we observe an abundance of avalanches
triggered near the edges of the experimental cell. We believe
this is due to the small loading imperfections caused by the gap
between boundary walls and basal plates and between crossing
boundary walls.

Figures 14(c) and 14(d) shows the average 3D shape of the
avalanches computed for avalanches detected by energy drop
in experiment I and simulation 2. For each avalanche involving
eight to ten grains (which corresponds to the average avalanche
size), the shape of the avalanche matches the local density

FIG. 14. Number of local avalanches detected with particle
displacement per unit area per cycle for (a) experiment I and
(b) simulation 2. Also shown is the average local avalanche shape
for avalanches detected with the energy drop with size N between
eight and ten particles for (c) experiment I and (d) simulation 2. See
the text for more details.

variations of the grains. This is obtained by considering only
particles involved in a given avalanche, choosing an origin
at the barycenter of the avalanches [the x and y directions
are kept the same as the ones given in Fig. 2(b)], and by
computing the local density field. This field, which we refer to
as shape, is then averaged over several avalanches, where the
origin for each shape is its center of mass. Figures 14(c) and
14(d) show the result in both experiments and simulations.
The average shape is not isotropic and avalanches are pref-
erentially aligned along the instantaneous compressive shear
direction, which in turn corresponds to the strong force chain
direction.

V. DISCUSSION AND CONCLUSION

We have observed scale-free distributions for global
avalanches based on the power dissipated in both experiments
and related simulations. The power-law exponents from these
two different approaches agree within statistical errors. We
find an exponent associated with energy release per avalanche
of β = −1.24 ± 0.11 for experiments and β = −1.43 ± 0.14
for simulations. These are in agreement with the 1.36 and 1.34
theoretical results reported in Refs. [18,60], respectively, and
the 1.25 numerical results reported in Ref. [61] for sheared
soft particles. It is also very close to the 1.25 exponent
reported for [46,62]. However, they are somewhat smaller
than the 1.5 exponent computed for the discrete model in
Ref. [17] or the ∼1.5 exponent measured experimentally in
Ref. [2] for sheared foam and in Ref. [63] for 2D granular
material. We note that the simulations in Ref. [17] carried out
with an elastoplastic cellular automaton model including an

052902-10



LOCAL AND GLOBAL AVALANCHES IN A TWO- . . . PHYSICAL REVIEW E 96, 052902 (2017)

Eshelby stress redistribution kernel do not include some of the
distinguishing physical processes present in our experiment.
Perhaps most importantly, static friction and force chains are
not part of this model but are key features of our system. The
studies in Ref. [2] consider highly deformable particles with
a very low friction coefficient, which may be a key difference
from our system. Finally, the exponent reported in Ref. [63] has
a rather large error bar and it may be consistent with our results,
even if the loading mechanism is different. In contrast to [17],
the discrete dislocation model of [64] predicts an exponent of
1. However, this model also does not include effects associated
with friction or force chains and the system is stress controlled.

We find a power-law distribution for the depinning energy
that differs from what is observed in pinning-depinning
models. A possible cause for this difference may lie in the fact
that in the granular case, the quenched disorder in the system
changes after each avalanche. Other possible causes may
be the inherent anisotropy and qualitatively different elastic
response preceding an avalanche. Hence, the granular case
may differ at a very basic level from the ingredients of models
that have been constructed for other types of amorphous
materials [17,18,22,65,66]. As a consequence, the plasticity
for dense granular systems appears to differ qualitatively and
quantitatively from the behavior of pinning-depinning model
Ref. [64].

We find that the temporal avalanche shape can differ
significantly from numerical models [13,17] and recent ex-
perimental report [11], with a clear asymmetry of the shape
for long-lasting avalanches. We believe this is mainly due to the
fact that, in our system, the basal static friction, between the
particles and the supporting glass, induces a large viscosity
in the particle displacement and reduces the intensity of
their displacement at long terms. Nevertheless, this does not
completely explain why the effect would be different for weak
and strong avalanches and remains a hypothesis. Another
hypothesis can also explain asymmetry for large avalanches.
In large events, the system unloads from a state of high over-
compression to one of low compression. In small events, the
amount of unloading may be smaller. For small unloading, the
system is locally harmonic and the slip event will be symmet-
ric. However, for large events, the system is initially very stiff
and then softens as unloading occurs. We would expect that this
would lead to rapid dynamics initially, i.e., the effective elastic
coefficient is large, hence the early peak in the response. As the
system continues to unload, the system softens and the time
scale for relaxation grows towards the end of the avalanche.
This would lead to a weak extended feature at the end of
the avalanche. From this perspective, the asymmetry for large
events arises in the nonlinear elasticity of the system. A last
possible origin of the avalanche shape anisotropy is the strong
correlation between avalanche dynamics and force networks.

We find that the statistical behavior of the local and global
avalanches is independent of the jamming regime as long as
force chains are present. Only nonuniversal parameters, such as
power-law cutoffs, depend on the granular regime (e.g., coordi-
nation number and packing fraction). The upper cutoff changes
strongly and nonlinearly when the jamming transition is
crossed; i.e., avalanches are larger when the system is jammed.
Similarly, the packing fraction and the interparticle friction
coefficient have no effect on the power-law exponents of the

avalanche PDFs but do have an effect on their upper cutoff. For
local avalanches, the upper cutoff increases exponentially with
the friction coefficient and the packing fraction, while at the
global scale it increases only with ν but not with φ, contrary to
what is predicted by the class of models considered by Dahmen
et al. [17]. We also find a difference between numerical and
experimental data on this point: The upper cutoff changes when
friction and packing fraction change in numerical simulation
but not in experiments for both the local and global scales.
Since the main difference between the numerical model and
the experimental setup is the basal friction, which is mimicked
numerically by adding a strong viscous damping, we believe
the upper cutoff is dominated in the experimental case by
the basal friction phenomenon, which is why it does not
vary.

We introduced an alternate approach for avalanche data
analysis by extracting avalanches from the local scale of
several different observables: displacement, rotation, pressure,
and energy fields. We find different statistical behavior, i.e.,
power-law exponents, for avalanches detected using these
different physical quantities. Specifically, distributions for
displacement and rotation are not the same and distributions
for pressure and energy differ for loading and unloading.
Results from our experiments and simulations differ from
a number of models [22,23] and from results obtained by
shearing a soft slippery granular medium [2], where stress
is redistributed according to a symmetric Eshelby kernel,
and displacements follow a T1-type rearrangement dynamics.
We believe that the key difference between these models
and the present granular experiments, and presumably other
dry granular systems, is that the granular systems form
strong anisotropic force networks in response to shear. These
structures are key features of granular systems and they
are not part of typical models. They do not occur for soft
slippery materials. The fact that the spatial structure of granular
avalanches tends to be elongated along the compression
direction is one obvious indicator of how force chain structures
impact granular dynamics and consequently the avalanche
statistics.

Finally, we find that on average, the number of local per
global avalanches is constant whatever the energy of the global
avalanche. This result suggests that the local structure of
a global avalanche is statistically independent of the global
avalanche intensity. Also, as pointed out in Ref. [2] we found
that the triggering of avalanches is strongly coupled to the
nonaffine displacement of the particles in the shear band.
Although the event may be triggered in the relatively weak
shear band region, the fact that the system is everywhere close
to force balance leading up to an avalanche means that the
resulting stress drop can span the whole system.
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APPENDIX: DEFINITION OF THE ELASTIC AND
VISCOELASTIC COEFFICIENTS OF THE CONTACT

FORCE MODEL

In this Appendix, we detail the relation between the elastic
and viscoelastic constants involved in the model for the normal
and tangential contact forces (kn, kt , γn, and γt ) and the
grains’ material properties for particle i (Young’s modulus Ei ,
Poisson’s ratio μi , and the coefficient of restitution cr ) used
in the simulations. We consider a pair of interacting particles
(i and j ) with normal displacement vector δnij . The elastic
(kn and kt ) and viscoelastic (γn and γt ) coefficients from this
pair of interacting particles are calculated as follows from the
material properties:

kn = 4

3
Y ∗√R∗δn, (A1)

γn = −2

√
5

6
β
√

Snm∗, (A2)

kt = 8G∗√R∗δn, (A3)

γt = −2

√
5

6
β
√

Stm∗, (A4)

where we define

δn = |δnij |, (A5)

Sn = 2Y ∗√R∗δn, (A6)

St = 8G∗√R∗δn, (A7)

β = ln cr√
ln2 cr + π2

(A8)

and where we have defined the mean Young modulus Y ∗, shear
modulus G∗, radius R∗, and mass m∗ of the interacting pair by

1

Y ∗ = 1 − μ2
i

Yi

+ 1 − μ2
j

Yj

, (A9)

1

G∗ = 2(2 + μi)(1 − μi)

Yi

+ 2(2 + μj )(1 − μj )

Yj

, (A10)

1

R∗ = 1

Ri

+ 1

Rj

, (A11)

1

m∗ = 1

mi

+ 1

mj

. (A12)
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[11] D. V. Denisov, K. A. Lőrincz, W. J. Wright, T. C. Hufnagel,

A. Nawano, X. Gu, J. T. Uhl, K. A. Dahmen, and P. Schall,
Sci. Rep. 7, 43376 (2017).

[12] C. E. Maloney and A. Lemaître, Phys. Rev. Lett. 93, 016001
(2004).

[13] E. Aharonov and D. Sparks, J. Geophys. Res. 109, B09306
(2004).

[14] C. E. Maloney and M. O. Robbins, Phys. Rev. Lett. 102, 225502
(2009).

[15] K. M. Salerno, C. E. Maloney, and M. O. Robbins, Phys. Rev.
Lett. 109, 105703 (2012).

[16] M. Otsuki and H. Hayakawa, Phys. Rev. E 90, 042202 (2014).
[17] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Nat. Phys. 7, 554

(2011).

[18] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Proc. Natl. Acad.
Sci. USA 111, 14382 (2014).

[19] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature (London)
410, 242 (2001).

[20] R. Dickman, M. A. Munoz, A. Vespignani, and S. Zapperi, Braz.
J. Phys. 30, 27 (2000).

[21] D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer, Nature
(London) 480, 355 (2011).

[22] I. Regev, J. Weber, C. Reichhardt, K. A. Dahmen, and T.
Lookman, Nat. Commun. 6, 8805 (2015).

[23] C. E. Maloney and A. Lemaître, Phys. Rev. E 74, 016118
(2006).

[24] A. J. Liu and S. R. Nagel, Nature (London) 396, 21 (1998).
[25] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin, Phys.

Rev. Lett. 81, 1841 (1998).
[26] O. Reynolds, Philos. Mag. 20, 469 (1885).
[27] J. Ren, J. A. Dijksman, and R. P. Behringer, Phys. Rev. Lett.

110, 018302 (2013).
[28] M. Wyart, arXiv:cond-mat/0512155.
[29] T. S. Majmudar and R. P. Behringer, Nature (London) 435, 1079

(2005).
[30] K. Shundyak, M. van Hecke, and W. van Saarloos, Phys. Rev. E

75, 010301 (2007).
[31] J. C. Baret, D. Vandembroucq, and S. Roux, Phys. Rev. Lett. 89,

195506 (2002).
[32] D. Vandembroucq, R. Skoe, and S. Roux, Phys. Rev. E 70,

051101 (2004).
[33] M. Alava, J. Phys.: Condens. Matter 14, 2353 (2002).
[34] J. S. Langer, Scripta Mater. 54, 375 (2006).
[35] M. L. Manning, J. S. Langer, and J. M. Carlson, Phys. Rev. E

76, 056106 (2007).
[36] E. Bouchbinder, J. S. Langer, and I. Procaccia, Phys. Rev. E 75,

036107 (2007).

052902-12

https://doi.org/10.1103/PhysRevLett.82.5241
https://doi.org/10.1103/PhysRevLett.82.5241
https://doi.org/10.1103/PhysRevLett.82.5241
https://doi.org/10.1103/PhysRevLett.82.5241
https://doi.org/10.1017/S0022112007007276
https://doi.org/10.1017/S0022112007007276
https://doi.org/10.1017/S0022112007007276
https://doi.org/10.1017/S0022112007007276
https://doi.org/10.1029/2008JB005781
https://doi.org/10.1029/2008JB005781
https://doi.org/10.1029/2008JB005781
https://doi.org/10.1029/2008JB005781
https://doi.org/10.1103/PhysRevLett.112.246001
https://doi.org/10.1103/PhysRevLett.112.246001
https://doi.org/10.1103/PhysRevLett.112.246001
https://doi.org/10.1103/PhysRevLett.112.246001
https://doi.org/10.1103/PhysRevE.63.061312
https://doi.org/10.1103/PhysRevE.63.061312
https://doi.org/10.1103/PhysRevE.63.061312
https://doi.org/10.1103/PhysRevE.63.061312
https://doi.org/10.1038/nature01394
https://doi.org/10.1038/nature01394
https://doi.org/10.1038/nature01394
https://doi.org/10.1038/nature01394
https://doi.org/10.1103/PhysRevLett.96.118002
https://doi.org/10.1103/PhysRevLett.96.118002
https://doi.org/10.1103/PhysRevLett.96.118002
https://doi.org/10.1103/PhysRevLett.96.118002
https://doi.org/10.1140/epjb/e2008-00177-x
https://doi.org/10.1140/epjb/e2008-00177-x
https://doi.org/10.1140/epjb/e2008-00177-x
https://doi.org/10.1140/epjb/e2008-00177-x
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1088/1742-5468/2014/06/P06004
https://doi.org/10.1088/1742-5468/2014/06/P06004
https://doi.org/10.1088/1742-5468/2014/06/P06004
https://doi.org/10.1038/srep43376
https://doi.org/10.1038/srep43376
https://doi.org/10.1038/srep43376
https://doi.org/10.1038/srep43376
https://doi.org/10.1103/PhysRevLett.93.016001
https://doi.org/10.1103/PhysRevLett.93.016001
https://doi.org/10.1103/PhysRevLett.93.016001
https://doi.org/10.1103/PhysRevLett.93.016001
https://doi.org/10.1029/2003JB002597
https://doi.org/10.1029/2003JB002597
https://doi.org/10.1029/2003JB002597
https://doi.org/10.1029/2003JB002597
https://doi.org/10.1103/PhysRevLett.102.225502
https://doi.org/10.1103/PhysRevLett.102.225502
https://doi.org/10.1103/PhysRevLett.102.225502
https://doi.org/10.1103/PhysRevLett.102.225502
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevE.90.042202
https://doi.org/10.1103/PhysRevE.90.042202
https://doi.org/10.1103/PhysRevE.90.042202
https://doi.org/10.1103/PhysRevE.90.042202
https://doi.org/10.1038/nphys1957
https://doi.org/10.1038/nphys1957
https://doi.org/10.1038/nphys1957
https://doi.org/10.1038/nphys1957
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1038/35065675
https://doi.org/10.1038/35065675
https://doi.org/10.1038/35065675
https://doi.org/10.1038/35065675
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1590/S0103-97332000000100004
https://doi.org/10.1038/nature10667
https://doi.org/10.1038/nature10667
https://doi.org/10.1038/nature10667
https://doi.org/10.1038/nature10667
https://doi.org/10.1038/ncomms9805
https://doi.org/10.1038/ncomms9805
https://doi.org/10.1038/ncomms9805
https://doi.org/10.1038/ncomms9805
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1038/23819
https://doi.org/10.1038/23819
https://doi.org/10.1038/23819
https://doi.org/10.1038/23819
https://doi.org/10.1103/PhysRevLett.81.1841
https://doi.org/10.1103/PhysRevLett.81.1841
https://doi.org/10.1103/PhysRevLett.81.1841
https://doi.org/10.1103/PhysRevLett.81.1841
https://doi.org/10.1080/14786448508627791
https://doi.org/10.1080/14786448508627791
https://doi.org/10.1080/14786448508627791
https://doi.org/10.1080/14786448508627791
https://doi.org/10.1103/PhysRevLett.110.018302
https://doi.org/10.1103/PhysRevLett.110.018302
https://doi.org/10.1103/PhysRevLett.110.018302
https://doi.org/10.1103/PhysRevLett.110.018302
http://arxiv.org/abs/arXiv:cond-mat/0512155
https://doi.org/10.1038/nature03805
https://doi.org/10.1038/nature03805
https://doi.org/10.1038/nature03805
https://doi.org/10.1038/nature03805
https://doi.org/10.1103/PhysRevE.75.010301
https://doi.org/10.1103/PhysRevE.75.010301
https://doi.org/10.1103/PhysRevE.75.010301
https://doi.org/10.1103/PhysRevE.75.010301
https://doi.org/10.1103/PhysRevLett.89.195506
https://doi.org/10.1103/PhysRevLett.89.195506
https://doi.org/10.1103/PhysRevLett.89.195506
https://doi.org/10.1103/PhysRevLett.89.195506
https://doi.org/10.1103/PhysRevE.70.051101
https://doi.org/10.1103/PhysRevE.70.051101
https://doi.org/10.1103/PhysRevE.70.051101
https://doi.org/10.1103/PhysRevE.70.051101
https://doi.org/10.1088/0953-8984/14/9/324
https://doi.org/10.1088/0953-8984/14/9/324
https://doi.org/10.1088/0953-8984/14/9/324
https://doi.org/10.1088/0953-8984/14/9/324
https://doi.org/10.1016/j.scriptamat.2005.10.005
https://doi.org/10.1016/j.scriptamat.2005.10.005
https://doi.org/10.1016/j.scriptamat.2005.10.005
https://doi.org/10.1016/j.scriptamat.2005.10.005
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.75.036107
https://doi.org/10.1103/PhysRevE.75.036107
https://doi.org/10.1103/PhysRevE.75.036107
https://doi.org/10.1103/PhysRevE.75.036107


LOCAL AND GLOBAL AVALANCHES IN A TWO- . . . PHYSICAL REVIEW E 96, 052902 (2017)

[37] C. K. C. Lieou and J. S. Langer, Phys. Rev. E 85, 061308 (2012).
[38] C. K. C. Lieou, A. E. Elbanna, and J. M. Carlson, Phys. Rev. E

89, 022203 (2014).
[39] M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
[40] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).
[41] G. Biroli, Nat. Phys. 3, 222 (2007).
[42] J. Geng, D. Howell, E. Longhi, R. P. Behringer, G. Reydellet, L.

Vanel, E. Clément, and S. Luding, Phys. Rev. Lett. 87, 035506
(2001).

[43] P. A. Cundall and O. D. L. Strack, Geotechnique 29, 47 (1979).
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