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Laser-excited motion of liquid crystals confined in a microsized volume with a free surface
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The thermally excited vortical flow in a microsized liquid crystal (LC) volume with a free LC-air interface has
been investigated theoretically based on the nonlinear extension of the Ericksen-Leslie theory, with accounting
the entropy balance equation. Analysis of the numerical results show that due to interaction between the gradients
of the director field ∇n̂ and temperature field ∇T , caused by the focused heating, the thermally excited vortical
fluid flow is maintained in the vicinity of the heat source. Calculations show that the magnitude and direction of
the velocity field v, as well as the height of the LC-air interface are influenced by the depth of the heat penetration
in the LC volume. It has been shown that there is the point in the vicinity of the LC-air interface where the
thermally excited vortical flow changes the direction from anticlockwise to clockwise.

DOI: 10.1103/PhysRevE.96.052705

I. INTRODUCTION

The manipulation of tiny amounts of molecular liquids has
become a paradigm in various fields of applied chemistry-,
physics-, and biotechnology-related microfluidics. The de-
creasing of cell sizes down to nano(micro)-level provides
a close connection of liquid crystals (LCs) model with
biological liquid [1]. The development of future biodynamics
applications requires complicated investigation of natural
anisotropic soft materials with multicoupling interactions
of inner fields initiated by external forces. The problem
of motion of an ultrathin (a few microliters) LC drops
confined in the microsized volume, under the influence of the
temperature gradient, caused, for instance, by the laser beam,
has drawn considerable attention [2–5]. The understanding
of how the LC material deforms under the influence of
the temperature gradient is a question of great fundamental
interest, as well as an essential piece of knowledge in soft
material science. Despite the fact that certain qualitative and
quantitative advances in a hydrodynamic description of the
relaxation processes in the LC phase under the influence of the
temperature gradient have been achieved, it is still too early
to talk about the development of a theory that would make it
possible to describe the dissipation processes in confined LC
phase with a free upper LC-air interface under the influence
of the temperature gradient ∇T [3,4]. Thus, we are primarily
concerned here on describing how the temperature gradient
caused by induced heating in the interior of the microsized
hybrid-aligned LC (HALC) volume with a free upper LC-air
interface can produce the hydrodynamic flow and, as a result,
how it can deform the free LC-air interface [5]. This problem
will be treated in the framework of the appropriate nonlinear
extension of the Ericksen-Leslie theory [6,7], with accounting
the thermoconductivity equation for the temperature field T

[8,9].
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The present paper is organized as follows: the relevant
equations describing the director motion, fluid flow, and
temperature distribution in the above-named system are given
in Sec. II; numerical results for possible hydrodynamic regimes
are given in Sec. III; conclusions are summarized in Sec. IV.

II. FORMULATION OF THE BALANCE OF THE
MOMENTUM, TORQUE, AND CONDUCTIVITY

EQUATIONS FOR NEMATIC FLUIDS

In this paper, we consider the dynamics of free and initially
flat LC-air interface under the influence of the temperature
gradient ∇T , caused by the focused heating. Thus, we are
concerned here with describing how the temperature gradient,
caused by induced heating in the interior of the microsized
hybrid- aligned LC (HALC) volume with a free upper LC-air
interface, can produce the hydrodynamic flow v and, as a result,
how it can deform the free LC-air interface. We consider the
HALC cell delimited by one lower horizontal solid surface,
located at z = −d, one upper free flat LC-air interface, initially
located at z = d, and two lateral solid surfaces at distance 2L

on scale on the order of micrometers. The coordinate system
defined by our task assumes that the director n̂ = nx î + nzk̂
is in the XZ plane, where î is the unit vector directed parallel
to the lower restricted surface, which, in turn, coincides with
the planar director orientation on the lower restricted surface
(î ‖ n̂z=−d ), whereas the unit vector k̂ is directed parallel to
the lateral restricted surfaces, which coincides with the planar
director orientation on these surfaces (k̂ ‖ n̂x=±L), and ĵ =
k̂ × î . Therefore, the hybrid aligned nematic phase contains a
gradient of ∇n̂ from planar orientation on the lower and both
lateral surfaces to homeotropic orientation on the upper free
LC-air interface �, i.e.,

(nx)x=±L,−d<z<d = 0,

(nx)−L<x<L,z=−d = 1, (1)

(�n · �ν)� = −1.

Here �ν = [− Hx√
H 2

x +1
,1] is the normal to the free LC-air

interface � at any time and is directed from the nematic phase
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into air, H (x,t) is the height of the LC film on the top of the
smooth surface, and Hx = ∂H

∂x
. We consider the temperature

regime without the heat flow �q across the free LC-air interface
�

(�q · �ν)� = 0, (2)

whereas on the rest boundaries the temperature is kept
constant,

T−L<x<L,z=−d = Tx=±L,−d<z<d = T0. (3)

We will assume the no-slip boundary conditions for the
nematogenic molecules on these solid bounding surfaces, i.e.,

v−L<x<L,z=−d = vx=±L,−d<z<d = 0, (4)

where v = uî + wk̂ is the velocity vector with the horizontal
u ≡ vx(x,z,t) and vertical w ≡ vz(x,z,t) components. The
bounding condition for the velocity on the upper free LC-air
interface � can be obtained from the linear balance equation
transmitted to the surface �. In our case, that balance leads to
the tangential,

[�ν · σ · �t]� = 0, (5)

and normal,

[�ν · σ · �ν]� = 2γ κ, (6)

force balances, where �t = [1, Hx√
H 2

x +1
] is an additional unit

tangent vector, γ is the LC-air surface tension, κ = Hxx√
1+H 2

x

is the curvature of free LC-air interface � at any time,
and σ is the full stress tensor (ST). Taking into account
the microsized HALC volume, one can assume the mass
density ρ to be constant across the sample, and thus deal
with an incompressible fluid. The incompressibility condition
∇ · v = 0 assumes that

ux + wz = 0, (7)

where ux = ∂u
∂x

, and wz = ∂w
∂z

.
The hydrodynamic equations describing the reorientation

of the LC phase in 2D case, when the system is subjected to a
temperature gradient ∇T , due to uniform heat flow q, can be
derived from the torque balance equation

Tel + Tvis + Ttm = 0, (8)

where [3,4] Tel = δWel

δn̂ × n̂ is the elastic, Tvis = δRvis

δn̂t
× n̂

is the viscous, and Ttm = δRtm

δn̂t
× n̂ is the thermomechanical

torques, respectively (for details, see the Appendix). The linear
momentum equation for the velocity field v can be written as

ρ
dv
dt

= ∇ · σ, (9)

where dv
dt

= ∂v
∂t

+ uvx + wvz, σ = σ el + σ vis + σ tm − PE is
the full ST, and σ el = − ∂Wel

∂∇n̂ · (∇n̂)T , σ vis = δRvis

δ∇v , and σ tm =
δRtm

δ∇v are the ST components corresponding to the elastic,
viscous, and thermomechanical forces, respectively (see the
Appendix). Here, R = Rvis + Rtm + Rth is the full Rayleigh
dissipation function, Wel = 1

2 [K1(∇ · n̂)2 + K3(n̂ × ∇ × n̂)2]
denotes the elastic energy density, K1 and K3 are splay and
bend elastic coefficients, P is the hydrostatic pressure in the

HALC system, and E is the unit tensor. When the temperature
gradient ∇T (∼1.0 [K/μm]) is set up, for instance, by means
of the laser beam focused in the interior of the nematic
volume with the free upper LC-air interface, we expect that
the temperature field T (x,z,t) satisfies the heat conduction
equation [8],

ρCP

dT

dt
= −∇ · q + O(x,z), (10)

where q = −T δR
δ∇T

denotes the heat flow in the HALC
system, CP is the heat capacity of the LC system,
O(x,z) = O0 exp[−2 (x−x0)2+(z−z0)2


2 ]H(tin − t) is the heat
source, H(tin − t) is the Heaviside step function, O0 = 2

π
αV

2

is the heat flow coefficient, α is the coefficient of absorption,
V is the laser beam power, 
 is the Gaussian spot size, and tin
is the duration of the energy injection into the LC sample.

Now the dynamics of the height H (x,t) of the LC-air
interface under the influence of the temperature gradient
can be obtained by solving the system of nonlinear partial
differential Eqs. (8)–(10) with the appropriate boundary and
initial conditions. Equations (5) and (6), together with the
torque balance Eq. (8), transmitted to the LC-air interface, can
be combined to yield equation for the height H (x,t) in the
form

∂H

∂t
= w� − u�H,x, (11)

where u� and w� are the horizontal and vertical components
of the velocity v on the LC-air interface �, respectively.

To observe the evolution of the director field n̂(x,z,t) to
its equilibrium orientation n̂eq(x,z) and the evolution of the
velocity field v(x,z,t) caused by the temperature gradient, we
consider the dimensionless analog of balance Eqs. (8)–(10).
The dimensionless torque balance has the form

nznx,τ − nxnz,τ

= δ1[nzM0,x − nxM0,z + K31(nzfz + nxfx)]

− 1
2ψxx

[
1 + γ21

(
n2

x − n2
z

)] − 1
2ψzz

[
1 − γ21

(
n2

x − n2
z

)]
× 2γ21ψxznxnz + ψzNx + Nzψx + δ2(χxLx + χzLz).

(12)

The dimensionless linear momentum equation takes the form

δ3ψxzτ = a1ψzzzz + a2ψxzzz + a3ψxxzz + a4ψxxxz

+ a5ψxxxx + a6ψzzz + a7ψxzz + a8ψxxz

+ a9ψxxx + a10ψzz + a11ψxz + a12ψxx + F , (13)

whereas the dimensionless entropy balance can be written as

χτ = [
χx

(
�n2

x + n2
z

) + (� − 1)nxnzχz

]
x

+ [
χz

(
�n2

z + n2
x

) + (� − 1)nxnzχx

]
z

+ δ4χ

(
∇ · ∂Rtm

∂∇χ

)
+ δ5O(x,z,τ ) − ψzχx + ψxχz,

(14)

where τ = t
tT

is the dimensionless time, tT = ρCpd2

λ⊥
, ψ̄ =

tT
d2 ψ is the scaled analog of the stream function ψ for the
velocity field v = uî + wk̂ = −∇ × ĵψ (see the Appendix),
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χ (x,z,τ ) = T (x,z,τ )/TNI is the dimensionless temperature,
TNI is the temperature of the nematic-isotropic phase transition,
f = nx,z − nz,x , nz,τ = ∂nz

∂τ
, M0 = ∇ · n̂, Nz = nznx,z −

nxnz,z, Lx = nxnz,x − 3
2nznx,x + 1

2nxnx,z, Lz = −nznx,z +
3
2nxnz,z − 1

2nznz,x , x̄ = x
d

, and z̄ = z
d

are dimensionless space
variables. Notice that the overbars in the space variables x and
z, as well as the stream function ψ have been (and will be)
eliminated in the last as well as in the following equations. The
function F = (σ el

xx + σ tm
xx − σ el

zz − σ tm
zz )

xz
+ (σ el

zx + σ tm
zx )

zz
−

(σ el
xz + σ tm

xz )
xx

, the coefficients ai(i = 1,...,12), the functions
σ tm

ij (i,j = x,z) and σ el
ij (i,j = x,z) are given in the Appendix.

The set of parameters of the LC system are: K31 = K3
K1

,

γ21 = γ2

γ1
, � = λ‖/λ⊥, δ1 = tT K1

γ1d2 , δ2 = ρCpTNI

λ⊥
ξ

γ1
, δ3 = ρd2

γ1tT
,

δ4 = ξ

λ⊥tT
, and δ5 = 2α

πω2
d2

λ⊥TNI
O0.

The reorientation of the director in the HALC volume
confined between one solid and one free LC-air surfaces
and two lateral solid surfaces, when the relaxation regime is
produced by the tightly focused infrared laser heating, can be
obtained by solving the system of nonlinear partial differential
Eqs. (12)–(14) with the appropriate dimensionless boundary
and initial conditions:

(i) Boundary conditions at the solid surfaces:

(nx)x=±10,−1�z�1 = 0, (nx)−10�x�10,z=−1 = 1,

χx=±10,−1�z�1 = 0.97, χ−10�x�10,z=−1 = 0.97,

(ψ,x)x=±10,−1�z�1 = (ψ,z)x=±10,−1�z�1 = 0,

(ψ,x)−10�x�10,z=−1 = (ψ,z)−10�x�10,z=−1 = 0. (15)

(ii) Boundary conditions at the flexible free LC-air interface
�:

(�n · ∇χ )� = 0, (�n · �ν)� = −1, B̂ · �� = �C. (16)

(iii) Initial condition:

n̂(τ = 0,x,z) = n̂el(x,z), (17)

where �� = (ψxx,ψxz,ψzz), and both the matrix B̂ and vector
�C are given in the Appendix, whereas the vector n̂el(x,z) is
obtained from Eq. (12), with ψx = ψz = χx = χz = 0.

Now the dimensionless height H (x,τ ) = H (x,τ )/d of the
LC cell on the top of the smooth solid substrate at any time τ

can be calculated as

Hτ + (ψx)� + (ψz)�Hx = 0, (18)

where w(x,τ )x∈� is the vertical component of the velocity
vector v = uî + wk̂ = −∇ × ĵψ on the interface �. Notice
that the overbar in the function H has been (and will be)
eliminated in the last, as well as in the following equations.

Thus, when the director n̂ is strongly homeotropically
anchored to the lower restricted surface and planar to the
lateral restricted surfaces, the value of n̂ has to satisfy
the boundary conditions Eqs. (15) and (16) and its initial
orientation Eq. (17), and then, under the action of the viscous,
elastic, and thermomechanical forces, allowed to relax to its
equilibrium value n̂el(x,z).

For LC material formed by 4 − n − pentyl − 4′ −
cyanobiphenyl (5CB) molecules, the range of existence
of nematic phase is [10] [297–308.3] [K]. In this case, the

density of LC material was chosen as [10] 103[kg/m3]. The
Frank elastic coefficients for 5CB LC phase, obtained experi-
mentally, are [11]: K1 = 10.5 and K3 = 13.8, at T = 300 K,
respectively. All values of Ki(i = 1,3) are given in [pN]. The
rotational and six Leslie coefficients for this LC material are
(in [Pa s] [12]): γ1 ∼ 0.069, γ2 ∼ −0.086, α1 ∼ −0.0066,
α2 ∼ −0.079, α3 ∼ −0.007, α4 ∼ 0.072, α5 ∼ 0.048, and
α6 ∼ −0.03, respectively. The heat conductivity coefficients
for 5CB LC phase parallel (λ‖) and perpendicular (λ⊥) to the
director are (in [W/m K] [13]) 0.24 and 0.13, respectively. In
the following we use the measured value of the specific heat
[14] Cp ∼ 103 [J/kg K], the calculated value of the LC-air
surface tension [15,16] γ ∼ 0.02 [N/m], and the value of
the absorption coefficient α, for the infrared laser with the
wavelength of 1061 [nm], which is equal to 8 [m−1] [17]. In
our calculations the thickness 2d of the LC sample is equal to
10 [μm].

The set of parameters that is involved in Eqs. (12)–(17)
has the following values: δ1 ∼ 10−3, δ2 ∼ 0.3, δ3 ∼ 10−6,
and δ4 ∼ 10−4. Taking into account that the dimensionless
temperature χ should be in the range of [0.97–1.0], the
parameters δ5 can be estimated as δ5 ∼ 7.0. This estimation
of δ5 = 2α

πω2
d2

λ⊥TNI
O0 was made taking into account the fact

that the duration of the laser pulse of power Q0 ∼ 0.5 W,
for the infrared laser with the wavelength of 1061 [nm], was
τin ∼ 2.0 μs.

Using the fact that δ3 � 1, Eq. (13) can be considerably
simplified and takes the form

a1ψzzzz + a2ψxzzz + a3ψxxzz + a4ψxxxz + a5ψxxxx + a6ψzzz

+ a7ψxzz + a8ψxxz + a9ψxxx + a10ψzz

+ a11ψxz + a12ψzz + F = 0, (19)

where ai(i = 1,...,12) and F are functions that have been
defined in the Appendix.

III. EVOLUTION OF THE FREE LC-AIR INTERFACE,
TEMPERATURE, AND VELOCITY UNDER THE

INFLUENCE OF THE TEMPERATURE GRADIENT

The evolution of the free LC-air interface under the
influence of the temperature gradient ∇χ , caused by the laser
beam focused in the interior of the LC sample, is governed by
Eqs. (12), (19), and (14), together with the boundary [Eqs. (15)
and (16)] and the initial [Eq. (17)] conditions. The calculations
have been carried out by using both the relaxation [18] and the
sweep [19] methods. The initial distribution of the director
field n̂el(x,z) has been obtained from Eq. (12) by means of the
relaxation method with (ψ)x = (ψ)z = (χ )x = (χ )z = 0, and
with the boundary (nx)x=±10,−1�z�1 = (nx)z=1,−10�x�10 = 0,
(nx)z=−1,−10�x�10 = 1, and initial nx = 1−z

2 , for −10 < x <

10, and nx = 0, for x = ±10, conditions. Having obtained
the initial distribution of the director field n̂el(x,z), the initial
distribution of the temperature field χ (x,z,
τ ), corresponding
to the first time step 
τ , has been obtained from Eq. (14),
by means of the relaxation method with (ψ)x = (ψ)z = 0
and with the boundary and initial conditions in the form
of Eqs. (15) and (16), for the case of the flat interface.
Having obtained the initial distributions of the director and the
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FIG. 1. (a) The evolution of both the dimensionless height h(x,τ ) of the LC-air interface and the dimensionless temperature χ (x,τ ) (b) on
the free LC-air interface �, during the heating regime with δ5 = 7 and τin = 0.01, at different times τi = 2i × 10−5(i = 1,...,10), respectively.
The numbering of the curves increases from i = 1 to i = 10.

temperature fields, as well as the functionF , which is involved
in Eq. (19), one can calculate, using Eq. (19), the initial
distribution of the stream function ψ(x,z,
τ ), corresponding
to the first time step 
τ . The next time step 
τ for the
velocity and temperature fields, as well as for the director
′s distribution across the LC sample with the free flexible
upper boundary is initiated by the sweep method. The stability
of the numerical procedure for Eqs. (12), (14), and (19)
was defined by the conditions [18]: 
τ

δ3
( 1

(
x)2 + 1
(
z)2 ) � 1

2 ,

3a5

(
x)4 − 2a1

(
z)4 > 0, where 
x and 
z are the space steps in
the x and z directions, and a1 and a5 are the coefficients
defined in Eq. (19). In the calculations, the relaxation criterion
ε = |(χ(m+1)(x,z,τ ) − χ(m)(x,z,τ ))/χ(m)(x,z,τ )| was chosen
to be equal to 10−4, and the numerical procedure was then
carried out until a prescribed accuracy has been achieved.
Here, m is the iteration number.

Recently, the laser-induced heating has been used to inject
the energy O(x,z,τ ) = δ5 exp[−2 (x−x0)2+(z−z0)2


2 ]H(τin − τ ) in
the interior of the LC sample [2,5], where δ5 is the dimension-
less heat flow coefficient, 
 is the Gaussian spot size, and τin is
the duration of the energy injection into the LC sample. Note
that the magnitude δ5 and duration τin of the heat injection are
restricted only by the nematic phase stability condition. In the
following, the heating regime with δ5 = 7 will be considered.

This estimation of δ5 = 2α
πω2

d2

λ⊥TNI
O0 was made taking into

account the fact that the duration of the laser pulse of power
Q0 ∼ 0.5 W, for the infrared laser with the wavelength of
1061 nm, was τin ∼ 2.0 μs. Figure 1 shows the evolution
of the dimensionless height h(x,τ ) = H (x,τ ) − 1 [Fig. 1(a)]
of the LC-air interface and the evolution of the dimensionless
temperature χ (x,τ ) [Fig. 1(b)] on the free LC-air interface �,
during the heating regime when the laser beam is focused
in the interior (x = 0.0 and z = 0.93) of the LC sample,
at different times τi = 2i × 10−5(i = 1,...,10), respectively,
whereas Fig. 2 shows the evolution of the horizontal u(x,τ )
[Fig. 2(a)] and vertical w(x,τ ) [Fig. 2(b)] components of the
vector v = uî + wk̂ on the LC-air interface. According to our
calculations, the evolution of the height h(x,τ ) of the LC-air
interface is characterized by the wavelike profile along the
x axis (−0.5 < x < 0.5). At the final stage of the evolution
process, for τ = τin, the highest value of |h| ∼ 2 × 10−2 is
reached in the vicinity of points x ∼ ±0.125, whereas the
evolution of the temperature χ is characterized by symmetric
profile of χ (x,τ )x∈� with respect to the middle point (x = 0.0)
of the LC-air interface � [see Fig. 1(b)]. In that case, during the
heat step [τ ∼ τin ∼ 0.01(∼2 [μs])] the evolution of the tem-
perature profile χ (x,τ )x∈� is characterized by its strong growth
in the vicinity of the middle point x = 0.0, up to the highest

FIG. 2. Same as described in the caption of Fig. 1, but for evolution of both the horizontal u(x,τ ) (a) and vertical w(x,τ ) (b) components
of the velocity vector v = uî + wk̂ on the LC-air interface during the heating regime. (c) Distribution of the velocity field v = uî + wk̂ in the
LC sample after heating during τ = τin. Here 1 mm of the arrow length is equal to 0.4 μm/s.
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FIG. 3. The evolution of both the dimensionless height h(x,τ ) (a) and the dimensionless temperature χ (x,τ ) (b) on the free LC-air interface
�, during the cooling regime, at different times τi = 2i × 10−2(i = 1,...,8), respectively.

value of 0.987 (∼307 K), whereas the evolution of the dimen-
sionless height h of the LC-air interface is characterized by
two combs with the highest value of |h| ∼ 0.02(∼0.01 [μm]),
which are directed in the opposite sense with respect to their
center x = 0.0 [see Fig. 1(a)]. The thermally excited flow
in that case is characterized by maintaining three vortices,
one biggest vortical flow in the vicinity of the heat source
initiated by the laser beam and directed in the negative sense
(anticlockwise) around their center x = 0.0, z ∼ 0.93, and two
smallest vortices, which are settled down close to the points
x = ±0.13 and z ∼ 0.93, respectively [see Figs. 2(a)–2(c)].
According to our calculations the highest value of v on the
LC-air interface is reached in the vicinity of the middle point
x = 0.0. In that case, there is the biggest horizontal flow
u ∼ 8 × 10−3(∼0.27 [μm/s]) directed in the negative sense
[see Fig. 2(a)], whereas the vertical flow w [see Fig. 2(b)] is
characterized by very small value ∼4 × 10−4(∼13.2 [nm/s])
directed in the opposite sense. Indeed, in the right-hand
side of the LC sample, in the vicinity of the point x ∼
0.125, the vertical component w ∼ 4 × 10−4(∼13.2 [nm/s])
of the vector v is directed in the positive sense, whereas in
the left-hand side, in the vicinity of the point x ∼ −0.125, the
vertical component w ∼ 4 × 10−4(∼13.2 [nm/s]) is directed
in the negative sense. Our calculations also show that the range
of distance z, counted from the lower solid boundary, over
which the laser beam cannot disturb the nematic phase, is
0.8 � z � 1.0, i.e., which is approximately 80% of the LC
sample [see Fig. 2(c)]. Notice that the duration of the energy
injection τin into the LC sample is restricted only by the
nematic phase stability. Further calculations (cooling regime),
based on the nonlinear extension of the Ericksen-Leslie theory,
show that the LC material settles down to the rest during the
time term τ8 ∼ 2.56(∼0.5 [s]), after switching off the laser
power [see Fig. 3(a)], where both the horizontal u and vertical
w components of the velocity v are equal to zero [see Figs. 4(a)
and 4(b)], and the temperature field χ across the LC samples
finally downfalls to the value on the lower and two lateral
boundaries [see Fig. 3(b)]. Our calculations also show that
the dimensionless height h and temperature χ profiles are
shifted during the cooling regime, to the left-hand side of
the LC sample. Such behavior of these profiles is caused by
the existence of the horizontal flow directed in the negative
sense. Figure 5 shows the distribution of the dimensionless

temperature χ (x,τ ) along the z axis (0.7 � z � 1.0), when
the laser beam is focused in the center (x = 0.0) of the LC
sample, but at different depths: (a) z0 = 0.98, (b) z0 = 0.94,
(c) z0 = 0.90, and z0 = 0.80 (d), respectively. The heating
regime when the laser beam is focused in the interior of the LC
sample is given at different times τi = 2i × 10−5(i = 6,...,10),
respectively. It has been shown that as the focus of the laser
beam is shifted in the depth of the LC sample, the temperature
profiles across the LC sample does not undergo the crucial
change. For instance, in the case when the laser beam is
focused on the maximum depth (z0 = 0.8), the heating does
not reach the LC-air interface [see Fig. 5(d)]. In turn, the
velocity profiles across the LC sample undergo the crucial
change. Figure 6 shows the distribution of the horizontal
u(x = 0,z,τ ) and vertical w(x = 0,z,τ ) components of the
velocity vector v along the z axis (0.7 � z � 1.0), when
the laser beam is focused in the center (x = 0.0) of the LC
sample, but at different depths: (a) z0 = 0.98, (b) z0 = 0.94, (c)
z0 = 0.90, and z0 = 0.80 (d), respectively. It has been shown
that as the focus of the laser beam is shifted in the depth
of the LC sample in the vicinity of the LC-air interface, the
horizontal component of the velocity u(x = 0,z,τ ) changes
its direction from negative to positive, approximately at the
point x0 = 0.0,z0 ∼ 0.9, whereas the vertical component of

FIG. 4. The evolution of both the dimensionless horizontal u(x,τ )
(a) and vertical w(x,τ ) (b) components of the velocity field on the
free LC-air interface � during the cooling regime, at different times
τi = 2i × 10−2(i = 1,...,8), respectively.

052705-5



A. V. ZAKHAROV AND P. V. MASLENNIKOV PHYSICAL REVIEW E 96, 052705 (2017)

FIG. 5. Distribution of the dimensionless temperature
χ (x = 0,z,τ ) along the z axis (0.6 � z � 1.0), when the laser
beam is focused in the center (x = 0.0) of the LC sample, but at
different depths: (a) z0 = 0.98, (b) z0 = 0.94, (c) z0 = 0.90, and
z0 = 0.80 (d), respectively.

the velocity w(x = 0,z,τ ) rapidly drops to zero. It should be
noted that the greatest value of u(x = 0,z,τ ), directed in the
positive sense in the vicinity of the LC-air interface, achieved
in the case when the laser beam is focused on the maximum
depth of penetration (z0 = 0.8) in the LC volume, whereas the
greatest value of u(x = 0,z,τ ), directed in the negative sense in
the vicinity of the LC-air interface, achieved in the case when
the laser beam is focused on the minimum depth of penetration
(z0 = 0.98) in the LC volume. In both of these cases, the
vertical component of the velocity vector w(x = 0,z,τ ) at the
free LC-air interface is almost zero. So, this distribution of
components of the velocity field shows that in the area close to
the LC-air interface (0.8 < z < 1.0), due to pumping of energy
by laser radiation, the vortical flow is excited similar to what
is shown in Fig. 2(c). Our calculations also show that with
further penetration of the injecting energy to the bulk of the
LC phase, from x0 = 0.0, z0 = 0.98 to x0 = 0.0, z0 = 0.8,
the thermally excited vortical flow changes the direction

from anticlockwise, around the point x = 0.0, z = 0.98, to
clockwise, around the point x = 0.0, z = 0.8, approximately
at the point x0 = 0.0, z0 ∼ 0.9.

IV. CONCLUSION

In summary, we have investigated the reorientational
dynamics in thin liquid crystal (LC) volume, where the
nematic sample is confined in a microsized volume with a free
flexible LC-air interface, under the influence of the temperature
gradient ∇T , caused by a laser beam focused in the interior
of the LC sample. Our calculations, based on the appropriate
nonlinear extension of the classical Ericksen-Leslie theory,
show that due to interaction between ∇T and the gradient
of the director field ∇n̂, in the LC volume the thermally
excited three-vortical fluid flow is maintained. The direction
and magnitude of hydrodynamic flow, at a fixed time pumping
energy and the laser output power, is influenced by depths
of the laser injection. Our calculations also show that the
range of distance, counted from the lower solid boundary,
over which the laser beam cannot disturb the nematic phase,
is approximately 80% of the LC sample.

Recently, the circular flow formation in homeotropically
oriented LC film doped by chiral molecules has been observed
[5]. It has been shown, by means of circular polarization
techniques, that when the laser beam irradiation started, the
thermocapillary flow from the laser spot position on the free
LC interface to the radial outward direction occurred. After
a while, the radial flow has turned into a circular flow. The
formation of the circular flow on the top of the LC film has
been ascribed to thermocapillary convection in the LC sample.
In turn, in our case, the vortical flow is occurred in the vicinity
of the free LC-air interface and penetrated to the bulk of the LC
sample, and the mechanism that is responsible for occurring
of the vortical flow near the LC-air interface is based on the
coupling between director and temperature gradients, initiated
by the laser beam irradiation. So, this vortical flow is a unique
phenomena only exhibited by liquid crystal systems, and it is
expected to be applied for optothermal tweezers.

FIG. 6. Distribution of both the horizontal u(x = 0,z,τ ) and vertical w(x = 0,z,τ ) components of the velocity vector v along the z axis
(0.7 � z � 1.0), when the laser beam is focused in the center (x = 0.0) of the LC sample, but at different depths: (a) z0 = 0.98, (b) z0 = 0.94,
(c) z0 = 0.90, and z0 = 0.80 (d), respectively.
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We believe that the present investigation can shed some
light on the problem of control of the dynamic response of the
LC display under the influence of the temperature gradient.

APPENDIX: TORQUES AND STRESS
TENSOR COMPONENTS

The torque balance equation can be derived from
the dimension balance of elastic Tel = δWel

δn̂ × n̂, viscous

Tvis = δRvis

δn̂t
× n̂, and thermomechanical Ttm = δRtm

δn̂t
× n̂

torques, where Wel = 1
2 [K1(∇ · n̂)2 + K3(n̂ × ∇ × n̂)2] is

the elastic energy, and K1 and K3 are the splay and bend
elastic coefficients, n̂t ≡ dn̂

dt
is the material derivative of

n̂ = nx î + nzk̂, whereas Rvis = α1(n̂ · Ds · n̂)2 + γ1(n̂t −
Da · n̂)2 + 2γ2(n̂t − Da · n̂) · [Ds · n̂ − (n̂ · Ds · n̂)n̂] + α4Ds :
Ds + (α5 + α6)(n̂ · Ds · Ds · n̂) is the viscous contribution to
the total Rayleigh dissipation function R = Rvis + Rtm +
Rth. Here, 1

ξ
Rtm = (n̂ · ∇T )Ds : M + ∇T · Ds · M · n̂ + (n̂ ·

∇T )[n̂t − Da · n̂ − 3Ds · n̂ + 3(n̂ · Ds · n̂)n̂] · M · n̂ +
n̂(∇v)T · M · ∇T + 1

2 (n̂ · Ds · n̂)∇T · M · n̂ + n̂t · M · ∇T +
1
2M0∇T · ∇v · n̂ + (n̂ · ∇T )M0(n̂ · Ds · n̂) + 1

2M0n̂t · ∇T ,
and Rth = 1

T
[λ‖(n̂ · ∇T )]2 + λ⊥[∇T − n̂(n̂ · ∇T )2] are

the thermomechanical and thermal contributions to
R, respectively. Here, α1 ÷ α6 are the Leslie viscosity
coefficients, γ1(T ) and γ2(T ) are the rotational viscosity
coefficients (RVCs), ξ is the thermomechanical constant,
and λ‖, λ⊥ are the heat conductivity coefficients parallel
and perpendicular to the director n̂, respectively. Here,
Ds = 1

2 [∇v + (∇v)T] and Da = 1
2 [∇v − (∇v)T] are the

symmetric and asymmetric contributions to the rate of strain
tensor, M = 1

2 [∇n̂ + (∇n̂)T], and M0 = ∇ · n̂ is the scalar
invariant of the tensor M. We use here the invariant, multiple
dot convention: ab = aibj , a · b = aibi , A · B = AikBkj ,
and A : B = AikBki , where repeated Cartesian indices are
summed.

The dimensionless elastic contribution to the torque balance
equation is Tel = nzM0,x − nxM0,z + K31(nzfz + nxfx),
whereas the dimensionless viscous and thermomechanical
contributions are Tvis = nznx,τ − nxnz,τ + 1

2γ21(ψzz −
ψxx)(n2

x − n2
z) − 1

2 (ψzz + ψxx) + 2γ21ψ,xznxnz and
Ttm = δ2χx(nxnz,x − 3

2nznx,x + 1
2nxnx,z) + δ2χz(−nznx,z +

3
2nxnz,z − 1

2nznz,x), respectively. We consider the
dimensionless elastic Wel and dissipation R =
Rvis + δ2Rtm + δ3Rth functions as

Wel = nzM0,x − nxM0,z − K3

K1
(nzfz − nxfx),

2Rvis = n2
x,τ + n2

z,τ + nx,τ [nz(wx − uz) + 2γ nxux + γ21nz(uz + wx)]

+ nz,τ [nx(uz − wx) + 2γ nzwz + γ21nx(uz + wx)] + 1

γ1
u2

x

[
α4 + (α5 + α6)n2

x + α1n
4
x

]

+ 1

γ1
w2

z

[
α4 + (α5 + α6)n2

z + α1n
4
z

] + 2
α1

γ1
uxwzn

2
xn

2
z

+ 1

γ1
u2

z

[
α4

2
+ γ1 + α5 + α6

4
+ γ2

(
n2

x − n2
z

) + α1n
2
xn

2
z

]
+ 1

γ1
w2

x

[
α4

2
+ γ1 + α5 + α6

4
+ γ2

(
n2

z − n2
x

) + α1n
2
xn

2
z

]

+ 1

γ1
uzwx

[
α4 + −γ1 + α5 + α6

2
+ 2α1n

2
xn

2
z

]
+ 1

γ1
uzux

[−γ2nxnz + 2α1n
3
xnz

] + 1

γ1
uxwx

[
γ2nxnz + 2α1n

3
xnz

]

+ 1

γ1
uzwz

[
γ2nxnz + 2α1nxn

3
z

] + 1

γ1
wzwx

[−γ2nxnz + 2α1nxn
3
z

]
,

Rtm = χx

[
−1

2
nzM0 − nzMxx + n2

x(nxMzz − Mxxnz + 2nxMxz)

]

+χz

[
1

2
nxM0 + nxMzz + n2

z(nxMzz − Mxxnx − 2nzMxz)

]
,

Rth = 1

χ
[λ(n̂ · ∇χ )]2 + [∇χ − n̂(n̂ · ∇χ )2],

where f = nx,z − nz,x, fx = ∂f

∂x
,λ = λ‖

λ⊥
.

The dimensionless stress tensor σ = σ el + σ vis + σ tm − PI as the sum of elastic, viscous, thermomechanical parts and
pressure can be obtained directly from the elastic contribution to the energy and Rayleigh dissipation function as σ el = − ∂Wel

∂∇n̂ ·
(∇n̂)T , σ vis = δRvis

δ∇v , and σ tm = δRtm

δ∇v , for the elastic, viscous, and thermomechanical contributions, respectively. Straightforward
calculations for the geometry n̂ = (nx,0,nz) give the following expressions for the elastic σ el

ij , viscous σ vis
ij , and thermomechanical

σ tm
ij components of the ST, i,j = x,z:

σ el
xx = δ1[−nx,xM0 + K31f nz,x],

σ el
zz = δ1[−nx,xM0 + K31f nz,z],
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σ el
xz = δ1[−nx,xM0 − K31f nx,x],

σ el
zx = δ1[−nx,xM0 − K31f nx,z],

σ vis
xx = γ21nx

dnx

dt
+ ψxz

1

γ1

[
α4 + (α5 + α6)n2

x + α1n
2
x

(
n2

x − n2
z

)] + α1

γ1
n3

xnz(ψzz − ψxx) − 1

2
γ21nxnz(ψzz + ψxx),

σ vis
xz = 1

2

(
nz

dnx

dt
− nx

dnz

dt

)
+ 1

2
γ21

(
nz

dnx

dt
+ nx

dnz

dt

)
+ ψxz

1

γ1

[
α1nxnz

(
n2

x − n2
z

) + γ2nxnz

]

+ 1

γ1
(ψzz − ψxx)

[
α1n

2
xn

2
z + α4

2
+ α5 + α6

4

]
− 1

4
(ψzz + ψxx) + 1

2
γ21ψxx

(
n2

x − n2
z

)
,

σ vis
zx = 1

2

(
nx

dnz

dt
− nz

dnx

dt

)
+ 1

2
γ21

(
nz

dnx

dt
+ nx

dnz

dt

)
− ψxz

1

γ1

[
α1nxnz

(
n2

z − n2
x

) + γ2nxnz

]

+ 1

γ1
(ψzz − ψxx)

[
α1n

2
xn

2
z + α4

2
+ α5 + α6

4

]
+ 1

4
(ψzz + ψxx) + 1

2
γ21ψzz

(
n2

x − n2
z

)
,

σ vis
zz = γ21nz

dnz

dt
− ψxz

1

γ1

[
α4 + (α5 + α6)n2

z + α1n
2
z

(
n2

z − n2
x

)] + α1n
3
znx(ψzz − ψxx) + 1

2
γ21nxnz(ψzz + ψxx),

σ tm
xx = δ1χx

[
1

2
Mxxnx

(
3n2

x + 7
) + Mxznz

(
1 + 7

2
n2

x

)
+ Mzznx

(
3

2
+ 2n2

z

)]

+ δ1χz

[
Mxxnz

(
n2

x + 1
) + 1

2
Mxznx

(
3 + 5n2

z

) + 3

2
Mzznz

(
1 + n2

z

)]
,

σ tm
xz = δ1χx

[
1

2
Mxxnz

(
n2

x + 3
) + Mxznx

(
3n2

z − 1

2

)
+ Mzzn

3
z

]
+ δ1χz

[
1

2
Mxxnx − 1

2
Mxznz

(
3 − n2

x

) − 1

2
Mzznxn

2
z

]
,

σ tm
zx = δ1χx

[
−1

2
Mxxnzn

2
x + 1

2
Mxznx

(
3 − n2

z

) + 1

2
Mzznz

]
+ δ1χz

[
Mxxn

3
x + 1

2
Mxznz

(
3n2

x − 1
) + 1

2
Mzznx

(
1 + n2

z

)]
,

σ tm
zz = δ1χx

[
3

2
Mxxnx

(
n2

x + 1
) + Mxznz

(
3 + 5n2

x

) + Mzznx

(
1 + n2

z

)]

+ δ1χz

[
Mxxnz

(
2n2

x + 3

2

)
+ Mxznx

(
1 + 7

2
n2

z

)
+ 1

2
Mzznz

(
7 + 3n2

z

)]
.

The biharmonic equation in the ST terms has the form

δ3ψ,xzτ = (
σ vis

xx − σ vis
zz

)
xz

+ (
σ vis

zx

)
zz

− (
σ vis

xz

)
xx

+ F ,

or

δ3ψxzτ = a1ψzzzz + a2ψxzzz + a3ψxxzz + a4ψxxxz + a5ψxxxx + a6ψzzz

+ a7ψxzz + a8ψxxz + a9ψxxx + a10ψzz + a11ψxz + a12ψxx + F ,

where F = (σ el
xx + σ tm

xx − σ el
zz − σ tm

zz )
xz

+ (σ el
zx + σ tm

zx )
zz

− (σ el
xz + σ tm

xz )
xx

, whereas the coefficients ai(i = 1,...,12) have the
following elements:

a1 = 1

2
+ 1

γ1

[
α4

2
+ α5 + α6

4
+ α1n

2
xn

2
z

]
+ γ21

2

(
n2

x − n2
z

) − γ 2
21

4

(
n2

x − n2
z

)2
,

a2 = − 2

γ1

[
α1nxnz

(
n2

z − n2
x

) + γ2nxnz

] + 2γ 2
21nxnz

(
n2

x − n2
z

)
,

a3 = 1 + 1

γ1

[
α4 + α5 + α6

2
− α1

(
n4

x + n4
z

)] − 4γ 2
21n

2
xn

2
z + 1

2
γ 2

21

(
n2

x − n2
z

)
,

a4 = 2

γ1

[
α1nxnz

(
n2

z − n2
x

) − γ2nxnz

] − 2γ 2
21nxnz

(
n2

x − n2
z

)
,

a5 = 1

2
+ 1

γ1

[
α4

2
+ α5 + α6

4
+ α1n

2
xn

2
z

]
− γ21

2

(
n2

x − n2
z

) − γ 2
21

4

(
n2

x − n2
z

)2
,

a6 = 1

γ1

[(
α1 + γ 2

2

γ1

)
nxnz

(
n2

x − n2
z

) + 2γ2nxnz

]
x

+ 1

γ1

[
α1n

2
xn

2
z + γ2

2

(
n2

x − n2
z

)]
z

− γ 2
21

4

[(
n2

x − n2
z

)2]
z
,
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a7 = − 2

γ1

[
α1nxnz

(
n2

x − n2
z

)+γ2nxnz

]
z
− 1

γ1

[
α1

(
n2

x − n2
z

)2+4
γ 2

2

γ1
(n2

xn
2
z

]
x

+1

4

[
1 + γ21

(
n2

x − n2
z

)]2

x
+ 2γ 2

21

[
nxnz

(
n2

x − n2
z

)]
z
,

a8 = 1

γ1

[(
−α1 + γ 2

2

4γ1

)(
n2

z − n2
x

)2 −
(

2α1 + 4γ 2
2

γ1

)
n2

xn
2
z

]
z

+ 2

γ1

[(
α1 + γ 2

2

γ1

)(
n2

z − n2
x

)
nxnz − γ2nxnz

]
x

.

a9 = 1

γ1

[
−

(
α1 + γ 2

2

γ1

)
nxnz

(
n2

x − n2
z

) − 2γ2nxnz

]
z

+ 1

γ1

[
α1n

2
xn

2
z − γ2

2

(
n2

x − n2
z

)]
x

− γ 2
21

4

[(
n2

x − n2
z

)2]
x
,

a10 = 1

γ1

[
α1n

2
xn

2
z + 3γ2

4

(
n2

x − n2
z

)]
zz

− 1

γ1

[
α1n

2
xn

2
z + γ2

4

(
n2

x − n2
z

)]
xx

+ γ21

4

(
n2

x − n2
z

)[(
n2

x − n2
z

)
xx

− 2
(
n2

x − n2
z

)
zz

]

−
[
α1

γ1
nxnz

(
n2

z − n2
x

) − γ21nxnz

]
xz

+ γ 2
21nxnz

(
n2

x − n2
z

)
xz

+ γ 2
21

[
(nxnz)x

(
n2

x − n2
z

)
z
+ (nxnz)z

(
n2

x − n2
z

)
x

]

− γ 2
21

[
1

4

((
n2

x − n2
z

)
z

)2 − 1

4

((
n2

x − n2
z

)
x

)2
]
,

a11 = − 1

γ1

[
α1nxnz

(
n2

x − n2
z

)]
xx

− 1

γ1

[
α1nxnz

(
n2

x − n2
z

)]
zz

− α1

γ1

[(
n2

x − n2
z

)2]
xz

− γ 2
21

[
nxnz

(
n2

z − n2
x

)
zz

+ (nxnz)zz
(
n2

x − n2
z

) − nxnz

(
n2

z − n2
x

)
xx

+ (nxnz)xx

(
n2

x − n2
z

)]
+ γ 2

21

[
8nxnz(nznx)xz + 8(nznx)z(nznx)x + (nznx)z

(
n2

x − n2
z

)
x
+ (nznx)x

(
n2

x − n2
z

)
x

]
,

a12 = 1

γ1

[
α1n

2
xn

2
z − 3γ2

4

(
n2

x − n2
z

)]
xx

+ 1

γ1

[
α1n

2
xn

2
z + γ2

4

(
n2

x − n2
z

)]
zz

+ γ 2
21

4

(
n2

x − n2
z

)[(
n2

x − n2
z

)
zz

− 2
(
n2

x − n2
z

)
xx

]

−
[
α1

γ1
nxnz

(
n2

z − n2
x

) − γ21nxnz

]
xz

− γ21(nxnz)xz

[
1 + γ21

(
n2

x − n2
z

)] − γ 2
21nxnz

(
n2

x − n2
z

)
xz

− γ 2
21

[
(nxnz)z

(
n2

x − n2
z

)
x
+ (nxnz)x

(
n2

x − n2
z

)
x

] − γ 2
21

4

{[(
n2

x − n2
z

)
z

]2 − [(
n2

x − n2
z

)
x

]2}
.

The dimensionless analog of the heat current q = −T ∂R
∂∇T

is given by

−qx = χ,x

(
�n2

x + n2
z

) + (� − 1)nxnzχ,z + δ4∇x

(
χ

∂Rtm

∂∇χ

)
,

−qz = χ,z

(
�n2

z + n2
x

) + (� − 1)nxnzχ,x + δ4∇z

(
χ

∂Rtm

∂∇χ

)
,

whereas the dimensionless entropy balance equation can be rewritten in the form

χ,τ = [
χ,x

(
�n2

x + n2
z

) + (� − 1)nxnzχ,z

] + [
χ,z

(
�n2

z + n2
x

) + (� − 1)nxnzχ,x

]

+ δ4χ

(
∇ · ∂Rtm

∂∇χ

)
+ δ5O(x,z,τ ) − ψzχx + ψxχz.

The matrix equation

B̂ · �� = �C,

for the vector �� = (ψxx,ψxz,ψzz) can be obtained from Eqs. (5), (6), and (12), transmitted to the LC-air interface, where the
matrix B̂ij ≡ bij (i,j = 1,2,3) has the following elements:

b11 = (nx)z=h

(
2γ21 − γ 2

21 + 2α4 + α5 + α6 − 2α1

2γ1

)
,

b12 = −α4 + α5 + α6 + α1

γ1
,

b13 = (nx)z=h

(
γ21 + γ 2

21 − 2α4 + α5 + α6 + 2α1

2γ1

)
,

b21 = 1

4
− 2α4 + α5 + α6

4γ1
,
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b22 = (nx)z=h

(
−γ 2

21 − 2α4 + α5 + α6 + 2α1

γ1

)
,

b23 = 1

2
− γ21

2
− γ 2

21

4
+ 2α4 + α5 + α6

4γ1
,

b31 = γ21 − 1

2
,

b32 = −2γ21(nx)z=h,

b33 = −γ21 + 1

2

whereas the vector �C = (c1,c2,c3) has the following elements:

c1 = 2γ (nx,x)z=h − P,

c2 = δ1

2
(γ21 − 1)[3χx(nx,x)z=h + χz(nx,z)z=h],

c3 = δ1

(
3

2
χx(nx,x)z=h + χz(nx,z)z=h

)
.

Here, P = d2

K1
P is the dimensionless pressure acting on the interface and γ is the dimensionless surface tension.
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