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Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical
work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We
also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A
three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating
of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual
angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such
behavior is a result of the interplay between shear flow and the swimmer’s periodic beating motion of flagella,
which exert internal torques on the cell body. This peculiar behavior has some significant consequences on
the rheological properties of the suspension. We calculate Einstein’s viscosity of the suspension composed of
such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a
Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The
results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as
well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104,
098102 (2010)].
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I. INTRODUCTION

Self-propelled particles and micro-organisms that are able
to swim on a microscopic scale have attracted enormous
interest over the past few years [1–5]. Typical examples of
microswimmers include biological organisms—microalgae,
bacteria, and sperm cells—as well as artificial swimmers
[2–8]. There are two major categories of swimmers: “pullers”
and “pushers.” A puller, e.g., the micro-alga Chlamydomonas
Reinhardtii (CR), has two anterior flagella that pull the fluid
toward the cell body along the swimming direction, while a
pusher (e.g., the bacteria Escherichia coli) pushes the fluid
behind the cell body opposite to the swimming direction [1].
Designing controllable microswimmers that are capable of
detection in vivo, and carrying a drug to treat and target
localized diseases, is one of the most desired objectives in
biophysics. Such a microswimmer should employ special
tactics to overcome low Reynolds number constraints for
locomotion [9] as well as to control their swimming direction
or cross-streamline migration [10] in the flow (e.g., Poiseuille
flow in blood streams).

At a macroscale, active fluids are suspensions of self-
propelled micro-organisms (or artificial particles), which
by moving, spinning, or deforming significantly alter the
macroscopic properties of the fluid [11], such as its effective
viscosity. After the emergence of theoretical models and
simulations of rheological properties [11–17], an increasing
number of experiments have been published on experimental
measurements on effective viscosity of active suspensions
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[18–22]. Sokolov and Aranson [18] measured the viscosity
of pusher-type bacterial suspension. They report a strong
decrease of the effective viscosity (up to a factor of 7). Lopez
et al. [22] even showed that for semidilute E. Coli suspensions,
the viscous resistance to shear can vanish. The viscosity of a
planktonic suspension of CR (puller type) has been measured
[19], and a significantly higher viscosity was found compared
to suspensions containing the same volume fraction of dead
cells. Suspensions of living microalgae also show a shear-
thinning behavior. In another experiment, Mussler et al. [20]
confirmed the previous results using two different geometries
(Taylor-Couette and cone-plate), and they showed that gravity
does not play a role in the enhancement of the viscosity,
unlike suspensions of bottom-heavy Chlamydomonas nivalis
[17,21,23].

The physical interpretation of this peculiar rheology was
first introduced by Hatwalne [12]. It can be summarized as
follows. An elongated microswimmer (rodlike bacteria, for
example), once immersed in a simple shear flow of shear rate
γ̇ , spends a long time compared to γ̇ −1 in the extensional direc-
tion of the shear flow: this is known as Jeffery orbits [24]. And
since each microswimmer is modeled as a permanent force
dipole, it increases (decreases) the off-diagonal stress tensor
for pushers (pullers), resulting in a decrease or an increase
of the effective viscosity. The majority of models relies on
this anisotropic orientation distribution of microswimmers in
the flow. Such an assumption is natural for the suspensions of
pusher-type bacteria that have a rodlike shape or for gravitactic
swimmers that are oriented by gravity [17]. However, it is not
applicable to nongravitactic suspensions of CR, which have
a spherical body. A sphere has a constant rotation velocity
� = γ̇ /2 in a simple shear flow, and no anisotropy prevails. An
estimation of the aspect ratio of a puller corresponding to the
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experimentally measured effective viscosity [19] gives a value
of ellipticity of about 7, far above the value of 1 for a spherical
shape. Therefore, the origin of the viscosity enhancement for
CR suspensions remains an open question.

Recently, Takatori and Brady [25] introduced a new idea
and showed that the diffusionlike motion of microswimmers
immersed in a simple shear flow induces nonzero off-diagonal
shear components in the swim stress tensor. This effect can
explain the rheology of a suspension of CR. In this work,
we also point out a novel physical phenomenon that can also
explain the peculiar rheology of CR suspensions. We show
that the flagella beating itself leads to Jeffery-like orbits of the
CR in a simple shear flow even if a swimmer’s rounded shape
is considered. It is shown that because of the coupling between
the shear flow and the flagella beating, the swimmer can resist
the rotation induced by the shear flow, and this leads to an
increase of effective viscosity. Somehow, our model helps to
reconcile preceding theories done with rod-shaped swimmers
with spherical CR rheology.

The use of a permanent force dipole to describe the
swimmer activity [26–28] is reasonable on long time scales.
However, in this work, we show that even if the flow
characteristic time γ̇ −1 is much larger than the beating period
Tb, the flagellar breaststroke gives rise to peculiar Jeffery orbits
of the swimmer, and thus it affects the rheology of the dilute
suspension composed of these swimmers.

In this work, we propose and investigate a three-bead model
for a swimming Chlamydomonas Reinhardtii, where the beads
are connected by a frictionless scaffold. Our three-dimensional
(3D) model shares similarities with the two-dimensional
models for CR, described in Refs. [29] and [30]. While in
both works three equal-sized spheres are used, the beads
representing the flagella are of a different size in Ref. [31].
The flagellar beads in these 2D models move in circular orbits.
Here, we investigate within our 3D model the effect of the
flagellar beating on a CR motility in a simple shear flow and
its consequence on the rheology of a dilute suspension of CR.
The model is presented in Sec. II, the calculation of Einstein’s
viscosity is given in Sec. III, and our results are given in
Sec. IV.

II. MODEL FOR BIFLAGELLATE ALGAE

A three-dimensional swimmer-model of a biflagellate alga
Chlamydomonas Reinhardtii is described in this section. The
body of the CR alga is described by a sphere of radius R. This
is linked to two smaller satellite beads of radius r mimicking
the two flagella of the alga, as indicated in Fig. 1. Each of the
left (L) and right (R) flagellar beads is connected to the body
by three springs, SL, R

m ,SL, R
sa ,S

L, R
sb (superscripts L and R

denote left and right bead, respectively). The main springs
SL,R

m are chosen more rigid than the two supporting springs
SL,R

sa and S
L,R
sb (see Table I), which help to maintain both

satellite beads into the (m̂,n̂) plane; cf. Fig. 1. This anchoring
of each satellite bead also allows the application of torques
to the central bead, similarly to the flagella on the body of a
CR. In the case of an active swimmer-model, the equilibrium
lengths of the springs are time-dependent in order to mimic
the characteristic breast-stroke-like swimming motion of a
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FIG. 1. The active swimmer-model consists of three beads where
the left (L) and the right (R) satellite bead of radius R′ are connected
to the body-bead of radius R and centered in C by frictionless
Hookean springs, SL

sa,sb,m or SR
sa,sb,m, respectively. R/R′ = 3 and the

equilibrium length of the springs can be chosen time-dependent or
stationary. The unit vector n̂ defines the mean swimming direction
and defines together with the unit vector m̂ the mean flagellar beating
plane.

CR. For a dead swimmer, equilibrium lengths become time-
independent during a tumbling motion in a shear flow.

The two perpendicular unit vectors, n̂ and m̂, span the mean
“flagella plane” of the orbiting satellite beads. n̂ points from the
center of the body to the common anchoring point of the two
main springs SL,R

m (Fig. 1) and describes the mean swimming
direction of a swimmer. The other unit vector m̂ points from the
center of the body to the midpoint of the line between the two
anchoring points of the supporting springs, SR

sa and SR
sb. The

four anchoring points of the supporting springs build a square
in the equatorial plane of the central bead with diagonals of
length 2R and with the vector n̂ normal to this square.

A swimming motion is induced when the length of
the Hookean springs, �i(t), is periodically modulated with
a frequency ω = 2π/Tb: �i(t) = �i,0 + Ai cos(ωt + ϕi). The
spring length in the relaxed state is �i,0, the modulation am-
plitude is Ai , and the phase is ϕi . Each satellite bead imposes
via the springs, either during a swimming motion (Ai �= 0) or
when the passive swimmer (Ai = 0) tumbles in a shear flow,
via the springs forces and torques to the central bead.

The 25 spring parameters Ai , �i,0, ϕi and the spring constant
ki for each of the six springs as well as the frequency ω

define the characteristics of the swimmer. This number of
parameters can be drastically reduced by assuming symmetries
of the swimmer. One is the mirror symmetry with respect to
a plane perpendicular to m̂, i.e., parameters of left and right
springs are identical. We also assume that the swimmer is
not rotating around its mean swimming direction n̂, i.e., we
can choose identical spring constants for SL,R

sa and S
L,R
sb . Only

the differences between the phases of the oscillating main
and supporting springs on each side are important, namely

TABLE I. Parameter values of our model.

R

r

ks

km

�m0
R

�s0
R

Am

R

As

R

ω

2π
δϕ

Active 3 4/7 1.9 1.8 1.3 0.8 50 Hz π/3
Inactive 3 0 1.9
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δϕ
L,R
a,b = ϕ

L,R
sa,sb − ϕL,R

m with δϕL,R
a = δϕ

L,R
b = δϕ. Hence, we

are left with eight independent parameters: �m0, �s0, Am, As ,
δϕ, ω, km, and ks .

The CR alga has approximately a spherical shape with
diameter 2R = 10 μm, and for particles of this size the
Brownian dynamics plays a minor role. Considering the
kinematic viscosity for water, ν ≈ 10−6 m2 s−1, the Reynolds
number is rather low: Re = vR/ν ∼ 2.5 × 10−4 for a typical
swimmer velocity v ≈ 50 μm/s. Therefore, inertial forces
can be neglected and the fluid flow can be described by the
Stokes equation [32]. The particle dynamics and hydrody-
namic particle-particle interactions can be described through a
reflection method similar to the one used in the Rotne-Prager
approximation [32–34].

Let us summarize our mathematical treatment below.
Consider the ith sphere (i = 1, . . . ,3) with radius Ri . The
particle is submitted to an external force Fi and a torque Ti

with a no-slip boundary condition. In our model, there is no
net force or net torque exerted on the swimmer. However,
oscillating springs can apply equal and opposite forces on
beads that are aligned along the springs. Because of the design
of our model, each spring can exert a torque only on the central
bead, whereby the total torque exerted by the six springs on
the central bead vanishes in a quiescent fluid.

At zeroth order, v0,i = Fi/(6πηRi) and �0,i =
Ti/(8πηRi) are, respectively, the translational velocity
and the rotational frequency of the ith particle. When the
model swimmer in Fig. 1 is placed in a quiescent fluid, the
flow field at zeroth order u0 expressed in r is

u0(r) =
3∑

i=1

u0,i(ρi) =
3∑

i=1

[
Vt

0,i(ρi) + Vr
0,i(ρi)

]
, (1)

where ρi is the position vector pointing from the ith sphere’s
center to a given point r in the fluid: ρi = r − ri . The
summation is carried out on the three interacting spherical
beads of the model swimmer. The result averaged over one
period of beating is represented in Fig. 2, i.e., 2π/ω. Here,
Vt

0,i and Vr
0,i are, respectively, the translational and rotational

parts of the flow field created by the moving and rotating
ith sphere with radius Ri , velocity v0,i , and angular velocity
�0,i [35]:

Vt
0,i(ρi) = v0,i

3Ri

4ρi

(
1 + R2

i

3ρ2
i

)
+ ρi(v0,i · ρi)

3Ri

4ρ3
i

(
1 − R2

i

ρ2
i

)
,

(2)

Vr
0,i(ρi) =

(
Ri

ρi

)3

�0,i × ρi . (3)

This, in turn, influences the motion of the j th (j = 1, . . . ,3)
particle centered in rj , which is calculated via the Faxén laws
[32] at first order:

vj,1 = Fj

6πηRj

+
3∑

i �=j

(
1 + R2

j

6
�

)
u0,j |rj

, (4)

�j,1 = Tj

8πηRj

+ 1

2

3∑
i �=j

∇ × u0,j |rj
. (5)
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FIG. 2. The velocity field and streamlines around the model
swimmer in a fluid at rest (in the laboratory reference frame) and
averaged over one period of the flagellar beating. The arrow inside the
main sphere indicates the motion of the swimmer. The closed dashed
curves represent the orbits of each satellite bead with respect to the
central bead. The swimmer moves back and forth during one period
but on average it moves forward with a velocity v ∼ 54 μm/s obtained
for chosen parameters (see the text and Table I). The flow lines as
well as the velocity field compare very well with the experimental
results of Drescher et al. [27].

The quantities u0,i , �u0,i , and ∇ × u0,i are estimated at
the center of the j th particle. When the model swimmer is
immersed in a shear flow [36], the shear induced velocity
V∗

i (ρi) must be added to the flow field u0,i(ρi) for each
spherical bead i:

V ∗
x,i(ρi) = γ̇

[
yi − yiR

5
i

2ρ5
i

− 5

2

x2
i yi

R2
i

(
R5

i

ρ5
i

− R7
i

ρ7
i

)]
,

V ∗
y,i(ρi) = γ̇

[
−xiR

5
i

2ρ5
i

− 5

2

xiy
2
i

R2
i

(
R5

i

ρ5
i

− R7
i

ρ7
i

)]
,

V ∗
z,i(ρi) = −γ̇

5

2

xiyizi

R2
i

(
R5

i

ρ5
i

− R7
i

ρ7
i

)
. (6)

Here ρi =
√

x2
i + y2

i + z2
i , xOy is the shear plane, and γ̇ is

the imposed shear rate. Using the approximation of the Faxén
theorems and keeping the first iteration step in the reflection of
hydrodynamic interactions leads to a method valid up to order
of (R/r)3 [37].

For a given set of parameters, including the oscillation
amplitudes Am, the two satellites move in general on elliptical
orbits as indicated in Fig. 2. The left (right) bead is orbiting
counterclockwise (clockwise). This bead motion mimics the
motion of the flagella of CR [38]: The model swimmer moves
forward (along n̂) during a power stroke (i.e., when satellite
beads move in the direction of the body) and backward
during a recovery stroke (i.e., when satellite beads move
in the opposite direction). This resembles very much the
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experimentally observed vacillating swimming motion of CR
[38]. In addition to the orbits of the satellite beads, Fig. 2
shows the velocity field and the streamlines averaged over one
period of the motion of the satellite beads.

The parameters in Table I are chosen in such a way that they
reproduce rather closely the swimming characteristics of a CR.
For instance, the swimming velocity of the model (averaged
over the orbiting period of the satellite beads Tb = 2π/ω =
1/50 s) is v = 540Rω ∼ 54 μm/s considering a radius R =
5 μm. Note that if spring parameters are chosen such that
km/ks < 1 and δϕ ∼ π , then the motion of the satellite beads
along their orbits is reversed, and the swimmer would move
backward along the −n̂ direction like a pusher.

For any asymmetry between the spring parameters of the
left and right satellite bead, swimming becomes less efficient
compared to the case of a symmetric and synchronous motion
of the satellite beads. Moreover, the mean swimming direction
is not stationary anymore and moves, for instance, on curved
trajectories or leads to other complex swimming trajectories
as reported for CR [39].

The model microswimmer with oscillating harmonic
springs imitates the swimming of a CR and is referred to
as an “active swimmer.” We call it an “inactive swimmer” or
a dead swimmer when the supporting springs SL,R

sa and S
L,R
sb

are removed and the modulation amplitudes Am vanish. Then,
the satellite beads are very flexible connected to the body,
i.e., they are allowed to move freely in the vicinity of the
central bead due to an external flow, similar to the flagella of a
dead CR.

III. INTRINSIC VISCOSITY OF A DILUTE SUSPENSION
OF MICROSWIMMERS

In this section, we consider a single microswimmer in a
linear shear flow v = (γ̇ y, 0, 0) with the shear rate γ̇ and its
contribution to the effective shear viscosity. Hydrodynamic in-
teractions among swimmers are neglected, which corresponds
to a dilute swimmer suspension.

For a dilute suspension of rigid particles, the effective
viscosity depends linearly on the volume fraction φ occupied
by the particles:

ηeff = η(1 + αφ). (7)

η is the shear viscosity of the solvent, and the dimensionless
coefficient α is the intrinsic viscosity and φ = V0/V , where
V0 = 4/3π (R3 + 2R′3) is the volume of the swimmer and V is
the total volume of the suspension (swimmer and water). The
quantity α is known as Einstein’s intrinsic viscosity [40,41].
In general, α is defined as

α = lim
φ→0

ηeff − η

ηφ
. (8)

Following the Batchelor method and neglecting inertia, the
average stresslet S

(p)
ik induced by a particle in the fluid is as

follows [35,42]:

S
(p)
ik =

∮
A
{σij xkNj − η(viNk + vkNi)}dA. (9)

N̂ is the unit outward vector normal to the surface A
encompassing a volume V . Any closed surface A can be

selected for integration as long as it contains the swimmer.
The average total shear stress in a volume V containing a
single swimmer is �xy = ηγ̇ + S

(p)
xy /V = ηγ̇ + S

(p)
xy φ/V0, V0

being the volume of the swimmer. Note that in the absence of
an external torque imposed on the swimmer, S(p) is symmetric
and only the deviatoric part �xy of the stress is significant [42].
The effective viscosity is then calculated such as ηeff = �xy/γ̇ ,
which gives via Eq. (7)

α = 1

ηγ̇ V0
S(p)

xy . (10)

In the case of a single rigid sphere, the exact velocity
and pressure fields around the sphere are known analytically,
and the calculation of α gives the well-known value α = 5/2
[40,41].

A significant enhancement of the effective viscosity for
a suspension of living CR is reported from experiments
[19,20]. Hydrodynamic interactions among swimmers as well
as confinement effects [43] may play an important role for
concentrated suspensions. Here, our analysis based on an
isolated single swimmer does not include such effects and
is limited to dilute suspensions (φ < 0.01), which is usually
the case for a natural planktonic suspension. We compare
the numerically calculated intrinsic viscosity, α, for dilute
suspensions to the experimentally observed value αexp [19],
estimated by a fit according to the Krieger and Dougherty
law [44].

The temporal modulation of the equilibrium length of the
springs and the exposition of the swimmer to the linear shear
flow lead to a complex dynamics of the three beads and
therefore to a time-dependent intrinsic viscosity α. The flow
field around the swimmer is a superposition of the imposed
linear shear flow and flow perturbations caused by the bead
dynamics. Then the numerical surface integration in Eq. (9)
provides a value for α(t) [through Eq. (10)] for each temporal
configuration of the microswimmer, i.e., at each time t .

The calculation of the intrinsic viscosity α(t) at a chosen
time t via Eq. (10) strongly depends on the relative positions of
satellite beads on their orbits. It also depends on the orientation
of the microswimmer and of its flagella plane (n̂,m̂) with
respect to the flow direction (x̂), and the shear is the plane
(xy plane). Therefore, α is averaged over the tumbling period
T of the microswimmer in a shear flow (see Table II). Note that
one has usually T 
 Tb = 2π/ω (cf. Table III), where T is
of the same order of magnitude as the period of the rotational
part of the shear flow: 2π/� = 4π/γ̇ (with � ∼ γ̇ /2). The
tumbling period of swimmers depends also on the swimmer’s
orientations (see Table III). In dilute suspensions, we assume

TABLE II. Intrinsic viscosity for different swimmer orientations.

α α

Inactive Active

n̂ ∠ xy; m̂ ∠ xy 3.0 5.7
n̂ ∠ xy; m̂ ‖ z 2.9 4.8
m̂ ∠ xy; n̂ ‖ z 2.5 3.5
All configurations 2.7 4.4
Experimental [19,20] 2.5 ± 0.1 4.5 ± 0.2
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TABLE III. Period of swimmer tumbling. Note that the tumbling
period for a single sphere depends on the shear rate γ̇ : T = 2π/|�| =
4π/γ̇ � 126Tb.

T/Tb T /Tb

Inactive Active

n̂ ∠ xy; m̂ ∠ xy 126 146
n̂ ∠ xy; m̂ ‖ z 145 166
m̂ ∠ xy; n̂ ‖ z 127 150

that any orientation of a swimmer is equally probable,
which may not be true for gravitactic microswimmers—not
considered here. Therefore, before comparing our numerical
results for α with experimental measurements, we take the
ensemble average of different realizations of the swimmer’s
orientations with respect to the flow direction and the shear
plane. The results are discussed in the following section.

IV. RESULTS AND DISCUSSION

The intrinsic viscosity of the model microswimmer is
evaluated by averaging over all swimmer orientations and
for the shear rate γ̇ = 5 s−1, which corresponds to the
experimental value [19,20]. For an active swimmer suspension
we obtain α = 4.4, and for an inactive swimmer suspension we
obtain α = 2.7. The intrinsic viscosity of the active swimmer
suspension is consistent with the experimentally measured
viscosity αexp = 4.5 ± 0.2 in Ref. [19] and αexp = 4.5 ± 0.17
in Ref. [20]. For the suspension of inactive swimmers, the
numerically calculated intrinsic viscosity is also comparable
to the experimental value αexp = 2.5 ± 0.1 [19].

In our averaging, all orientations of the swimmer in the
shear flow are possible, and each of them corresponds to
a different Jeffery orbit. Next, we consider some specific
orientations of active and inactive swimmers with respect
to the shear flow for exploring the origin of the viscosity
enhancement. In the first configuration in Fig. 3(a), swimmers
tumble with m̂ and n̂ in the shear plane (xy). In this case
the intrinsic viscosity for an active swimmer is α = 5.7 (see
Table II), and for an inactive swimmer we obtain a smaller
value α = 3.0. The angular velocity of an active swimmer
is surprisingly uniform, as indicated by the dashed curve in
Fig. 3(a). In addition, the tumbling period T � 146Tb of an
active swimmer is considerably larger than for an inactive one,
T � 126Tb, which is equal to the tumbling period of a sphere
of the same radius, T = 2π/|�| = 4π/γ̇ � 126Tb.

A more unexpected orbit has been found for the active
swimmer with n̂ in the shear plane and m̂ parallel to ẑ; cf.
Fig. 3(b). The active swimmer rotates slower when n̂ is roughly
parallel to ±y (θ ∼ π/2) and faster with n̂ nearly parallel to the
flow, i.e., θ ∼ 0 or θ ∼ π [see the dashed curve in Fig. 3(b)].
This is in contrast to the behavior of an elongated object in
a shear flow. For the configuration in Fig. 3(b), the tumbling
period and the intrinsic viscosity for an inactive swimmer,
T � 145Tb and α = 2.9, are again considerably smaller than
for an active swimmer with T � 166Tb and α = 4.8.

We find the same trend for the third configuration in
Fig. 3(c), where we consider a swimmer where m̂ is in the
shear plane and n̂ is parallel to ẑ. Here, the active swimmer

m̂

n̂

m̂

m̂

n̂

n̂

θ 
(d

eg
)

 (d
eg

)
θ

θ 
(d

eg
)

FIG. 3. Temporal orientation angles of active (dashed lines) or
inactive microswimmers (solid line) in a linear shear flow for three
different swimmer orientations. (a) n̂ (swimming direction) and m̂
are both parallel to the shear (xy) plane. (b) n̂ parallel to the xy plane
and m̂ ‖ ẑ. (c) m̂ ‖ to the shear plane and n̂ ‖ ẑ. In parts (a) and
(b), θ is the angle between n̂ and x̂, while in part (c), θ is the angle
between m̂ and x̂. The time dependence is plotted in units of the
shear-rate-dependent tumbling period T , which is different for each
curve (see Table III).

is tumbling on usual Jeffery-like orbits [see Fig. 3(c)]. Again,
the tumbling period and the intrinsic viscosity of an inactive
swimmer are T � 127Tb and α = 2.5, respectively, and they
are smaller than for an active swimmer: T � 150Tb and
α = 3.5.

In the case of any other arbitrary orientation of a swimmer
with respect to the shear plane, the effective viscosity changes
smoothly between the corresponding configurations discussed
before. The enhancement of the intrinsic viscosity and the
reduction of the angular velocity for active swimmers in
comparison to inactive swimmers have their origin, on the one
hand, in the different torques that active and passive swimmers
experience during their tumbling dynamics in a shear flow.
On the other hand, the satellites are kept by the springs at a
certain mean distance from the main body, which enhances
the effective diameter of the active swimmer compared to the
inactive swimmer. Indeed, for an inactive swimmer, satellites
are fixed only by one spring and are therefore very flexible,
like the flagella of a dead CR.

The satellite beads anchored to the body by springs with
time-dependent equilibrium lengths in combination with the
shear flow exert a torque on the cell body. This causes changes
of the angular velocity of an active swimmer, compared to
that of a rigid sphere without satellites. When a swimmer
with mirror symmetry swims without an external flow, each
spring exerts a torque on the body, but the sum of the
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FIG. 4. The top part, I, is for the swimming direction perpen-
dicular to the flow direction, i.e., n̂ ‖ y and m̂ ‖ z. The bottom part,
II, is for the swimming direction parallel to the flow direction, i.e.,
n̂ ‖ x and m̂ ‖ z. In I and II, part (a) shows the time dependence of
the actual length l(t) of the main springs in units of R (solid curve)
and the time-dependent equilibrium length lm(t) of the main springs
(dashed curve) during one period Tb of the satellite bead motion. Part
(b) shows in I and II the dimensionless torque originating from the
main springs (dashed curve), the supporting springs (dotted curve),
and all springs together (dashed-dotted curve). The solid curve shows
the total torque exerted by the satellite beads on the body. Part (c)
shows the orientation angle θ (t) of the swimmer in the shear flow.

torques exerted by all springs is zero, and the swimmer
moves along spontaneous (initial) orientations. In Fig. 4,
two configurations are considered with the flagella plane
perpendicular to the shear plane, and the swimming direction
is either perpendicular (I) or parallel (II) to the flow direction.
We define the dimensionless torque, L̃ = −L/(4πηR3γ̇ ),
imposed by the flagella on the swimmer’s body. L is the
torque applied on the body by the satellites via springs, and
Ls = −4πηR3γ̇ is the torque imposed by the shear flow on a
spherical body of the same radius but without satellite beads.
For L̃ < 0, the torque experienced by the swimmer is opposite
to the torque exerted by the shear flow.

Figure 4, part I, shows the swimmer dynamics when
the flagella plane and the swimming direction are both
perpendicular to the flow direction. Figure 4, part I(a), shows

10 100 1000

2.5
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3.5

4

α

γ (s   )-1.

FIG. 5. The intrinsic viscosity as a function of the shear rate. The
solid line (squares) corresponds to inactive swimmers and the dashed
line (circles) corresponds to active swimmers.

the time dependence of the lengths of the main springs,
�(t) (solid curve), and the imposed time dependence of the
equilibrium length of the main springs, �m(t) (dashed curve),
during an orbital period Tb of the satellite beads. When the
main springs are compressed (� < �m), the torque exerted
by the main springs to the body is opposite to the torque
applied by the shear flow. Meanwhile, the supporting springs
exert a torque on the body that have the same sign as the
torque applied by the shear flow. However, the total torque
exerted by all springs on the body is opposite to that imposed
by the shear flow. Altogether, the angular velocity of the
swimmer is reduced, and the swimmer stays longer along the
swimming direction perpendicular to the flow, in comparison
to a spherical particle of the same radius as the body bead
Fig. 3, part I(b) (see also Table III ). It is remarkable that
such behavior is opposite to the usual Jeffery orbit of a passive
elongated object in a shear flow [24].

In contrast, when the flagella plane is still perpendicular
to the flow but with the swimming direction parallel to the
flow as in Fig. 4, part II, the swimmer behaves in an opposite
way. The total torque exerted by all springs on the swimmer
amplifies the rotation imposed by the flow when the main
spring is compressed (� < �m). Again, the opposite effect is
observed for an elongated particle aligned in the shear flow
direction. The leading effect, which slows down or accelerates
the angular velocity, comes from the main springs to the
satellite beads (flagella), and the supporting springs reduce
the effect.

When the flagella plane and the shear plane are identical,
each main spring exerts a constant torque during the tumbling
rotation of the swimmer such that the angular velocity is almost
constant on the orbit, as in Fig. 3(a).

We calculated the intrinsic viscosity over a wide range of
shear rates γ̇ , and we found a shear thinning behavior as
shown in Fig. 5. This is very similar to the experimentally
observed shear thinning [19]. The shear thinning for an active
microswimmer suspension is related to the existence of two
time scales: the orbiting period Tb of the satellite beads and the
tumbling period T depending on the shear rate. In the range
T/Tb > 100 (i.e., γ̇ � ω/50), one has many breast strokes per
tumbling period T . Therefore, the satellite motion can signif-
icantly influence the swimmers’ orientation, thus enhancing
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their tumbling period. Increasing the shear rate decreases the
tumbling period; the number of breast strokes per tumbling
period decreases as well as the influence of the swimming
motion on the swimmers’ orientation. We observe a small
enhancement of the intrinsic viscosity around 400–1000 Hz.
This is a model-related effect. At a shear rate of 5 Hz, the ratio
T/Tb is about 150 (see Table III). In the range of shear rates,
400–1000 Hz, the time scales T and Tb become comparable.
The re-increase of the viscosity is due to a synchronization
between the rotating beads and the tumbling, and it depends
on the parameters of the model. This effect is probably absent
for a real CR.

Note that the shear thinning behavior is almost vanishing for
an inactive swimmer, because the satellite beads are only con-
nected by one spring and are therefore very flexible. When each
satellite bead is still connected by three springs but the equilib-
rium length is kept constant (inactive), then the effective radius
of the swimmer is enhanced compared to the inactive swimmer.
A configuration of rather rigidly connected satellite beads does
not correspond to the flexible flagella of a dead CR. However,
this extension of the effective radius contributes to the
enhanced intrinsic viscosity in addition to the active swimming
motion. However, this contribution reduces when increasing
the shear rate due to the strong deformations of springs.

V. CONCLUSION

A three-dimensional bead spring model has been developed
for Chlamydomonas Reinhardtii that takes into account the

flagellar beating. The model correctly reproduces most of
the swimming characteristics of this microswimmer. Using
the model, we found a reversed Jeffery-like orbit for the mi-
croswimmer in shear flow. Such an altered orbit is essentially
at the origin of the enhancement of suspension viscosity. We
determined the intrinsic viscosity of an active and an inactive
swimmer suspension using numerical simulations of the Stoke-
sian dynamics of the three-bead model within the generalized
Rotne-Prager approximation. Our numerical results for the
intrinsic viscosity are very similar to previous experimental
measurements [19,20] including a shear thinning behavior.

Our numerical results suggest that the significant increase of
the viscosity for puller-type active microswimmer suspensions
can be explained by considering the activity of an individual
swimmer without a collective behavior. This effect could
probably be combined with the diffusive trajectory of a
CR, which also affects the effective viscosity [25] of dilute
suspensions.

The complex angular orbits of the model swimmer and
its consequences on the suspension viscosity for different
orientations of the swimmer with respect of the flow direction
emphasize the importance of using a three-dimensional model
for such a system.
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