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The effects of particle-size polydispersity on the magnetostatic properties of concentrated ferrofluids are
studied using theory and computer simulation. The second-order modified mean-field (MMF2) theory of Ivanov
and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] has been extended by calculating additional terms of higher
order in the dipolar coupling constant in the expansions of the initial magnetic susceptibility and the magnetization
curve. The theoretical predictions have been tested rigorously against results from Monte Carlo simulations of
model monodisperse, bidisperse, and highly polydisperse ferrofluids. Comparisons have been made between
systems with the same Langevin susceptibility and the same saturation magnetization. In all cases, the new
theoretical magnetization curve shows better agreement with simulation data than does the MMF2 theory. As for
the initial susceptibility, MMF2 theory is most accurate for the monodisperse model, while the new theory works
best for polydisperse systems with a significant proportion of large particles. These results are important for the
analysis and characterization of recently synthesized polydisperse ferrofluids with record-breaking values of the
initial magnetic susceptibility.
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I. INTRODUCTION

Ferrofluids consist of ferromagnetic or ferrimagnetic
nanoparticles suspended in magnetically passive carrier liq-
uids. These systems can be classified as highly functional
materials due to the unique combination of physical, elec-
tromagnetic, and optical properties, which can be controlled
by applied magnetic fields or magnetic field gradients [1].
The diameters of the magnetic cores are typically in the
region of 10 nm, which for commonly used materials such as
magnetite (Fe3O4) means that each particle contains a single
magnetic domain, and hence the ferrofluid can be described as
a superparamagnetic material. The granulometric composition
is rarely uniform within a given sample of ferrofluid, and
therefore one needs to consider particle-size polydispersity. An
effective way to determine the particle-size distribution within
a sample is to analyze theoretically the magnetic properties,
such as the magnetization curve and the initial susceptibility.
Alternative methods such as counting particles in microscopy
images are tedious and subject to considerable sampling errors.

The constituent particles in a ferrofluid are usually modeled
as dipolar hard spheres with a magnetic core diameter x and
a nonmagnetic layer of thickness δ � 2 nm representing the
“dead” layer at the surface of a particle and the thickness of an
adsorbed layer of sterically stabilizing surfactant molecules;
the effective hard-sphere diameter is therefore σ = x + 2δ.
The magnetic moment on a particle is estimated from the
bulk saturation magnetization Ms to be μ = πx3Ms/6. Many
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theoretical methods have been developed to study the magne-
tization curve and initial susceptibility of monodisperse and
polydisperse ferrofluids. The oldest and simplest theoretical
approach is the Langevin single-particle model of an ideal su-
perparamagnetic gas of noninteracting particles [2] according
to which the magnetization curve and initial susceptibility are
given, respectively, by [3]

ML(H ) = ρ

〈
μ(x)L

(
μ0μ(x)H

kBT

)〉
(1)

χL =
(

∂ML

∂H

)
H=0

= μ0ρ〈μ2(x)〉
3kBT

, (2)

where H is the external magnetic field, ρ = N/V is the
number concentration of particles in a volume V , kB is
Boltzmann’s constant, T is the temperature, μ0 is the vacuum
permeability, L(z) = coth z − z−1 is the Langevin function,
and the angular brackets denote an average over the particle-
size distribution p(x):

〈f (x)〉 =
∫ ∞

0
p(x)f (x)dx. (3)

Apart from the number concentration ρ, there is the hard-
sphere volume fraction

ϕ = πρ〈σ 3(x)〉
6

, (4)

which is typically of order 0.1 in standard ferrofluids. One can
also define a magnetic volume fraction

ϕm = πρ〈x3〉
6

= M(∞)

Ms
. (5)
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In practice, experimental measurements of χ show that it
increases more rapidly with concentration than is predicted
by the linear Langevin law (2) [4]. This is due primarily
to the dipole-dipole interactions between the particles. One
physically intuitive method of including such interactions is
to use the Langevin expressions but with an effective mag-
netic field Heff = H + 1

3M(H ) including the magnetization
of the fluid, leading to a transcendental equation for the
magnetization curve [5,6], and the prediction of spontaneous
magnetization at low temperature and/or high concentration,
which has never been observed in experiments. Other methods
are based on quite general liquid-state approaches, such as
integral equations with the mean-spherical approximation
closure [7–9], thermodynamic perturbation theory [10–12],
so-called modified mean-field (MMF) theories [13,14], formal
Mayer-type cluster expansions [15,16], and density-functional
theory [17–19]. All of these approaches work quite well for
ferrofluids with low-to-moderate content of magnetic material
and where dipole-dipole interactions are not very strong. In
Refs. [20,21], all of the then-available theories were tested
critically by determining the polydispersity from experimental
measurements of the magnetization curves for the same
ferrofluid taken at different levels of dilution. The particle-size
distribution was represented by the assumed form

p(x) = xα exp (−x/x0)

xα+1
0 
(α + 1)

, (6)

where α and x0 are fitted parameters, and 
(z) is the gamma
function. Of all the theories tested, only one gave consistent
results for the parameters determined by independent fitting
of the magnetization curves at different concentrations—the
so-called second-order modified mean-field (MMF2) theory
of Ivanov and Kuznetsova [22,23]. The MMF2 expressions
are as follows:

M(H ) = ρ

〈
μ(x)L

(
μ0μ(x)Heff

kBT

)〉
, (7)

Heff = H + 1

3
ML(H ) + 1

144
ML(H )

dML(H )

dH
, (8)

χ = χL

(
1 + 1

3
χL + 1

144
χ2

L

)
. (9)

Note that the effective field contains the Langevin mag-
netization and not the magnetization itself, and so the
MMF2 equations are not transcendental. Essentially, the
MMF2 theory arises from using the Yvon-Born-Bogolyubov-
Green-Kirkwood (YBBGK) hierarchy [24] to relate the
one-particle orientational distribution function (ODF) to the
pair-correlation function (PCF) between particles, and then
estimating the PCF with a perturbation expansion in the con-
centration ρ and the strength of the dipole-dipole interactions.
The one-particle ODF then trivially gives the magnetization
curve, and from that the initial susceptibility. The strength
of the dipole-dipole interactions as compared to the thermal
energy is measured by a dipolar coupling constant

λ = μ0〈μ2(x)〉
4πkBT 〈σ 3(x)〉 (10)

in terms of which the Langevin susceptibility can be written

χL = 8ϕλ. (11)

The MMF2 expression for χ includes the exact terms in
an expansion in terms of χL up to order χ3

L ∼ ρ3λ3, which
of course does not refer specifically to a particular p(x).
This is a feature of several of the aforementioned theories
[5–10,13,14,22,23]. The MMF2 expression is quite accurate
for ferrofluids with χ � 5 [20,21], while density-functional
theory has been shown to work for χ � 4 [17–19]. Note that
in recent work by Szalai et al., a thermodynamic perturbation
theory for monodisperse ferrofluids was proposed that is
accurate for dense ferrofluids with χ � 80 [12]. This theory
also yields good predictions for the magnetization curve and
the nonlinear susceptibility, and reasonable predictions for
the compressibility factor. Its accuracy relies on the pair
distribution function of the hard-sphere fluid obtained from
MC simulations, and as such the theory is not yet applicable
to real polydisperse ferrofluids.

Concentrated magnetite ferrofluids with very high magnetic
susceptibilities χ ∼ 120–150 at low temperatures down to
T ∼ 200 K have recently been synthesized [25–29], and
these pose a significant challenge to the theories currently
available. The high susceptibility is thought to arise from
large particle-size polydispersity, and in particular to the
strong dipole-dipole interactions between the largest particles.
Therefore, an essential task is to extend Eqs. (7)–(9) to include
extra terms, particularly those of higher order in the dipolar
coupling constant. This has already been carried out to some
extent [30,31]. For instance, the leading-order correction to
Eq. (9) gives

χ = χL

[
1 + 1

3
χL

(
1 + λ2�2

0

25

)
+ 1

144
χ2

L

]
, (12)

where �0 is a dimensionless number given by a complicated
average over the particle-size distribution [31], which will be
defined again in Sec. II B: �0 = 1 for a monodisperse fer-
rofluid, and �0 � 1 for a polydisperse ferrofluid. Equations (9)
and (12) were tested against simulation results for model
systems, and it was shown that the extra term proportional
to �2

0 was essential to capture an enhancement in χ with in-
creasing polydispersity [30]. Very recently, a further extension
of Eq. (12) was tested against experimental measurements of
χ in a dense, high-susceptibility ferrofluid [32]. This extended
theory gives for the initial susceptibility an expression of the
form

χ = χL

[
1 + 1

3
χL

(
1 + λ2�2

0

25

)
+ 1

144
χ2

L(1 + const × λ)

]
,

(13)

where “const” once again depends on complicated averages
over p(x), and the theory is correct up to terms of order ρ3λ4.
The extended theory was shown to be capable of describing the
ferrofluid properties over the experimental temperature range,
although the apparent particle-size distribution was determined
by matching theory to the saturation magnetization M(∞)
and χ at T = 295 K, and not through a full analysis of the
magnetization curve because the corresponding extensions of
Eqs. (7) and (8) were not yet available.
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The idea that including more terms in the expansions of χ

will improve results needs some discussion. For systems with
hard-core interactions, the virial expansions of thermodynamic
functions tend to converge with increasing orders of ρ;
the virial coefficients can change sign, but generally the
magnitudes of successive corrections decrease, and high-
order virial expansions can be accurate even at very high
densities [24]. The expansions in λ are more problematic,
especially when applied to real polydisperse ferrofluids. The
dipolar coupling constants for large particles are far beyond
where such expansions are expected to work, and so the
addition of extra terms is not guaranteed to give better
results. Nonetheless, as will be shown in this work, large-
particle fractions make very significant contributions to the
magnetic properties of polydisperse ferrofluids, and so some
attempt must be made to include the effects of strong dipolar
interactions. It should be noted, though, that with high values
of the dipolar coupling constant, including one extra term can
lead to substantial deviations, and of either sign. This also
applies to monodisperse ferrofluids characterized by a single,
large dipolar coupling constant.

The main aims of the current work are twofold. First,
the theory will be completed by determining the full ex-
pression for the magnetization curve corresponding to the
initial-susceptibility expression given in Eq. (13). Second, the
theory will be tested critically against simulation results for
monodisperse, bidisperse, and polydisperse model ferrofluids
with saturation magnetizations and Langevin susceptibilities
up to those of recently synthesized concentrated ferrofluids.
The results of this work, therefore, characterize the most
advanced theoretical framework for analysis of highly concen-
trated, high-susceptibility ferrofluids. The rest of the article is
organized as follows. The model, theory, and simulations are
detailed in Sec. II. Two sets of results are discussed in detail:
first, theoretical and simulation results for a polydisperse fer-
rofluid with a realistic particle-size distribution are compared
to those for a monodisperse ferrofluid with the same saturation
magnetization and Langevin susceptibility; and second, the
corresponding results for a bidisperse ferrofluid with fractions
of “small” and “large” particles. Section IV concludes the
article.

II. MODEL, THEORY, AND SIMULATIONS

A. Model

The ferrofluid is modeled as a fluid of N dipolar hard
spheres (DHSs) with magnetic-core diameter x, nonmagnetic
layer thickness δ, hard-sphere diameter σ = x + 2δ, and
magnetic dipole moment μ = πx3Ms/6. In both theory and
simulation, the demagnetization fields are set equal to zero:
in theory this is achieved by considering the fluid in a
cylindrical container with infinite aspect ratio and volume
V oriented in the same direction as an external magnetic
field; in simulations this is achieved by using Ewald sum-
mations with conducting boundary conditions. For particle
i, the position vector is r i and the dipole moment is μi =
μi(sin ωi cos ξi, sin ωi sin ξi, cos ωi). The interaction energy
between two DHSs i and j is

u(i,j ) = us(i,j ) + ud(i,j ), (14)

the components of which are the short-range, hard-sphere
potential

us(i,j ) =
{∞, rij < σij ,

0, rij � σij
(15)

and the dipole-dipole interaction potential

ud(i,j ) = μ0

4π

[
(μi · μj )

r3
ij

− 3(μi · r ij )(μj · r ij )

r5
ij

]
, (16)

where r ij = rj − r i is the center-center separation vector,
rij = |r ij |, and σij = (σi + σj )/2. In the presence of an
external uniform magnetic field H , the total interaction energy
in units of the thermal energy kBT = β−1 is

βU =
N−1∑
i=1

N∑
j>i

βu(i,j ) −
N∑

i=1

αi cos ωi, (17)

where αi = βμ0μiH is the Langevin parameter for particle i.

B. Modified mean-field theory

In Refs. [22,23] it was shown that, in general, the effective
field Heff is determined by a single-particle potential of mean
force (PMF) −kBT �(ω1), where ω1 is the polar angle between
the dipole vector on a particle 1 and the external magnetic
field. �(ω1) can be represented as an expansion in Legendre
polynomials:

�(ω1) =
∞∑

k=0

akPk(cos ω1). (18)

The first Legendre polynomial is P1 = cos ω1, just like the
Zeeman term in Eq. (17), and the remaining terms can be
omitted [22,23]. Therefore,

�(ω1) = a1 cos ω1 =
(

μ0μ1Heff

kBT

)
cos ω1, (19)

where a1 is the effective Langevin parameter for the particle.
Using the YBBGK hierarchy, it is possible to express �(ω1)
through the pair distribution function (PDF) g(1,2) between
particles 1 and 2. The result is [22,23]

�(ω1) = α1 cos ω1

− ρ

〈∫
dω1

∫
d r12

∫
d�2

dβud(1,2)

dω1
g(1,2)

〉
2

.

(20)

Here
∫

dω1 means the indefinite integral with respect to
ω1 [22], 〈· · · 〉2 means an average over the size of particle
2 according to Eq. (3), and

∫
d�i . . . means a Boltzmann-

weighted integration over the orientation of particle i with

d�i = αi

4π sinh αi

exp (αi cos ωi) sin ωidωidξi (21)

and
∫

d�i = 1. Equation (20) involves integrals of the PDF
g(1,2) over all possible positions and orientations of particle
2. The PDF is calculated using the so-called λ expansion
starting from the properties of a reference system [24]; a
scaling parameter ε is used here instead to avoid confusion
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with the dipolar coupling constant λ. The reference system is
the hard-sphere fluid, and the perturbation is the dipole-dipole
interaction energy Ud = ∑

i<j ud(i,j ). The total interaction
energy is written Us + εUd, where ε = 1 corresponds to the
system of interest. In the canonical ensemble, the n-particle
distribution function is defined as [24]

g(1,2, . . . ,n)

= 1

ρn

N !

(N − n)!

∫
d(n + 1) · · · ∫ dN exp (−βUs − εβUd)∫

d1 · · · ∫ dN exp (−βUs − εβUd)
,

(22)

where
∫

di = ∫
d r i

∫
d�i . In the present work, the PDF

g(1,2) is calculated up to second order in ε, with ε = 1:

g(1,2) = gs(1,2) +
[
∂g(1,2)

∂ε

]
ε=0

+ 1

2

[
∂2g(1,2)

∂ε2

]
ε=0

.

(23)

The derivatives are determined up to order ρ through standard
calculations [24]; the details are summarized in Appendix A.
The evaluation of the necessary terms up to order ρ that
contribute to the parameter a1 is outlined in Appendix B. The
main point is that Eqs. (19) and (20) allow the identification
of an effective field felt by particle 1, and the magnetization
curve can be expressed in terms of this quantity as

M(H ) = ρ

〈
μ1L

(
μ0μ1Heff

kBT

)〉
1

. (24)

The final expression for the effective field is

Heff = H + 1

3
ML(H ) + 1

144
ML(H )

dML

dH

+ μ0ρ

75

(
μ1

kBT

)2〈
μ3

2L(α2)

σ 6
12

〉
2

+ 1

4π〈σ 3〉
(

μ0ρ

kBT

)2〈
μ3

2L(α2)

[
71

72 000
μ2

1A(σ1,σ2,σ3)

+ (3 ln 2 − 7)

360
μ2

3
L(α3)

α3
B(σ1,σ2,σ3)

]〉
2,3

, (25)

where 〈· · · 〉2,3 means averages over the sizes of both particles
2 and 3 according to Eq. (3). The coefficients A and B are
complicated geometrical factors involving integrals over the
hard-sphere diameters,

A(σ1,σ2,σ3) = 120〈σ 3〉
71

∫ σ12+σ3

σ12

dr12

r8
12

(σ13 + σ23 − r12)2

× [r12(r12 + 2σ13 + 2σ23 − 3(σ13 − σ23)2],

(26)

B(σ1,σ2,σ3)

= 36〈σ 3〉
3 ln 2 − 7

[∫ σ12+σ3

σ12

dr12

∫ r12+σ13

σ23

dr23C(r12,r23)

+
∫ ∞

σ12+σ3

dr12

∫ r12+σ13

r12−σ13

dr23C(r12,r23)

]
, (27)

C(r12,r23) =
(
r2

12 + r2
23 − σ 2

13

)3

4r4
12r

7
23

− r2
12 + r2

23 − σ 2
13

r2
12r

5
23

. (28)

Factors of 〈σ 3〉 are included in Eqs. (25)–(27) so that, in the
monodisperse case, A = B = 1. Finally, the expression for the
initial susceptibility is

χ = χL

{
1 + 1

3
χL

(
1 + λ2�2

0

25

)
+ 1

144
χ2

L

+ χ2
Lλ

[
71�1

24 000
+ (3 ln 2 − 7)�2

360

]}
. (29)

The coefficients �0, �1, and �2 are related to averages of the
magnetic-core and hard-sphere diameters over the particle-size
distribution,

�0 = 〈σ 〉3

〈x6〉2

√〈
x12

1 x12
2

σ 6
12

〉
1,2

, (30)

�1 =
〈
x12

1 x12
2 A(σ1,σ2,σ3)

〉
1,2,3

〈x6〉4
, (31)

�2 =
〈
x6

1x12
2 x6

3B(σ1,σ2,σ3)
〉
1,2,3

〈x6〉4
. (32)

Note that all of the coefficients A, B, �0, �1, and �2 are
defined so that they are equal to 1 in the monodisperse case;
the expressions for the effective field and initial susceptibility
are then somewhat simpler than those in the polydisperse case.
The initial susceptibility becomes

χ = χL

[
1 + 1

3
χL

(
1 + λ2

25

)
+ 1

144
χ2

L

+ χ2
Lλ

(
71

24 000
+ 3 ln 2 − 7

360

)]
. (33)

This shows that the correction term ∝χ2
Lλ2 is positive while

the term ∝χ3
Lλ is negative. Note that this combination of

terms decreases the susceptibility of concentrated, high-
susceptibility, monodisperse ferrofluids (for which χL is large).
In this work, it is shown that the corresponding terms for
polydisperse ferrofluids with a wide range of parameters lead
to a net increase in χ . Equations (24), (25), and (29) will be
referred to as the MMF2+ predictions.

These results are in no way optimized for a particular
particle-size distribution. Although the 
 distribution (6)
is mathematically convenient, and will be used in what
follows, any other physically reasonable distribution, such as
the log-normal distribution, will give similar results. What
is important is the breadth of the particle-size distribution,
and whether there is a significant fraction of large particles
with strong dipolar interactions. This is shown explicitly by
considering a polydisperse ferrofluid with a 
 distribution of
particle sizes, bidisperse ferrofluids with small-particle and
large-particle fractions, and a monodisperse ferrofluid. These
different systems are detailed in the next section.
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TABLE I. Particle-size distributions in the ferrofluids studied in this work. x is the magnetic-core diameter, Ni is the number of particles
in a fraction, and λ is the dipolar coupling constant for magnetite particles at T = 295 K. For each fraction, λ = μ0μ

2/4πkBT σ 3, where
μ = πx3Ms/6 is the dipole moment on a particle, and σ = x + 4 nm is the hard-sphere diameter. The bottom row gives the average dipolar
coupling constant (10).

Monodisperse Bidisperse 1 Bidisperse 2 Polydisperse

Fraction Ni x/nm λ Ni x/nm λ Ni x/nm λ Ni x/nm λ

1 500 13.934758 1.97 380 11.434970 0.943 470 9.974882 0.560 4 3 0.00330
2 120 16.008959 3.26 30 18.841444 5.82 38 5 0.0332
3 100 7 0.137
4 129 9 0.375
5 108 11 0.814
6 66 13 1.52
7 33 15 2.58
8 14 17 4.04
9 5 19 6.00
10 3 21 8.51
Average 1.97 1.89 1.71 1.74

C. Computer simulations

Four different simulation configurations were studied, as
detailed in Table I, all with a total of N = 500 particles. A
polydisperse ferrofluid was studied with a discretized version
of the particle-size distribution in Eq. (6) with α = 9 and
x0 = 1 nm; these are typical numbers for the concentrated,
high-susceptibility, polydisperse ferrofluids that have been
synthesized recently. The procedure for discretizing p(x)
was described in Ref. [20]. The fluid was represented by 10
fractions with magnetic-core diameters x = 3,5,7, . . . ,21 nm,
and the number of particles in each fraction is given in Table I.
The discretization procedure is designed to minimize the
difference between the discretized and the exact averages,

〈xn〉 = xn
0

n∏
k=1

(α + k). (34)

The deviations of the first six discretized averages are +0.00%
(n = 1), +0.28% (n = 2), +0.63% (n = 3), +0.84% (n = 4),
+0.64% (n = 5), and −0.26% (n = 6); these are insignificant.
The discretized and exact magnetic-core polydispersity indices
s =

√
〈x2〉 − 〈x〉2/〈x〉 are 0.321 and 0.316, respectively. The

hard-sphere diameter of each fraction is σ = x + 4 nm. For
magnetite particles (Ms = 4.8 × 105 A m−1) at T = 295 K,
the dipolar coupling constants for the separate fractions are
in the range 0.003 30 � λ � 8.51, and the average dipolar
coupling constant as given by Eq. (10) is λ = 1.74. The
polydisperse ferrofluid was simulated at four different concen-
trations corresponding to saturation magnetizations M(∞) =
25, 50, 75, and 100 kA m−1. The corresponding magnetic
volume fractions (5), Langevin susceptibilities (2) and (11),
number concentrations, and hard-sphere volume fractions (4)
are given in Table II.

The results for the polydisperse ferrofluid were compared
with those for a monodisperse ferrofluid with the same
saturation magnetizations and the same Langevin suscepti-
bilities at T = 295 K; the corresponding value of the dipolar
coupling constant is λ = 1.97. The magnetic-core diameter
and concentrations are given in Tables I and II, respectively.

Finally, two different bidisperse ferrofluids were studied
at a single concentration with a saturation magnetization
M(∞) = 75 kA m−1: bidisperse configuration 1, with s =
0.156 and containing 24% of large particles with λ = 3.26;
and bidisperse configuration 2, with s = 0.200, containing 6%
of large particles with λ = 5.82. Both configurations contain
small particles with λ < 1. The details are given in Tables I
and II.

It is emphasized that the monodisperse, bidisperse, and
polydisperse systems are designed so that, for a given
saturation magnetization and temperature, they have the
same Langevin susceptibility. The aim is to concentrate on
deviations from the MMF2 theory, which depends only on
χL. For each configuration and concentration, two sets of
calculations were performed: the full magnetization curve
M(H ) at T = 295 K, and the initial susceptibility χ over the
temperature range 0.75 � T/295 K � 1.10. In all cases, the
comparison with theoretical results for bidisperse and poly-
disperse ferrofluids is for the precise particle-size distributions
used in the simulations, as detailed in Table I.

MC simulations were carried out in the canonical (NV T )
ensemble in a cubic simulation cell with periodic boundary
conditions applied. The long-range dipole-dipole interactions
were computed using the Ewald summation with conducting
boundary conditions. Translational and orientational moves
were attempted separately with maximum displacements set
to achieve acceptance rates of 20% and 50%, respectively.
The initial susceptibility was computed using the fluctuation
formula

χ = μ0〈|M|2〉
3V kBT

, (35)

where M = ∑N
i=1 μi is the instantaneous magnetization. After

equilibration, some extremely long production runs were
carried out, with up to 2.5 × 107 attempted MC moves per
particle. Estimates of statistical errors were calculated using
the blocking procedure described in Ref. [33].
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TABLE II. Magnetic properties of the ferrofluids studied in this work. M(∞) is the saturation magnetization of the ferrofluid, ϕm is the
magnetic volume fraction (5), χL is the Langevin susceptibility (2) and (11), ρ is the number concentration, and ϕ is the hard-sphere volume
fraction (4).

Monodisperse Bidisperse 1 Bidisperse 2 Polydisperse

M(∞)/kA m−1 ϕm χL ρ/1023 m−3 ϕ ρ/1023 m−3 ϕ ρ/1023 m−3 ϕ ρ/1023 m−3 ϕ

25 0.052083 1.748484 0.367622 0.111042 0.748827 0.125315
50 0.104167 3.496968 0.735245 0.222084 1.497655 0.250630
75 0.156250 5.245452 1.102867 0.333126 1.406917 0.347501 2.236566 0.384171 2.246482 0.375944
100 0.208333 6.993935 1.470489 0.444168 2.995310 0.501259

III. RESULTS

A. Polydisperse ferrofluid

Figure 1 shows the magnetization curves of monodisperse
and polydisperse ferrofluids at T = 295 K over a broad
range of external magnetic fields 0 � H � 100 kA m−1, as
measured in MC simulations, and from the MMF2 and
MMF2+ theories. In general, for each concentration, the
magnetization curve for the monodisperse ferrofluid has a
sharper change in slope at moderate field strengths than
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FIG. 1. Full magnetization curves of monodisperse [(a), (c), (e),
and (g)] and polydisperse [(b), (d), (f), and (h)] ferrofluids at T =
295 K and various concentrations: (a) and (b) M(∞) = 25 kA m−1;
(c) and (d) M(∞) = 50 kA m−1; (e) and (f) M(∞) = 75 kA m−1;
and (g) and (h) M(∞) = 100 kA m−1. The points are from MC
simulations, the solid lines are from MMF2 theory, and the dashed
lines are from MMF2+ theory.

that for the polydisperse ferrofluid. This is because in the
monodisperse ferrofluid, all of the particles respond equally to
the field, while in the polydisperse ferrofluid the larger particles
should be aligned first, and the smaller particles will only be
aligned at very high field strengths. This explains the more
gradual approach to M(∞) in the results for the polydisperse
ferrofluid. At the three lowest concentrations—M(∞) = 25,
50, and 75 kA m−1—the MMF2 and MMF2+ predictions
for each system are barely distinguishable. At the highest
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FIG. 2. Low-field magnetization curves of monodisperse [(a), (c),
(e), and (g)] and polydisperse [(b), (d), (f), and (h)] ferrofluids at T =
295 K and various concentrations: (a) and (b) M(∞) = 25 kA m−1;
(c) and (d) M(∞) = 50 kA m−1; (e) and (f) M(∞) = 75 kA m−1;
and (g) and (h) M(∞) = 100 kA m−1. The points are from MC
simulations, the solid lines are from MMF2 theory, and the dashed
lines are from MMF2+ theory.
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FIG. 3. Initial susceptibility as a function of temperature for
monodisperse [(a), (c), (e), and (g)] and polydisperse [(b), (d),
(f), and (h)] ferrofluids at various concentrations: (a) and (b)
M(∞) = 25 kA m−1; (c) and (d) M(∞) = 50 kA m−1; (e) and (f)
M(∞) = 75 kA m−1; and (g) and (h) M(∞) = 100 kA m−1. The
points are from MC simulations, the solid lines are from MMF2
theory, and the dashed lines are from MMF2+ theory.

concentration—M(∞) = 100 kA m−1—the MMF2+ theory
for the polydisperse ferrofluid gives a slightly lower value of
M for moderate values of H than does the MMF2 theory,
and this is in better agreement with simulations. Nonetheless,
the differences are small, and so the low-H behavior will be
examined in more detail next.

Figure 2 shows the same magnetization curves in the range
0.0 � H � 2.5 kA m−1. These data show linear behavior
at low fields and the onset of nonlinear behavior with
increasing H . The key point here is that the MMF2 theory
appears to be slightly more accurate than the MMF2+ theory
for the monodisperse ferrofluids with M(∞) = 25, 50, and
75 kA m−1, while MMF2+ works better for the polydisperse
ferrofluids at the same concentrations. For both the monodis-
perse and polydisperse ferrofluids with M(∞) = 100 kA m−1,
the MMF2 theory looks to be more accurate, but in fact the
agreement is not very good in either case, as is shown next.

Figure 3 shows the initial susceptibilities of monodisperse
and polydisperse ferrofluids over a broad temperature range
221.25 � T � 324.50 K. Note that the MMF2 predictions are
the same for the monodisperse and polydisperse ferrofluids, as
they only depend on the value of χL, which is the same in both
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FIG. 4. The initial susceptibilities for (a) polydisperse and (b)
bidisperse ferrofluids divided by those for monodisperse ferrofluids
at various concentrations. The points are from MC simulations, the
solid lines in (a) and (b) are from MMF2+ theory for the polydis-
perse/bidisperse ferrofluids and MMF2 theory for the monodisperse
ferrofluids, and the dashed lines in (b) are from MMF2+ theory for
all ferrofluids.

cases. For the monodisperse ferrofluid at low concentration
[M(∞) = 25 kA m−1] the MMF2+ theory is a little closer
to the simulation results than the MMF2 theory, but the
differences are small. For the polydisperse ferrofluid at the
same concentration, the MMF2+ theory is clearly better than
the MMF2 theory, but there are still significant deviations
from the simulation results. The simulation results show
considerable scatter at low temperature, despite very long
simulations; this will be explained below. At intermediate con-
centrations [M(∞) = 50 and 75 kA m−1] the MMF2 theory
gives good predictions for the monodisperse ferrofluid, while
the MMF2+ theory is reliable for the polydisperse ferrofluid.
At the highest concentration [M(∞) = 100 kA m−1] neither
theory works well: although the MMF2 theory is closer to the
simulation results for both the monodisperse and polydisperse
ferrofluids, the deviations at all but the highest temperatures
are substantial. The overall theoretical trend for both the
monodisperse and polydisperse ferrofluids is that at low
concentration, the MMF2+ susceptibility is higher than the
MMF2 one, and that with increasing concentration the order
is reversed, with the crossover occurring at lower concentration
in the monodisperse case.

As a further comparison between monodisperse and
polydisperse ferrofluids, Fig. 4(a) shows the ratio of the initial
susceptibilities, χpoly/χmono. The MC simulation results show
that: (i) χpoly/χmono approaches 1 with increasing temperature
as the dipolar coupling constants decrease and the Langevin
susceptibility decreases; and (ii) for a given temperature,
χpoly/χmono decreases with increasing concentration, starts
from a value greater than 1 at low concentration, and
becomes less than 1 between M(∞) = 75 and 100 kA m−1.
The latter observation agrees with results for four-fraction
ferrofluids with ϕm � 0.119 [or M(∞) � 57 kA m−1], where
χpoly/χmono decreases with increasing ϕm. Now, a glance at
Fig. 3 shows that the MMF2+ prediction is χpoly/χmono > 1
at all concentrations, and moreover the ratio increases with
increasing concentration, which clearly is not correct. MMF2
theory is more accurate for the monodisperse ferrofluids, and
therefore the theoretical curves plotted in Fig. 4(a) are given
by the ratio of MMF2+ theory (for the polydisperse ferrofluid)
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FIG. 5. Simulation snapshots for the polydisperse ferrofluid in zero field and at T = 221.25 K: (first row) M(∞) = 25 kA m−1; (second
row) M(∞) = 50 kA m−1; (third row) M(∞) = 75 kA m−1; (fourth row) M(∞) = 100 kA m−1. The first column shows all of the particles,
the second column shows the small particles, the third column shows the medium particles, and the fourth column shows the large particles.

and the MMF2 theory (for the monodisperse ferrofluid).
These curves show reasonable agreement with simulations at
M(∞) = 50 and 75 kA m−1, but they deviate from the results
at M(∞) = 25 and 100 kA m−1, as per the results in Fig. 3.

To provide microscopic insight into these trends, Fig. 5
shows some simulation snapshots of the systems at low tem-
perature (T = 221.25 K) in zero external field. The particles
have been divided up into three groups according to the dipolar
coupling constants at T = 295 K listed in Table I: 379 “small”
particles with λ � 1, 99 “medium” particles with 1 < λ �
4, and 22 “large” particles with λ > 4. λ > 4 is roughly
the region where nose-to-tail chainlike correlations between
dipoles are expected to become important in low-concentration
ferrofluids [34]. The snapshots show that at low temperature
and at all concentrations, the large particles are aggregated,

although not in well-defined separate chains, and so a cluster
distribution will not be very informative. Instead, Figs. 6 and 7
show the radial distribution functions (RDFs) g(r) and the
static structure factors S(q), respectively, calculated separately
for each of the small-, medium-, and large-particle groups at
low temperature (T = 221.25 K) and at infinite temperature
(λ = 0) in zero external field. The purpose of this comparison
is to see how much structure there is in the system due to strong
dipolar interactions as compared to hard-sphere interactions
alone. Results are shown from both computer simulations and
the theory at the MMF2+ level. In the simulations, g(r) was
calculated in the usual way [33], while the structure factor
was calculated using the explicit reciprocal-space sum S(q) =
N−1〈ρ(q)ρ(−q)〉, where ρ(q) = ∑N

j=1 exp (−iq · rj ), and
results for equal q = |q| were averaged. The theoretical
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FIG. 6. Radial distribution functions of polydisperse ferrofluids
at (a),(c),(e) T = 221.25 K; and (b),(d),(f) T = ∞, and various
concentrations: (a) and (b) small (S) particles; (c) and (d) medium
(M) particles; and (e) and (f) large (L) particles. Results are shown
for M(∞) = 25, 50, 75, and 100 kA m−1 as indicated, and they are
separated from one another by one unit for clarity. Simulation results
are shown as solid lines, and the MMF2+ predictions are shown as
dashed lines.

expression for g(r) in zero field is detailed in Appendix B,
and S(q) = 1 + 4πρ

∫ ∞
0 dr r2[sin (qr)/qr][g(r) − 1] was de-

termined by numerical integration.
Considering the simulation results first, Fig. 6 shows that

all of the RDFs develop larger primary and secondary peaks
with increasing concentration, as measured by M(∞). The
fine structure corresponds to the differences between the
discretized hard-core diameters in each fraction. The small-
particle RDFs are insensitive to temperature, since the dipolar
coupling constants are low even at low temperature. The
medium-particle RDFs are more sensitive to temperature due
to the stronger dipolar interactions. The large-particle RDFs
show very strong clustering at low temperature—although
the data are very noisy—and only moderate ordering at
high temperature. These trends are mirrored in the static
structure factor, shown in Fig. 7. Again, the results for the
small-particle and medium-particle fractions are much less
sensitive to temperature than those for the large-particle
fraction. S(q) for the large particles at low temperature
and low concentration shows the familiar small-q increase
expected for chainlike correlations [35]; turning off the dipolar
interactions leads to an almost total disappearance of nontrivial
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FIG. 7. Static structure factors of polydisperse ferrofluids at
(a), (c), (e) T = 221.25 K; and (b), (d), (f) T = ∞, and various
concentrations: (a) and (b) small (S) particles; (c) and (d) medium
(M) particles; (e) and (f) large (L) particles. Results are shown for
M(∞) = 25, 50, 75, and 100 kA m−1 as indicated, and they are
separated from one another by one unit for clarity. Simulation results
are shown as solid lines, and the MMF2+ predictions are shown as
dashed lines.

structure. The extent of large-particle clustering decreases
with increasing concentration, showing that the hard-sphere
correlations become more important. These results confirm
that, overall, the dipole-dipole interactions between the large
particles give rise to clustering, while the small and medium
particles remain disordered. The presence of large-particle
clusters is responsible for the imperfect convergence of the MC
simulations: it takes a long time for magnetization fluctuations
of clusters to relax. Nonetheless, the particles do not aggregate
irreversibly, the clusters continue to evolve (albeit slowly),
and so the suspension has not coagulated. The ferrofluid is
therefore a stable colloidal suspension.

The comparison between theory and simulation gives some
useful insights. The agreement between theory and simulation
is quite good at low concentration, but worsens with increasing
concentration due to the truncation of g(r) to terms of order ρ.
For the same reason, the predicted small-q behavior of S(q) is
inaccurate because of the omission of long-range correlations
mediated by two or more particles in between a chosen pair
of particles [36,37]. The theory gets right the general increase
in structure with decreasing temperature, but the details are
wrong because of the truncation of the expansion in λ. For the
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large particles in systems with M(∞) � 75 kA m−1, the theory
does quite well in predicting the strong increase in structure
with decreasing temperature; this is easier to see in the results
for S(q), as the simulation results for g(r) are very noisy.

These results shed some light on the reasons for the
relative performance of each theory in predicting the properties
of the polydisperse ferrofluid. At low concentrations, the
magnetic properties of the polydisperse ferrofluid are strongly
influenced by the dipole-dipole interactions between the large
particles. To describe the orientational correlations arising
from these interactions would require a large number of terms
in the expansion in λ, but both MMF theories are truncated at
low order. At high concentrations, the structural properties of
the ferrofluid are dictated by the hard-sphere interactions, but
the MMF2 and MMF2+ theories are truncated at low order
in ρ, and so they do not give an accurate representation of the
hard-sphere reference system. At intermediate concentrations,
neither the hard-sphere correlations nor the dipolar chainlike
correlations between large particles are so pronounced, and so
it seems that the MMF2+ theory is able to give a reasonable
account of both within a perturbative scheme. In fact, the
phenomenon of strong dipolar correlations between large
particles having a greater effect at low concentration than
at high concentration has been seen before in the context of
centrifugal sedimentation and separation of small and large
particles in ferrofluids [38]. The separation factor describing
the segregation of small and large particles in strong effective
gravitational fields is greater at low concentration than at
high concentration, and this can be explained by the large
particles forming distinct aggregates and sedimenting out at
low concentration.

B. Bidisperse ferrofluid

The results from Sec. III A show that the MMF2 theory
works well for the monodisperse ferrofluid, and MMF2+
works well for a polydisperse ferrofluid containing a signifi-
cant fraction of “large” particles with λ > 4 that aggregate. To
determine if this is a general feature, two bidisperse ferrofluids
have been studied at a single concentration of M(∞) =
75 kA m−1, and with the same Langevin susceptibility as the
corresponding monodisperse and polydisperse ferrofluids (see
Table I). Bidisperse configuration 1 contains 24% of particles
with λ = 3.26, which is not in the regime where strong cluster
formation is expected. Bidisperse configuration 2 contains 6%
of particles with λ = 5.82, which should form clusters.

Figure 8 shows the full magnetization curves for the
monodisperse, bidisperse 1, and bidisperse 2 configurations
at T = 295 K. A direct comparison of the simulation results
[panel (a)] shows that, for a given magnetic field, the
magnetization decreases with increasing polydispersity, i.e.,
from monodisperse, to bidisperse 1, to bidisperse 2. As for
the monodisperse versus polydisperse case, large particles are
easily oriented with the field, while small particles are only
aligned at high magnetic fields. In all cases, the MMF2 and
MMF2+ predictions are similar to each other [panels (b)–(d)]
and generally in good agreement with the simulation results.
In the case of bidisperse configuration 2, the MMF2+ curve
is slightly lower than the MMF2 curve, and closer to the
simulation results.
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FIG. 8. Full magnetization curves of monodisperse and bidis-
perse ferrofluids at T = 295 K and with M(∞) = 75 kA m−1:
(a) all simulation results; (b) monodisperse configuration; (c) bidis-
perse configuration 1; and (d) bidisperse configuration 2. The points
are from MC simulations, the solid lines are from MMF2 theory, and
the dashed lines are from MMF2+ theory.

Figure 9 shows the low-H behavior of the magnetization
curves. Figure 9(a) shows all of the simulation results, along
with the limiting linear slope calculated using Eq. (35),
showing good consistency. The initial susceptibilities of the
monodisperse configuration and bidisperse configuration 1 are
very similar, while that of bidisperse configuration 2 is clearly
much larger. The comparisons with theory [panels (b)–(d)]
show that MMF2 theory works well for the monodisperse
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FIG. 9. Low-field magnetization curves of monodisperse and
bidisperse ferrofluids at T = 295 K and with M(∞) = 75 kA m−1: (a)
all simulation results; (b) monodisperse configuration; (c) bidisperse
configuration 1; and (d) bidisperse configuration 2. The points are
from MC simulations; in (a) the lines are the linear parts of the
magnetization curves with the initial susceptibility calculated using
Eq. (35), and in (b)–(d) the solid lines are from MMF2 theory and the
dashed lines are from MMF2+ theory.
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FIG. 10. Initial susceptibility as a function of temperature for
monodisperse and polydisperse ferrofluids with M(∞) = 75 kA m−1:
(a) all simulation results; (b) monodisperse configuration; (c) bidis-
perse configuration 1; and (d) bidisperse configuration 2. The points
are from MC simulations, the solid lines are from MMF2 theory, and
the dashed lines are from MMF2+ theory.

configuration and bidisperse configuration 1, and that MMF2+
works best for bidisperse configuration 2.

Figure 10 shows the initial susceptibility over the temper-
ature range 221.25 � T � 324.50 K. The direct comparison
of simulation results [panel (a)] shows that bidisperse config-
uration 2 consistently has a much higher susceptibility than
the other two configurations, which are very similar to one
another over the whole temperature range. The comparisons
with theory [panels (b)–(d)] show that MMF2 is best for the
monodisperse configuration and bidisperse configuration 1,
and that MMF2+ is accurate for bidisperse configuration 2.

These results are consistent with those presented in
Sec. III A. When the ferrofluid has low polydispersity, and
therefore does not contain particles large enough to form
aggregates, then the MMF2 theory is most accurate; this is
the case for the monodisperse configuration and bidisperse
configuration 1. When the ferrofluid has high polydispersity,
and does contain aggregated large particles, then the MMF2+
theory is most accurate; this is the case for the polydisperse
configuration and bidisperse configuration 2.

The relationship between the initial susceptibilities of
the monodisperse and bidisperse configurations is shown
as the ratio χbidi/χmono in Fig. 4(b). Here the simulation
results are compared to both the pure-MMF2+ prediction
and the ratio of the MMF2+ and MMF2 predictions for
the bidisperse and monodisperse configurations, respectively.
The MMF2+ theory predicts that χbidi/χmono > 1 for both
configurations, which is true for bidisperse configuration 2,
but for bidisperse configuration 1 the ratio is almost equal
to 1, as would be expected if χ depended only on χL. The
mixed MMF2+/MMF2 curve for bidisperse configuration 2
agrees well with the simulation results, but the agreement
for bidisperse configuration 1 is not as good. Clearly nei-
ther approach gets the precise behavior correct for both
configurations.

IV. CONCLUSIONS

A MMF theory of the magnetic properties of concentrated,
high-susceptibility ferrofluids has been completed by deriva-
tion of the magnetization curve to supplement the known
expression for the initial susceptibility. The basic approach is to
determine the effective field felt by a particle due to the external
magnetic field and the orientational correlations induced in all
of the other particles, and then the magnetization curve is given
by the familiar Langevin expression but with the effective field
in place of the external magnetic field. The accuracy of the
new MMF2+ theory is controlled by an expansion of the pair
correlation function, and the final expression for χ contains
all terms up to ρ3λ4. The widely used MMF2 theory only
contains terms of order χL, χ2

L, and χ3
L, where χL ∝ ρλ. All

of the results are generalized to take account of particle-size
polydispersity, something that is not always given the attention
it deserves [31].

Both theories have been tested against simulation results
for systems with well-defined particle-size distributions, equal
saturation magnetizations, the same Langevin susceptibilities,
and over a broad range of temperature. It is found that
the MMF2 and MMF2+ theories work best for moderately
concentrated monodisperse and polydisperse systems, respec-
tively. Neither theory is very accurate for the polydisperse
ferrofluid at low concentration, although the MMF2+ theory
performs much better than the MMF2 theory. This was
shown to be due to the presence of large-particle aggregates
stabilized by strong dipole-dipole interactions, which require
extra terms in the expansions of the effective field and the initial
susceptibility. At high concentration, neither theory works very
well, and this appears to be due to the strong structuring arising
from the short-range repulsions.

The idea that large-particle correlations require extra terms
in powers of λ was confirmed by studying two moderately
concentrated bidisperse ferrofluids with the same saturation
magnetization and Langevin susceptibility: one contained
large particles that were not large enough to aggregate,
and in this case the MMF2 theory worked best; the other
contained large particles that can aggregate, and in this case the
MMF2+ theory worked best. Therefore, the MMF2+ theory
captures some of the effects of large-particle aggregation in
polydisperse ferrofluids, but as noted in Sec. I, including extra
terms in λ is not guaranteed to give successively better results
in the strong-interaction regime. This also applies to monodis-
perse ferrofluids with strong dipolar interactions; from the
present work, it would appear that λ � 2 is moderately
large.

The technical reasons for this behavior lie in the values
of �0, �1, and �2 in Eq. (29). For highly polydisperse
ferrofluids, �0 becomes very large, and it needs the small-
and-positive �1 term and the large-and-negative �2 term
for counterbalance, mainly the latter. Therefore, ferrofluids
with a large-particle component are best described with the
MMF2+ theory. For monodisperse ferrofluids, and ferrofluids
without a large-particle component, the �1 and �2 terms tip
the balance the other way, and they lead to an underestimate
of the susceptibility, as noted in Sec. II B.

This work provides generally quite reliable theoretical
expressions for fitting the magnetic properties of concentrated
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ferrofluids down to low temperatures, and with high magnetic
susceptibilities up to χ ∼ 100. Highly concentrated ferrofluids
still represent a challenge due to the need to capture both
the dipolar correlations and the short-range correlations in
the same theoretical framework, but for systems of moderate
concentration (here meaning ϕ � 0.38) the MMF2+ theory
appears to be reliable.

ACKNOWLEDGMENTS

E.A.E. and A.O.I. gratefully acknowledge research funding
from the Ministry of Education and Science of the Russian

Federation (Contract No. 02.A03.21.0006 and Project No.
3.1438.2017/4.6). The work of A.Yu.S. was supported by
the Russian Foundation for Basic Research (Project No.
16-31-00089 mol_a).

APPENDIX A: EXPANSION OF g(1,2)

Differentiation of Eq. (22) with n = 2 brings down factors
of Ud and U 2

d into the integrand. The key step in the expansion
of g(1,2) is to separate out the terms in Ud and U 2

d that depend
on the coordinates of particles 1 and/or 2. The dipolar energy
itself is easy enough:

Ud = ud(1,2) + (N − 2)ud(1,3) + (N − 2)ud(2,3) + 1
2 (N − 2)(N − 3)ud(3,4). (A1)

U 2
d is much more complicated, but the end result is

U 2
d = u2

d(1,2) + (N − 2)u2
d(1,3) + (N − 2)u2

d(2,3) + 1
2 (N − 2)(N − 3)u2

d(3,4)

+ 2(N − 2)[ud(1,2)ud(1,3) + ud(1,2)ud(2,3) + ud(1,3)ud(2,3)]

+ (N − 2)(N − 3)[ud(1,3)ud(1,4) + ud(2,3)ud(2,4)]

+ 2(N − 2)(N − 3)[ud(1,3)ud(3,4) + ud(2,3)ud(3,4)]

+ (N − 2)(N − 3)(N − 4)ud(3,4)ud(4,5)

+ (N − 2)(N − 3)ud(1,2)ud(3,4) + 2(N − 2)(N − 3)ud(1,3)ud(2,4)

+ (N − 2)(N − 3)(N − 4)[ud(1,3)ud(4,5) + ud(2,3)ud(4,5)]

+ 1
4 (N − 2)(N − 3)(N − 4)(N − 5)ud(3,4)ud(5,6). (A2)

One can check that the total number of terms is [N (N − 1)/2]2, as it should be. With these expressions, it is straightforward but
tedious to determine the derivatives of g(1,2), using the definition of the n-particle distribution function in Eq. (22). The first
derivative is [24] [

∂g(1,2)

∂ε

]
ε=0

= −gs(1,2)βud(1,2) − ρ

∫
d3 gs(1,2,3)[βud(1,3) + βud(2,3)]

− 1

2
ρ2

∫
d3

∫
d4[gs(1,2,3,4) − gs(1,2)gs(3,4)]βud(3,4). (A3)

The second derivative is much more complex,[
∂2g(1,2)

∂ε2

]
ε=0

= gs(1,2)[βud(1,2)]2 + ρ

∫
d3 gs(1,2,3){[βud(1,3)]2 + [βud(2,3)]2

+ 2βud(1,2)βud(1,3) + 2βud(1,2)βud(2,3) + 2βud(1,3)βud(2,3)}
+1

2
ρ2

∫
d3

∫
d4 gs(1,2,3,4){2βud(1,3)βud(1,4) + 2βud(2,3)βud(2,4)

+ 4βud(1,3)βud(3,4) + 4βud(2,3)βud(3,4) + 4βud(1,3)βud(2,4)}
+ ρ2

∫
d3

∫
d4[gs(1,2,3,4) − gs(1,2)gs(3,4)]βud(1,2)βud(3,4)

+ 1

2
ρ2

∫
d3

∫
d4[gs(1,2,3,4) − gs(1,2)gs(3,4)][βud(3,4)]2

+ ρ3
∫

d3
∫

d4
∫

d5[gs(1,2,3,4,5) − gs(1,2,3)gs(4,5)]

× [βud(1,3)βud(4,5) + βud(2,3)βud(4,5)]

+ ρ3
∫

d3
∫

d4
∫

d5[gs(1,2,3,4,5) − gs(1,2)gs(3,4,5)]βud(3,4)βud(4,5)

+ 1

4
ρ4

∫
d3

∫
d4

∫
d5

∫
d6[gs(1,2,3,4,5,6) − gs(1,2,3,4)gs(5,6)

− gs(1,2)gs(3,4,5,6) − gs(1,2)gs(3,4)gs(5,6)]βud(3,4)βud(5,6). (A4)
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At no point has the thermodynamic limit been considered; these results are exact for a finite system. It would be easy to simply
truncate Eqs. (A3) and (A4) at order ρ, but there is a subtlety that should be pointed out in connection with the terms proportional
to ρ2 and which contain the difference �gs(1,2,3,4) = gs(1,2,3,4) − gs(1,2)gs(3,4). As discussed in Ref. [24], one must be
careful in taking the thermodynamic limit, because �gs(1,2,3,4) gives a term of O(1/N ), which will reduce the prefactor ρ2 to
ρ. To see this, it is sufficient to consider the asymptotic behavior of the distribution functions at low density, and when particles
1 and 2 are far from particles 3 and 4. The precise definition in Eq. (22), and the leading-order terms from the virial expansions
of gs [24], give

�gs(1,2,3,4) ≈
(

1 − 1

N

)(
1 − 2

N

)(
1 − 3

N

)
e−βus(1,2)−βus(3,4)

−
(

1 − 1

N

)2

e−βus(1,2)−βus(3,4) � − 4

N
e−βus(1,2)−βus(3,4). (A5)

This means that

ρ2
∫

d3
∫

d4 �gs(1,2,3,4)[βud(3,4)]n = −4ρe−βus(1,2)
∫

d�3

∫
d4 e−βus(3,4)[βud(3,4)]n, (A6)

where the position of particle 3 has been integrated out to give a factor of V . This result can be used for each of the three relevant
terms that appear in Eqs. (A3) and (A4). The final steps are to combine the expansion of g(1,2) up to order ρ, insert the following
approximate expressions for gs(1,2) and gs(1,2,3),

gs(1,2) = [fs(1,2) + 1] + ρ[fs(1,2) + 1]
∫

d r3fs(1,3)fs(2,3) + O(ρ2), (A7)

gs(1,2,3) = [fs(1,2) + 1][fs(1,3) + 1][fs(2,3) + 1] + O(ρ), (A8)

collect all terms that contribute to the parameter a1, and discard everything else. The relevant terms are evaluated in Appendix B.
Note that the expansion of g(1,2) can be used to calculate the Helmholtz free energy and hence all other thermodynamic

functions [24]. One particularly interesting application is the determination of the phase diagram. The existence of a purely
dipole-driven phase transition in monodisperse ferrofluids has long been debated: simulations suggest that there is no phase
transition due to extensive chaining and ring formation [39], but that weak isotropic attractive interactions are sufficient for
phase separation even in the strong-aggregation regime [40]. All standard liquid-state theories—including perturbation theories
and integral equations—predict phase separation with critical temperatures at which it is known that neither significant particle
aggregation nor phase separation occur; the so-called λ expansion will be no different. One interesting extension of the current
approach could be to thin films of ferrofluids, in which field-induced transitions to spatially modulated hexagonal and stripe
phases are known [41]; the theory could be used to evaluate the bulk contribution to the free-energy functional, expressed in
terms of the nonuniform particle density.

APPENDIX B: EVALUATION OF g(1,2) AND �

Considering Eqs. (20), (23), (A3), (A4), (A6), (A7), and (A8), there are only five terms in g(1,2) up to order ρ that contribute
to a1, and the rest are therefore irrelevant. The relevant terms are,

g(1,2) =
5∑

k=1

Ik + irrelevant terms + O(ρ2). (B1)

The five terms I1–I5 are as follows:

I1 = fs(1,2) + 1, (B2)

I2 = 1
2 [fs(1,2) + 1][βud(1,2)]2, (B3)

I3 = −ρ[fs(1,2) + 1]

〈∫
d3[fs(1,3) + 1][fs(2,3) + 1][βud(2,3)]

〉
3

=
(

μ0μ2ρ

kBT

)
[fs(1,2) + 1]

{
1

3
(μ2 · z)〈μ3L(α3)〉3 + [3(r12 · μ2)(r12 · z) − (μ2 · z)]〈μ3L(α3)G1(r12,σ1,σ2,σ3)〉3

}
, (B4)

I4 = 1

2
ρ[fs(1,2) + 1][βud(1,2)]2

〈∫
d r3fs(1,3)fs(2,3)

〉
3

=
(

πρ

24r12

)
[fs(1,2) + 1][βud(1,2)]2〈(σ13 + σ23 − r12)2[r12(r12 + 2σ13 + 2σ23) − 3(σ13 − σ23)2]〉3, (B5)
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I5 = 1

2
ρ[fs(1,2) + 1]

〈∫
d3 fs(1,3)[fs(2,3) + 1][βud(2,3)]2

〉
3

=
(

3ρ

64π

)(
μ0μ2

kBT

)2

[fs(1,2) + 1](r12 · μ2)2

〈
μ2

3
L(α3)

α3
G2(r12,σ1,σ2,σ3)

〉
3

. (B6)

Here z is the unit vector aligned along the field direction (the laboratory z axis), and the auxiliary functions are as follows:

G1(r12,σ1,σ2,σ3) =

⎧⎪⎨
⎪⎩

0, 0 � r12 < σ12,∫ r12+σ13

σ23
H1(r12,r23,σ1,σ2,σ3)dr23, σ12 � r12 < σ12 + σ3,∫ r12+σ13

r12−σ13
H1(r12,r23,σ1,σ2,σ3)dr23, r12 � σ12 + σ3,

(B7)

H1(r12,r23,σ1,σ2,σ3) =
[
σ 2

13 − (r12 − r23)2
][

σ 2
13 − (r12 + r23)2

][
σ 2

13 − (
r2

12 + r2
23

)]
32r3

12r
4
23

, (B8)

G2(r12,σ1,σ2,σ3) =

⎧⎪⎨
⎪⎩

0, 0 � r12 < σ12,∫ r12+σ13

σ23
H2(r12,r23,σ1,σ2,σ3)dr23, σ12 � r12 < σ12 + σ3,∫ r12+σ13

r12−σ13
H2(r12,r23,σ1,σ2,σ3)dr23, r12 � σ12 + σ3,

(B9)

H2(r12,r23,σ1,σ2,σ3) =
(
r2

12 + r2
23 − σ 2

13

)3

4r3
12r

7
23

− r2
12 + r2

23 − σ 2
13

r12r
5
23

. (B10)

Upon substituting g(1,2) into Eq. (20), five terms corresponding to I1–I5 will appear, such that

�(ω1) = α1 cos ω1 +
5∑

k=1

�k(ω1). (B11)

The five terms �1(ω1)–�5(ω1) are as follows:

�1(ω1) = ρ

3

(
μ0μ1

kBT

)
〈μ2L(α2)〉2 cos ω1 =

(
μ0μ1

kBT

)[
1

3
ML(H )

]
cos ω1, (B12)

�2(ω1) =
( ρ

48π2

)(
μ0μ1

kBT

)3〈
μ3

2

σ 6
12

{
L(α2)

25
P1(cos ω1) +

[
L3(α2)

105α2
− L(α2)

525

]
P3(cos ω1)

}〉
2

, (B13)

�3(ω1) =
(

μ0ρ

3kBT

)2

μ1 cos ω1

〈
μ2

2μ3L(α3)

{
L2(α2) + (σ1σ2 + σ2σ3 + σ1σ3)3

160σ 3
12σ

3
23

[
L(α2)

α2
− 2

]}〉
2,3

�
(

μ0μ1

kBT

)[
1

144
ML(H )

dML(H )

dH

]
cos ω1, (B14)

�4(ω1) = 71

2880

(
ρ2

4π〈σ 3〉
)(

μ0μ1

kBT

)3〈
μ3

2A(σ1,σ2,σ3)

{
L(α2)

25
P1(cos ω1) +

[
L3(α2)

105α2
− L(α2)

525

]
P3(cos ω1)

}〉
2,3

, (B15)

�5(ω1) = 3 ln 2 − 7

360

(
μ0ρ

kBT

)2(
μ0μ1

4π〈σ 3kBT 〉
)

cos ω1

〈
μ3

2μ
2
3B(σ1,σ2,σ3)L(α2)

L(α3)

α3

〉
2,3

. (B16)

The exact expression for �3(ω1) is more complicated than the usual result from the MMF2 theory, but for all of the monodisperse
and polydisperse systems studied, the numerical values coincide almost exactly, and so the simpler MMF2 result is written in
Eq. (B14). In Eqs. (B12)–(B16), Lj (z) = 1 − jL(z)/z, and the functions A and B are given in Eqs. (26) and (27), respectively.
Note that �1(ω1), �3(ω1), and �5(ω1) are all proportional to cos ω1, and so they contribute entirely to the effective Langevin
parameter a1 in Eq. (19). �2(ω1) and �4(ω1) each contain terms proportional to P1(cos ω1) and P3(cos ω1), but only the prefactors
of the first Legendre polynomial cos ω1 contribute to the effective Langevin parameter a1. Combining Eqs. (19) and (B11) gives
the effective field in Eq. (25).

In Sec. III A, the approximate expression for g(1,2) given in Eq. (B1) is used to construct the zero-field radial distribution
functions for small-particle, medium-particle, and large-particle fractions in a polydisperse ferrofluid, and the results are compared
with simulations. In zero field, I3 = 0 (B4) because it depends on ud(2,3), which disappears on orientational averaging. All of the
“irrelevant terms” in Eq. (B1) are also equal to zero except one—the hard-sphere three-body term of order ρ given in Eq. (A7).
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The final expression is of the form

g(1,2) =
〈∫

d�1

∫
d�2(I1 + I2 + I4 + 2I5) + ρ[fs(1,2) + 1]

∫
d r3fs(1,3)fs(2,3)

〉
1,2

, (B17)

where the factor of 2 in I5 comes from topologically equivalent contributions involving [ud(1,3)]2 and [ud(2,3)]2.
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