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Flow properties and hydrodynamic interactions of rigid spherical microswimmers
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We analyze a minimal model for a rigid spherical microswimmer and explore the consequences of its extended
surface on the interplay between its self-propulsion and flow properties. The model is the first order representation
of microswimmers, such as bacteria and algae, with rigid bodies and flexible propelling appendages. The flow field
of such a microswimmer at finite distances significantly differs from that of a point-force (Stokeslet) dipole. For
a suspension of microswimmers, we derive the grand mobility matrix that connects the motion of an individual
swimmer to the active and passive forces and torques acting on all the swimmers. Our investigation of the
mobility tensors reveals that hydrodynamic interactions among rigid-bodied microswimmers differ considerably
from those among the corresponding point-force dipoles. Our results are relevant for the study of collective
behavior of hydrodynamically interacting microswimmers by means of Stokesian dynamics simulations at
moderate concentrations.
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I. INTRODUCTION

Microswimmers have attracted a lot of attention from
soft matter physicists recently [1–6]. Intensive research has
been directed towards living microswimmers such as bacteria
[7–16], algae [17,18], and other microorganisms [19–22].
Moreover, physicists’ contributions have reached beyond just
living systems, and studies on artificial microswimmers have
also been increasing [23–25]. Microswimmers are the prime
examples of active particles [26]. Their individual dynamics
involves challenging physics [27–31], and their collective
behaviors often exhibit surprises that have triggered a number
of new directions in physics per se [2–4,32].

Microswimmers immersed in a viscous fluid generate long-
range flows as they move. They also experience hydrodynamic
interactions as they react to the local flow generated by the oth-
ers. Many distinctive dynamical features of microswimmers
result from the interplay between their self-propulsion and
mutual hydrodynamic interactions [2,17,33,34]. However, the
consequences of hydrodynamic interactions on their dynamics
are not fully understood. Although the importance of the
particle size and shape on the hydrodynamics of passive objects
is well known [35,36], the influence of the finite body size on
the swimming behavior of active particles has received little
attention [37–39].

Most studies of collective behavior treat microswimmers as
hydrodynamic point-force (Stokeslet) dipoles [1,37,40]. This
approximation accounts for the hydrodynamic interactions
correctly at very dilute concentrations where the body size
of the individual swimmers is negligible with respect to the
interparticle separations. Here we analyze a minimal model
for a rigid spherical microswimmer by incorporating the
influence of its extended surface on the flow created during
the self-propulsion. We thereby investigate the role of the
finite-body size on its locomotion, flow properties, and the
hydrodynamic interactions with other swimmers.
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Our microswimmer model consists of a spherical cell body
of radius a self-propelled with a constant force fsp. The force
neutrality implies that a force with the same magnitude f sp

and with the opposite direction acts on the fluid at a distance
� from its center of mass; see Fig. 1 for a schematics of
the model. Although a similar model has been proposed
before in Ref. [38], its flow field and the hydrodynamic
interactions have been calculated only in the limit of a/� →
0. Here we obtain the flow field of such a swimmer for
arbitrary values of a/� by employing the method of image
systems [36].

Our study shows that the flow field of a rigid-bodied
spherical microswimmer with a finite a/� differs from that of
a point-force dipole both qualitatively and quantitatively. The
magnitude and the angular dependence of the flow field deviate
from that of a point-force dipole even at distances significantly
larger than the swimmer’s size. Remarkably, the front-back
symmetry of the flow field with respect to the self-propulsion
direction is broken. Eventually, at very large distances the flow
field of this model converges to that of a point-force dipole.
Nevertheless, its dipole strength Seff is different from f sp�, i.e.,
the dipole strength in the limit a/� → 0. Instead, it is given by
Seff = f sp�eff in which �eff < �.

The calculation of the flow field allows us to investigate
the influence of the finite body size on the hydrodynamic
interactions. For this purpose, we derive the grand mobility
tensor that connects the linear and angular velocities of the
swimmers to the active and passive forces and torques acting
on them. We find that the leading order far-field hydrodynamic
interactions among the microswimmers are the same as those
among point-force dipoles when we renormalize the dipole
strengths of the latter to Seff . However, the next leading order
terms do not agree even at far distances unless a/� → 0.
The explicit expressions for the mobility tensor allow us to
employ Stokesian dynamics simulations [41] for exploring
the collective behavior of rigid-bodied microswimmers at
experimentally relevant concentrations.

Before we proceed, we point out that there are other studies
besides Ref. [38] mentioned above that have investigated the
flow fields and hydrodynamic interactions of microswimmers
with finite bodies [37,39,42–48]. Menzel et al. [39] have
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FIG. 1. (a) Schematics of our minimal model for a spherical
swimmer of radius a. The swimmer is driven by an active force
fsp = f spn̂ directed along its intrinsic orientation n̂. Force neutrality
of the system is incorporated via a conjugate force fspc = −fsp that
acts on the fluid at the position rc = rcm ± �n̂ where rcm is the center
of mass of the spherical body. For a pusher (top), rc = rcm − �n̂ and
the forces fsp and fspc point away from each other, whereas for a puller
(bottom), rc = rcm + �n̂, the forces point towards each other. (b) The
model swimmer in a coordinate system whose origin O coincides with
the swimmer’s center of mass rcm. r denotes any point in the fluid
and reff

c the center of the effective point-force dipole that produces
the same flow in the far field as the swimmer. Any point in the x-y
plane containing the vector n̂ = −x̂ can also be denoted by the vector
r − reff

c , which originates from reff
c and makes an angle θ with x̂. The

point r∗ = −(a2/�)n̂ denotes the position of the hydrodynamic image
systems of the point force fspc generated by the sphere.

proposed a spherical swimmer model with two equal and
opposite point forces that act directly on the fluid where the
swimmer’s body is placed asymmetrically between the two
forces. The authors also have disentangled the contributions
of active and passive forces to the mobility tensor. However,
they have neglected the hydrodynamic contributions of the
image systems of the point forces near the swimmer’s body
in their calculations. Furthermore, similar swimmer models
with finite size and elongated body driven by two point forces
have been studied numerically using the Lattice-Boltzmann
simulation method by Graaf et al. [47].

The remainder of paper is organized as follows. In Sec. II
we introduce the minimal swimmer model and examine its
dynamics and flow field in detail. The Sec. III is devoted to
the hydrodynamic interactions between different swimmers.
Finally, we conclude our work in Sec. IV where we summarize
our main findings and discuss the consequences of the finite
body size on the dynamics of the swimmers.

II. MINIMAL MODEL FOR A SPHERICAL SWIMMER
AND ITS DYNAMICS

We first introduce our model for the simplest realization of
rigid-bodied spherical microswimmers. Then we analyze the
flow properties of an individual swimmer in both the absence
and the presence of external forces and torques.

A. Model description

Our minimal microswimmer model consists of a rigid
spherical body with hydrodynamic radius a suspended in a
fluid of viscosity η. The swimmer has an intrinsic orientation
n̂ defined by its self-propulsion direction. We assume that no
active torque acts on the swimmer and the self-propulsion is
provided by an internal force fsp = f spn̂. As a working rule of
the rigid body dynamics, fsp can be considered to be acting on
any arbitrary point along n̂, especially on the center of mass
rcm. However, in Sec. II B 3 we show that the effective point
of action of fsp is actually slightly shifted from rcm.

There are a multitude of mechanisms for the generation of
self-propulsion adopted by various microswimmers. In all the
cases there is an internal cycle of period τ that repeats itself
to generate the propulsion. The force fsp then represents the
thrust experienced by a microswimmer when averaged over
time t � τ . On such time scales the force-free condition for
a swimmer is satisfied by introducing a point force fspc =
−fsp acting on the fluid at the position rcm ± �n̂ where � > a.
The plus sign describes a puller-type swimmer and the minus
sign corresponds to a pusher type. A schematics of our model
swimmer is presented in Fig. 1(a).

Relating to a real microswimmer, in the case of a flagellated
bacterium, for example, fspc can be interpreted as the time
averaged force exerted by its flagella on the fluid, and fsp is the
resulting thrust force on the body of the bacterium. For real
microorganisms, fspc is distributed over an extended region
in the fluid. Our model treats these forces minimally as an
effective hydrodynamic force acting at a single point on the
fluid that lies at a distance � from rcm and neglects the details
of the force distribution to a first order approximation. The
distance � remains as a free parameter in the model that can
be interpreted as the distance from the center of mass of the
body to an effective action point of the hydrodynamic forces
on the fluid.

Due to their small sizes and low speeds, microswimmers
move in the realm of low Reynolds numbers. Hence, we can
neglect inertial effects on both the dynamics of the fluid and
that of the microswimmers [49]. In this limit, the flow field
is described by the incompressible Stokes equation, and the
microswimmer’s dynamics is controlled by force and torque
balance equations given by

Fh + fsp + fext = 0, (1)

Lh + Lext = 0, (2)

where Fh and Lh are the total force and torque exerted by
the surrounding fluid on the swimmer. fext and Lext are,
respectively, the net external force and torque experienced
by it. In the following, we analyze the motion of a swimmer
in the absence and presence of external forces and torques.
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B. Dynamics of a free swimmer

We first focus on the dynamics of a free microswimmer,
i.e., one on which no external forces or torques are exerted.
We obtain the self-propulsion velocity in terms of the model
parameters. Then we discuss the microswimmer’s flow field
and its far-field behavior.

1. Self-propulsion velocity

In order to obtain the net self-propulsion velocity of the free
swimmer vsp, we assume that the fluid velocity on the surface
of the spherical body satisfies the stick boundary conditions.
Hence, the velocity of any point rS on its surface S is equal to
the local fluid velocity at that point:

vsp = −
∮

S

dS ′ T(rS − r′
S) · f(r′

S) + u0(rS), (3)

where T(r) = (1/8πηr)(I + rr/r2) is the Oseen tensor, and
u0(r) = −T(r − rcm ± �n̂) · fsp is the flow field because of
the point force fspc acting on the fluid. Here + and − denote
a pusher and puller type of swimmer, respectively. f(rS) is
the force per unit area exerted by the fluid on the swimmer’s
surface at rS . Note that f(rS) acquires a contribution from the
fluid flow created by the point force fspc. Thus, it is not uniform
over the spherical surface as it would have been in the absence
of fspc [35]. Furthermore, the angular velocity of the swimmer
does not appear in Eq. (3) because no external torque acts on
the body and the flow u0 does not generate any rotation of the
swimmer [50].

Integrating both sides of Eq. (3) over the surface of the
swimmer and utilizing the spherical symmetry of the body
[51], we obtain

vsp = − 1

6πηa

∮
S

dS ′ f(r′
S) + 1

4πa2

∮
S

dS u0(rS), (4)

where
∮
S
dS ′ f(r′

S) is equal to the net hydrodynamic force
Fh on the sphere. The force balance condition, Eq. (1), for
a free swimmer thus implies that

∮
S
dS ′ f(r′

S) = −fsp. The
second integral above can be calculated by a Taylor expansion
of the flow field around rcm [35]. Because of the spherical
symmetry of the swimmer the Taylor expansion truncates at
the quadratic order in a. Thus, Eq. (4) simplifies to the exact
expression,

vsp = 1

6πηa
fsp +

(
1 + a2

6
∇2

rcm

)
u0(rcm). (5)

This equation is identical to the familiar Faxen’s law [35]. Eval-
uating ∇2

rcm
u0(rcm) explicitly, we obtain the self-propulsion

velocity in terms of a and �:

vsp = 1

6πηa
{1 − ga/�}fsp, (6)

in which ga/� ≡ (3/2)[a/� − (a/�)3/3]. Since 0 < g � 1 for
the physically relevant range 0 < a/� � 1, the swimmer’s
velocity is in the direction of fsp, as expected. Furthermore,
owing to the symmetry of the Oseen tensor T(+�n̂) = T(−�n̂),
for a given set of parameters (a,�), the self-propulsion speeds
of a pusher and a puller are identical.

FIG. 2. The normalized swimming speed vsp
n = vsp/(f sp/6πηa)

of a spherical swimmer of radius a, plotted against a/�, where � is the
separation between the active forces fsp and fspc = −fsp. The plots of
vsp

n for both pushers and pullers are identical. Inset: The ratio Seff/S0

of the dipole strengths of the effective point-force dipole producing
the correct far field and the point-force dipole obtained in the limit of
zero swimmer size.

In Fig. 2 we have presented the normalized swimming
speed v

sp
n = vsp/(f sp/6πηa) versus a/�. We note that v

sp
n is a

decreasing function of a/�. In the limit of a � �, the speed
of the swimmer approaches to that of a sphere dragged by
a single isolated force f sp, i.e., vsp → f sp/6πηa. However,
for a/� � 0.4, a range relevant for some of flagellated
bacteria, the value of v

sp
n is considerably smaller than one.

Thus the flow created by the neutralizing force fspc results
in a considerable lowering of the speed of the swimmer
compared to its passive counterpart, an externally driven
sphere.

2. Flow field

Next, we obtain the flow field of a spherical swimmer and
compare it to that of a point-force dipole. To calculate the
flow field u(r) of the swimmer, we need to incorporate two
contributions: (a) the flow field ua generated because of the
point force fspc that lies near a sphere and (b) the flow ub

resulting from the translation of the sphere with velocity vsp in
an otherwise quiescent flow. In the following, we obtain each
of these contributions for a sphere centered at the origin O.

ua can be expressed as a superposition of the flow created
directly by the point force and the modifications to it, denoted
as u∗(r), due to the surface of the sphere:

ua(r) = −T(r ± �n̂) · fsp + u∗(r). (7)

The field u∗(r) can effectively be ascribed to an image system
of the point force created by the sphere [52]. It is given by the
exact expression,

u∗(r) = ga/� fsp · T(r − r∗)

−ha/� af sp
[(

n̂n̂ − 1
3 I

) · ∇] · T(r − r∗)

+ ja/� a2fsp · ∇2T(r − r∗), (8)

where ga/� = (3/2)[a/� − (a/�)3/3] as defined earlier, ha/� =
a2/�2 − a4/�4, and ja/� = (1/4)(a/�)(1 − a2/�2)2. The point
r∗ = ∓�∗n̂, with �∗ := a2/� denotes the position of the
image system of the point force fspc [52]; see Fig. 1(b).
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The singularity solutions for the image system of the
point force consist of a Stokeslet (point force), a stresslet,
and a degenerate quadrupole (source dipole) with strengths
ga/�, ha/�, and 2ja/�a

2, respectively [52]. We note that
ua(rS) = 0 at any point rS on the surface of the swimmer
satisfying the no-slip boundary condition for a stationary
sphere.

The flow field ub set up by a sphere translating with the
velocity vsp is obtained as [35]

ub(r) = 8πη

[
3a

4
T(r) + a3

8
∇2T(r)

]
· vsp, (9)

where vsp is given by Eq. (6). Consequently, the total flow field
of a spherical swimmer reads as

usp(r) = ua(r) + ub(r)

=
{

(1 − ga/�)

[
T(r) − a2

3
T̃(r)

]
− T(r ± �n̂)

+ ga/� T(r ± �∗n̂) − 2ja/� a2T̃(r ± �∗n̂)

}
· fsp

+ha/� af spH(r ± �∗n̂,n̂) · (r ± �∗n̂). (10)

Here the + and − signs apply to the pusher and puller
types, respectively. For brevity, we have defined the new ten-
sors, T̃(r) = −(1/2)∇2T(r) = (1/8πηr3)(−I + 3rr/r2) and
H(r,n̂) = (1/8πηr3)[−I + 3(n̂ · r)2I/r2]. Note that T̃(r) · n̂
corresponds to the flow field of a degenerate quadrupole, and
H(r,n̂) · r gives the flow field of a force dipole oriented in the
direction n̂. Since Eqs. (7)–(9) are exact, Eq. (10) represents
the exact form of the flow field for our model swimmer valid
at any distance r .

In Fig. 3 we have plotted the streamlines of the flow fields
of a pusher and a puller respectively, described by Eq. (10),
in a plane containing their orientation vectors n̂ = −x̂. As
expected, for a pusher (puller), there is an outward ( inward)
flow along the axis containing n̂ and an inward (outward) flow
normal to that.

3. Multipole expansion of the flow field

Having obtained the full flow field of the microswimmer,
we now investigate its far-field behavior. An axisymmetric
rotation-free (no active torque) swimmer, with its body
centered at the origin and self-propelling in the direction n̂
generates a far-field flow of the general form [53]

usp
r�a(r) = Seff(n̂ · ∇)[T(r) · n̂]

− 1

2
Deff∇2[T(r) · n̂]

+Qeff(n̂ · ∇)2[T(r) · n̂] + O(1/r4). (11)

These terms describe the leading order singularity solutions
of the Stokes equation for a force-free swimmer. They
correspond to a force dipole, a degenerate quadrupole (source
dipole), and a force quadrupole, respectively. The coefficients
Seff,Deff , and Qeff characterize the strengths of the respective
multipoles and their values depend on the swimmer model
under consideration. The flow filed of the force dipole decays
as 1/r2 and those of the two quadrupolar terms as 1/r3. To

(a)

(b)

FIG. 3. The flow streamlines (blue arrows) created by a spherical
swimmer of radius a, with orientation n̂ = −x̂ and � = 5a, plotted in
the x-y plane. Panels (a) and (b) correspond to a pusher and a puller
type swimmer, respectively. The red arrows represent the active forces
fsp and fspc = −fsp, and the red dot indicates the effective center reff

c

of the equivalent far-field point-force dipole in each case.

obtain the multipolar strengths for our model, we expand usp(r)
given in Eq. (10) in powers of the inverse distance 1/r from
the center of mass of the swimmer.

We find that for our model the first leading order term at far
distances (r � � > a) decays as 1/r2 and is given by

usp
r��(r) = ± 1

8πη

Seff

r2
[−1 + 3(r̂ · n̂)2]r̂. (12)

It is identical to the flow field of a point-force dipole with an
effective dipole strength

Seff = S0[1 − (a/�)2ga/� ± (a/�)ha/�], (13)
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(c) (d)

FIG. 4. Angular dependence of the flow fields of a swimmer with � = 2.5a (pusher) and its associated point-force dipole and that
of the bare point-force dipole obtained in the limit of zero swimmer size. For each case, the normalized flow field uα

n (|r − reff
c |,θ ) =

uα(|r − reff
c |,θ )/(f sp/6πηa) with α = x,y, is shown as a function of the angle θ about the effective center reff

c measured at distances
|r − reff

c | = 5 a [(a), (c)] and 15 a [(b), (d)].

where + and − refer to a pusher and puller, respectively. Here
S0 = �f sp represents the dipole strength of a point-force dipole
consisting of two point forces of magnitude f sp that lie at a
distance � apart. S0 is identical to the effective dipole strength
of the swimmer when a/� → 0. However, for an accurate far-
field representation of a finite-sized swimmer by a point-force
dipole, the driving forces f sp must be separated by an effec-
tive distance �eff = �[1 − (a/�)2ga/� ± (a/�)ha/�] < �. This
implies that the effective center of the force, − ∮

S
dS ′ f(r′

S), on
the fluid by the surface of the swimmer, or equivalently, the
point of action of the force fsp on the swimmer, is situated at
−n̂(� − �eff), which is slightly shifted from the center of mass
rcm of the sphere. For clarity, associated point-force dipole
is defined as the point-force dipole that consists of the two
point forces ±fsp separated by a distance �eff . The center of
the associated point-force dipole lies at reff

c = −n̂(� − �eff/2)
(see Fig. 3). Similarly, by a bare point-force dipole we refer
to the dipole obtained in the limit of a/� → 0, where the two
point forces are separated by a distance �.

In the inset of Fig. 2, we have shown Seff as a function of
a/� for both a pusher and a puller. We see that the effective
dipole strength is renormalized differently for pushers and
pullers. This difference results from the symmetry of the image
stresslet [the term ∝ ha/� in Eq. (8)], which always acts like
a pusher. Thus, this term enhances the dipolar strength of a
pusher, whereas it reduces that of a puller. Evidently, when
� � a, the swimmer’s size can be neglected and Seff → S0.
Otherwise, even for the far-field flow, the finite size of the

swimmer should be taken into account by renormalizing the
dipole strength to Seff .

We depict the effect of such a renormalization on the
flow field in Fig. 4. The figure shows the angular depen-
dence of the normalized components of the flow field of
a swimmer moving in −x̂ direction, i.e., uα

n (|r − reff
c |,θ ) =

uα(|r − reff
c |,θ )/(f sp/6πηa) where α = x,y. For comparison,

we have also included the corresponding flow fields of the
associated and bare point-force dipoles. Here |r − reff

c | is
the distance measured from the effective center reff

c and θ

is the angle between r − reff
c and x̂ = −n̂ [Fig. 1(b)]. We

find that at short distances [r = 5a in Figs. 4(a) and 4(c)]
there is a considerable difference between the flow fields of
the swimmer and the bare point-force dipole, especially near
θ = π . However, the difference is reduced for the associated
point-force dipole but still visible for the directions in front of
the swimmer, especially for θ > 3π/4. At farther distances,
e.g., at r = 15a, as presented in Figs. 4(b) and 4(d), we find a
very good agreement between the flow fields of the swimmer
and its associated point-force dipole, but they considerably
differ from that of of the bare point-force dipole.

Subsequently, we obtain the coefficients of the next lead-
ing order terms (∝ 1/r3). The strength of the degenerate
quadrupolar term 1

2 n̂ · ∇2T(r) is given by

Deff = −[2ja/� + (1 − ga/�)/3]f spa2. (14)

Deff is a function of both a and � as it stems from the finite size
of the cell body. The strength of the force quadrupolar term
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FIG. 5. Comparison of the flow fields of the swimmer with
� = 2.5a (pusher) and its associated point-force dipole. The figure
shows the contour plot of the magnitude of the difference of
the flows of the swimmer and its associated point-force dipole,
|usp(r) − udip(r)|, normalized by the angular averaged flow speed
of the dipole, 〈udip(|r − reff

c |)〉θ , at the corresponding distance from
the center reff

c . The body of the swimmer is shown in black; the
active forces fsp and fspc and the effective center reff

c of the associated
point-force dipole are shown in red. The white region (lighter color)
represents values in the range 0.2–0.8 not shown in the color bar.

(n̂ · ∇)2T(r) is given by

Qeff = −[1 − ga/�(a/�)4 ± (a/�)3ha/�]f sp�2. (15)

Qeff results from the length asymmetry between size of the cell
body a and the effective length of the flagellum � [53]. Note
that unlike the dipolar strength, the quadrupolar strengths have
the dimension of force times length squared and they vanish
for a pointlike swimmer, i.e., a → 0 and � → 0, such that
S0 = �f sp remains constant.

4. Swimmer’s finite-size effects on the flow field

Next, we examine the flow field at intermediate distances
more closely and compare it to that of a point-force dipole. For
simplicity we focus on the x-y plane. In the following, usp and
udip denote the swimmer’s flow field and that of its associated
point-force dipole with the strength Seff respectively. In Fig. 5
we have presented the contour plot of the difference of the
two flow fields, |usp(r) − udip(r)| normalized by the angular
averaged flow speed of the dipole, 〈udip(|r − reff

c |)〉θ , for a
pusher with � = 2.5a.

From Fig. 5 we notice that the angular dependence of the
swimmer’s flow field at intermediate distances is significantly
different from that of a point-force dipole. In particular, the
front-back symmetry of the flow field of a point-force dipole
is broken by the finite size of the swimmer’s body. This
dissimilarity is visible in the head-tail asymmetry of the shapes
of the contours around the swimmer. For example, the contour
for 0.05 (5% difference in the flow speeds) extends up to
a distance of ∼8a from reff

c towards the head, whereas, at
similar distances towards the back, the normalized difference
is <0.03 (i.e., < 3%). Furthermore, contours of any given

normalized difference encircle a larger area in the front than
in the back. Hence, the flow field of the swimmer approaches
that of the dipole at a shorter distance in any general direction
behind the swimmer (i.e., for θ < π/2), while at the same
distance in a corresponding direction in the front (i.e., for
θ + π/2), we notice remarkable differences, in agreement with
our observations from Fig. 4.

The differences between the flow field of the swimmer
and that of its associated force dipole with the same strength
reflect the importance of the next leading order singularity
contributions (quadrupolar, octoupolar, etc.) to the flow field
at short and intermediate distances. These higher order singu-
larity contributions are important for the collective behavior
of the microwswimmers and need to be accounted for in the
many-body simulations.

C. Dynamics of a swimmer exposed to external
forces and torques

An external force acting on a swimmer supplements to its
self-propulsion velocity vsp. Similarly, an external torque Lext

causes the swimmer to rotate. Note that the flow created by
self-propulsion of the swimmer does not generate any angular
velocity in the absence of other swimmers [50]. Thus, the trans-
lational and angular velocities of the swimmer in the presence
of the external force fext and torque Lext are modified as

v = vsp + 1

6πηa
fext, (16)

ω = 1

8πηa3
Lext. (17)

The flow field ub(r) resulting from the translation of the
sphere is accordingly altered. The contribution of the external
force to the flow can be obtained by substituting vsp with

1
6πηa

fext in Eq. (9). Likewise, the rotation of the swimmer

generates a flow field which is described by (a3/r3)ω × r
[35]. Given the linearity of Stokes equation, the net flow field
of the swimmer in the presence of external forces and torques
is thus given by

u(r) = usp(r) +
[

T(r) + a2

6
∇2T(r)

]
· fext

+ 1

8πηr3
Lext × r. (18)

in which the usp(r) is obtained from Eq. (10).
Having discussed the motion of a single swimmer, we

devote the next section to the hydrodynamic interactions
among an ensemble of swimmers in a suspension.

III. HYDRODYNAMIC INTERACTIONS AMONG
SPHERICAL SWIMMERS

In a suspension of N swimmers, the flow field generated
by each swimmer will affect the motion of all the others. In
this section, we obtain the grand mobility tensor that connects
the translational and angular velocities of the swimmers to the
forces and torques acting on them. Especially, we elucidate the
contribution of the active forces to hydrodynamic interactions.

The translational velocity vi and angular velocity ωi of the
ith swimmer are coupled to the forces and torques acting on
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all the swimmers via the grand mobility tensors defined as[
vi

ωi

]
=

N∑
j=1

[
Mtt

ij Mtr
ij

Mrt
ij Mrr

ij

][
fext
j

Lext
j

]

+
N∑

j=1

[
μtt

ij μtr
ij

μrt
ij μrr

ij

][
fsp
j

0

]
. (19)

Here the subscripts i,j are the swimmer indices running from 1
to N , and the superscripts t and r stand for “translational” and
“rotational” degrees of freedom, respectively. The mobility
tensors Mαβ

ij couple the ith swimmer’s translational and
angular velocities (specified by the index α) to the passive
external forces fext

j and torques Lext
j (distinguished by the

index β) acting on the j th swimmer. Accordingly, the tensors
M are identical to the corresponding mobilities of passive
spheres. In contrast, the active mobility tensors μ incorporate
the hydrodynamic interactions resulting from the active forces.
They couple the velocities of the ith swimmer to the active
forces ±fsp

j that propel the j th swimmer. Below, we calculate
the explicit forms of the μ tensors for this model system.

A. Self-mobility tensors

We first focus on the self-mobility tensors. Mtt
ii and

Mrr
ii represent, respectively, the translational and rotational

self-mobility tensors of the ith sphere in the absence of
self-propulsion [35]. μtt

ii and μrr
ii denote the corresponding

active self-mobility tensors. To simplify the notation, in what
follows, we introduce the following abbreviations:

M t = 1

6πηa
, M r = 1

8πηa3
, μt = 1 − ga/�

6πηa
. (20)

The passive translational and rotational mobility tensors of
the spheres follow from Eqs. (16) and (17), and they read as
Mtt

ii = M tI, Mrr
ii = M rI. Furthermore, for spheres, we have

Mtr
ii = Mrt

ii = 0 [35]. Likewise, we can read off the active
mobility tensors from Eq. (6) as μtt

ii = μtI and from Eq. (17)
as μrt

ii = 0. The remaining active self-mobilities, μrr
ii and μtr

ii ,
are irrelevant to the dynamics as the presented model does not
include any active torques.

B. Cross-mobility tensors

We now discuss the cross-mobility tensors Mαβ

ij and μ
αβ

ij

for i �= j that result from the interactions between two distinct
swimmers i and j . In particular, we derive the form of μ

αβ

ij

tensors. To obtain the explicit form of the hydrodynamic
interactions between the swimmers, we exploit the Faxen’s
theorems [35].

The Faxen’s theorems relate the translational and angular
velocities of a sphere to the forces, torques and external flows
imposed on it. Hence, the translational and rotational velocities
of the ith swimmer in the flow generated by the motion of all
the other swimmers are given by

vi = M tfext
i + μtfsp

i +
(

1 + a2

6
∇2

ri

) ∑
j �=i

uj (ri), (21)

ωi = M rLext
i + 1

2
∇ri

×
∑
j �=i

uj (ri), (22)

where
∑

j �=i uj (ri) is the total flow field in the absence of the
ith swimmer at its center ri created by all the other swimmers.
Substituting the explicit form of uj (ri) from Eq. (18) in the
above equations provides us with the mobility tensors Mαβ

ij for
i �= j [35]:

Mtt
ij = M t

[
3a

4rij

(I + r̂ij r̂ij )

+ 1

2

(
a

rij

)3

(I − 3r̂ij r̂ij )

]
≡ Mtt(rij ), (23)

Mrr
ij = −M r 1

2

(
a

rij

)3

(I − 3r̂ij r̂ij ) ≡ Mrr(rij ), (24)

Mtr
ij = Mrt

ij = M ra

(
a

rij

)2

r̂ij× ≡ Mtr(rij ) × , (25)

in which rij := ri − rj and rij := |rij | and the expressions are
correct up to the order (a/rij )3. The tensor Mtt

ij given above
is the well-known Rotne-Prager mobility tensor for passive
spheres. Note that, here and below, whenever the operator ‘×’
appears at the end of a tensor (e.g., in Mtr

ij ), it is understood that
a cross product should be taken with the appropriate right-hand
operand [given by the conventional matrix multiplication of
Eq. (19)].

In a similar manner, we derive the active mobility tensors
μ

αβ

i �=j correct up to the order (a/rij )3 as given below:

μtt
ij = μtt

0(rij ) + μtt
�

(
r�
ij

) + μtt
�∗

(
r�∗
ij

)
, (26)

μrt
ij = μrt

0 (rij ) + μrt
�

(
r�
ij

) + μrt
�∗

(
r�∗
ij

)
, (27)

where r�
ij := rij ± �n̂j , r�∗

ij := rij ± �∗n̂j . The functions ap-
pearing on the right-hand sides are given by

μtt
0(r) = (1 − ga/�)Mtt(r), (28)

μtt
� (r) = −M t

[
3a

4r
(I + r̂r̂) + 1

4

(
a

r

)3

(I − 3r̂r̂)

]
, (29)

μtt
�∗ (r) = −ga/� μtt

� (r) + 2ja/�M
t 3

4

(
a

r

)3

(I − 3r̂r̂)

+ha/�[−r̂ + 3(r̂ · n̂j )2r̂]M t 3

4

(
a

r

)2

n̂j , (30)

μrt
0 (r) = (1 − ga/�)

1

8πη

r
r3

× , (31)

μrt
� (r) = − 1

8πη

r
r3

× , (32)

μrt
�∗ (r) = 3ha/�

n̂j · r(n̂j × r)n̂j

8πηr5
+ ga/�

1

8πη

r
r3

× . (33)

In the limit a/� → 0, we recover the active mobility tensors
of a bare point-force dipole:

μtt
ij = (1/8πη)

[
(I + r̂ij r̂ij )/rij − (

I + r̂�
ij r̂�

ij

)
/r�

ij

]
, (34)

μrt
ij = (1/8πη)[rij /r3

ij − r�
ij /(r�

ij )3] × . (35)

The presented swimmer model does not include any active
torques. Thus, the remaining active cross-mobilities μtr

ij and
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(a)

(b)

(d)

(c)

(e)

FIG. 6. The effect of the finite size of the swimmers on hydrodynamic interactions. (a) Schematics of six configurations for two swimmers
i, j with respective orientations n̂i , n̂j and a separation vector rij . (b)–(e) The ratios δv||/δv

dip
|| and δv⊥/δv

dip
⊥ plotted as functions of the

separation rij /a for � = 2.5a. Here δv|| (δv⊥) is the velocity increment in the direction parallel (perpendicular) to the orientation of a swimmer
resulting from its hydrodynamic interactions with another swimmer. Similarly, δv

dip
|| (δvdip

⊥ ) is the value for the corresponding associated
point-force dipoles.

μrr
ij are irrelevant for the description of the dynamics. Note that

unlike the passive mobility tensors, the active contributions
depend on the swimmers’ orientations. In the next subsection,
we will discuss the consequences of active forces on the
hydrodynamic interactions for finite-sized swimmers.

C. Activity-induced hydrodynamic interactions

We end our results with a preliminary examination of the
consequences of active forces on the hydrodynamic interac-
tions, and we will pay special attention to the consequences
of the swimmer’s finite size. For this purpose, we consider the
velocity increment δvi = μtt

ij · fsp
j induced on the swimmer

i due to the active forces ±fsp
j of the swimmer j . Let δv||

and δv⊥ be the magnitudes of this velocity along and normal
to ni , respectively. Likewise, we denote the corresponding
speeds for an associated point-force dipole of strength Seff as
δv

dip
|| and δv

dip
⊥ , respectively. They result from the interaction

between the two corresponding associated point-force dipoles.
Their values are obtained by using the mobility tensor given
in Eq. (34) evaluated for rij → rij + (� − �eff)n̂j (with the
transformation applied to the first term alone).

In Fig. 6 we show the ratios δv||/δv
dip
|| and δv⊥/δv

dip
⊥

as a function of the swimmer distance rij for � = 2.5a

for a few typical configurations of the swimmers i and j

depicted schematically in Fig. 6(a). We observe that for
the configurations 5 and 6, δv||/δv

dip
|| depicted in Figs. 6(b)

and 6(d) and for the configuration 3, δv⊥/δv
dip
⊥ presented in

Figs. 6(c) and 6(e) do not converge to unity even at very large
distances. For all other configurations, the ratios go to unity
for rij > 20a as one would expect.

The disagreement between the activity-induced velocity
increments of a finite-sized swimmer and that of a dipolar
swimmer for some of the configurations can be understood as
follows. The far-distance expansion of the mobility tensor for
the swimmer yields to

δvsp(rij ) ≡ μtt
ij · fsp

j

= 1

8πη

Seff

r2
ij

[−1 + 3(r̂ij · n̂)2]r̂ij + O

(
1

r3
ij

)
. (36)

As expected, the leading order term above is identical to the
corresponding leading order term of the mobility tensor of the
associated force dipole that is centered at rij + (� − �eff/2)n̂j .
However, the coefficients of the next leading order term O( 1

r3
ij

)

for the swimmer is different from that for the associated dipole.
We note that the leading order term in Eq. (36) is always

along r̂ij . For the specific configurations 5 and 6, n̂i ⊥ r̂ij .
Hence, the velocity increment parallel to n̂i is determined by
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the next leading order term (∝ 1/r3
ij ) that differs from that of

the force dipoles. Thus, the ratios δv||/δv
dip
|| for configurations

5 and 6 of Figs. 6(b) and 6(d) do not converge to unity.
Similarly, for the configuration 3, the velocity increment,
δv⊥, perpendicular to n̂i is normal to r̂ij , and its value is
determined by the O(1/r3

ij ) term that is different from that

of the dipoles. Therefore, δv⊥/δv
dip
⊥ of the configuration 3

presented in Figs. 6(c) and 6(e) also do not converge to
unity. These observations highlight the importance of the
swimmers’ finite size for their hydrodynamic interactions.
In our preliminary analysis, we have investigated only a few
representative configurations. In a suspension, the difference
in the velocity increments δv and δvdip in general depends on
the relative orientations of the two swimmers with respect to
their interconnecting line.

IV. CONCLUSIONS

We have investigated the finite body-size effects on the flow
properties and hydrodynamic interactions of microswimmers
by considering a minimal model for rigid-bodied microswim-
mers. Notably, we have investigated the consequences of
the extended surface of the microswimmer on the interplay
between its self-propulsion and flow properties. The model
parameters include the body size a and the distance � between
the center of the body and the point of application of the
thrust −fsp on the fluid. The presented model has important
differences with the squirmer model for microswimmers
[27,54,55]. The latter applies to swimmers with deformable
surfaces. Moreover, in contrast to the squirmer model, the
finite body size and self-propulsion in this model present two
separate length scales a and � intrinsic to each individual. As
a result, the flow field of this model at a separation r crucially
depends on both �/r and a/�.

We have calculated the swimmer’s self-propulsion velocity
and flow field as a function of a/�. Our analysis shows that
the behavior of the minimal swimmer deviates significantly
from that of a point-force dipole unless a/� → 0. The far-field
flow of the swimmer can be mapped to that of a point-force
dipole with an effective dipolar strength given by Seff = f sp�eff

where �eff is smaller than �. Thus, we have demonstrated that
a point-force dipole can provide a relatively good description
of the far filed behavior of a finite-sized spherical swimmer

provided that we use �eff = �eff(�,a) as the effective distance
between the two point forces.

At intermediate distances, the flow field presents a remark-
ably different angular dependency in comparison to that of a
force dipole due to the contribution of higher order multipoles.
Furthermore, the finite body size breaks the inherent front-back
symmetry of the flow field of dipolar swimmers. Therefore,
the model naturally incorporates the head-tail asymmetry at the
hydrodynamic interaction level that is an intrinsic feature of
many microswimmers. These results highlight the necessity
for the inclusion of the finite body size in simulations of
microswimmer suspensions at moderate concentrations.

To investigate the finite body-size effects on hydrodynamic
interactions and on the collective dynamics of the swimmers,
we have derived the grand mobility tensor for the presented
model. A preliminary investigation demonstrates that the finite
body size significantly affects the strength of hydrodynamic
interactions. The consequences of the finite body size and
particularly the head-tail asymmetry of the flow field on
the collective dynamics of swimmers is not yet probed.
The collective behavior of minimal spherical swimmers can
be investigated by Stokesian dynamics simulations and will
be a subject of a future study. The mobility matrix elements
describe long-range interactions and have rather cumbersome
forms. Nevertheless, they can be properly decomposed by an
Ewald summation technique to account for the long range of
hydrodynamic interactions in numerical simulations [56].

To summarize, our model captures the essential features of
microswimmers with finite-body size in a minimal fashion. It
opens the door for exploring collective behavior of microswim-
mers at intermediate concentrations where point-force dipole
approximation fails. The presented model is general, and it
can be used to model microwswimmers that have a rigid body
with flexible propelling appendage by a suitable choice of
parameters.
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