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Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel

S. Karthick and A. K. Sen*

Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
(Received 24 August 2017; published 21 November 2017)

We provide improved understanding of acoustophoretic focusing of a dense suspension (volume fraction
ϕ > 10%) in a microchannel subjected to an acoustic standing wave using a proposed theoretical model and
experiments. The model is based on the theory of interacting continua and utilizes a momentum transport
equation for the mixture, continuity equation, and transport equation for the solid phase. The model demonstrates
the interplay between acoustic radiation and shear-induced diffusion (SID) forces that is critical in the focusing
of dense suspensions. The shear-induced particle migration model of Leighton and Acrivos, coupled with the
acoustic radiation force, is employed to simulate the continuum behavior of particles. In the literature, various
closures for the diffusion coefficient D∗

ϕ are available for rigid spheres at high concentrations and nonspherical
deformable particles [e.g., red blood cells (RBCs)] at low concentrations. Here we propose a closure for D∗

ϕ for
dense suspension of RBCs and validate the proposed model with experimental data. While the available closures
for D∗

ϕ fail to predict the acoustic focusing of a dense suspension of nonspherical deformable particles like RBCs,
the predictions of the proposed model match experimental data within 15%. Both the model and experiments
reveal a competition between acoustic radiation and SID forces that gives rise to an equilibrium width w∗ of a
focused stream of particles at some distance L∗

eq along the flow direction. Using different shear rates, acoustic
energy densities, and particle concentrations, we show that the equilibrium width is governed by Péclet number
Pe and Strouhal number St as w∗ = 1.4(Pe St)−0.5 while the length required to obtain the equilibrium-focused

width depends on St as L∗
eq = 3.8/(St)0.6. The proposed model and correlations would find significance in the

design of microchannels for acoustic focusing of dense suspensions such as undiluted blood.
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I. INTRODUCTION

Sorting and manipulation of biological suspensions in
microchannels has become a potential tool in contempo-
rary laboratory-on-a-chip (LOC) technologies and micro-total
analysis systems [1–3]. Dense suspensions such as undiluted
blood contain particles at high concentrations in which
the interactions between particles alter the flow behavior
significantly as compared to dilute suspensions. Understanding
the behavior of dense suspensions (e.g., undiluted blood) in a
microchannel under the influence of external forces such as
acoustic force is critical for LOC technology development.
Recently, many different biotechnical applications based on
acoustophoresis have emerged such as blood plasma separa-
tion and isolation of circulating tumor cells from blood [4–6].

A dense suspension (volume fraction ϕ > 10%) such as
undiluted blood can be modeled using direct numerical simula-
tion (DNS) and continuum modeling. The computational cost
of the continuum modeling is significantly lower compared
to that of DNS [7]. DNS models resolve the deformation
dynamics of the particles and hydrodynamic particle-particle
interaction between the particles in a fluid medium [8].
In continuum modeling, the particles are described by a
continuous concentration field coupled to the continuity
and Navier-Stokes equations. The interactions between the
particles are imposed through the concentration gradient and
other physical parameters [9]. The main objective of this
work is to provide improved understanding of acoustophoretic
focusing of dense suspension in a microchannel subjected to
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an acoustic standing wave using a proposed theoretical model
and experiments.

The mixture theory or theory of interacting continua is
a continuum model where blood flow is modeled as two
superimposed continua, representing the plasma and red blood
cells (RBCs). In a recent study, by using mixture theory, Kim
et al. [10] simulated blood flow in a microchannel and validated
the simulations using experiments. Lei et al. [11] showed that
the continuum model descriptions are valid for a

D
� 0.02,

where a is the particle radius, and D is the microchannel
length scale.

Ley et al. [12] reported continuum modeling of a dense sus-
pension in a microchannel flow subjected to acoustophoresis
and magnetophoresis. However, the model failed to capture the
behavior of a dense suspension when the particle concentration
is greater than 0.1, and the advection time scale in their study
was in the same order as the acoustophoresis time scale.
Moreover, the model does not account for the shear-induced
diffusion (SID) force due to the interaction between the
particles in a dense suspension, which is possibly the main
reason for the failure of the model [13,14]. SID is the diffusive
motion of microparticles in a shear flow [14]. Due to the hy-
drodynamic interactions between the neighboring particles, the
distance between the particles after the interaction increases
as compared to that before the interaction [15].

We consider a suspension as dense or highly concentrated
if the volume fraction is more than 10%. In a flow of
highly concentrated suspensions, the SID plays a major role
in the migration of microparticles. The continuum model
developed in this work accounts for the acoustophoretic
as well as SID forces and is validated with experimental
data using undiluted blood suspension. Experiments were
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FIG. 1. (a) Schematic of the acoustophoretic focusing of a dense suspension (e.g., whole blood). (b) Photograph of an acoustophoresis chip.

performed to obtain acoustophoretic focusing of suspensions
of various concentrations at various acoustic energy densities
and flow rates. Our study revealed that the physics of
the acoustophoretic focusing is governed by two dimen-
sionless parameters: the Péclet number Pe (ratio of diffu-
sion and advection time scales) and Strouhal number St
(ratio of advection and acoustic timescales). The equilib-
rium width of the focused band correlates with the Péclet
number and Strouhal number, while the length required
to obtain the equilibrium-focused width correlated with
the Strouhal number. The proposed correlations would find
significance in the design of microchannels for acoustic-
based separation of dense suspensions such as undiluted
blood.

First, we provide a detailed description of the theoretical
model. Next, we present the device fabrication and experi-
mental protocols. Finally, we present and discuss the results
of the continuum model and experiments. Based on the results,
the equilibrium width and the length required to achieve
the equilibrium width are correlated with dimensionless
parameters Péclet number and Strouhal number.

II. THEORETICAL MODEL

When a dense suspension (e.g., undiluted blood) is infused
into a microchannel and is subjected to an acoustic standing
wave, the acoustic radiation force acting on the particles
moves particles towards the center (pressure node) of the
microchannel. In this process, the concentration profile be-
comes nonhomogeneous along the direction of the standing
wave. This nonhomogenous concentration profile causes SID
[13], and the particle migration due to SID tends to oppose
the acoustic migration. SID is zero at the entrance of the
microchannel, but due to the acoustic focusing of particles, it
increases downstream. At some location along the channel, the
SID force is balanced by the ACP force, thereby establishing
the equilibrium-focused band width as shown in Fig. 1(a).
The mixture model that is employed to simulate the focusing
of the particle suspension using acoustophoresis is discussed
in the following sections. Other interactions like Brownian,
Van der Waals, gravity, and electrostatic are also present in
the suspension [16]. However, it has been found that the
order of magnitude of the above interactions is negligible
as compared to SID (hydrodynamic interaction) [16]. The
secondary radiation forces acting on the RBCs are also shown
to be negligible compared to the primary radiation force [13].

A. Model setup

A simple two-dimensional (2D) microchannel of width
Wand length L is considered. The model represents the actual
microchannel device, in which the width W = 400μm is along
the acoustic standing wave direction and length L = 40 mm
is along the flow direction. In the model, at the inlet of
the microchannel, the velocity boundary condition is used,
which is obtained by dividing the flow rate used in the
experiments with the cross-sectional area of the channel (120
μm × 400 μm). Height of the channel is not considered
in our model (Hele-Shaw flow analysis) for two reasons.
First, there is no external force acting on the particles along
the direction of the channel height, so we assume that the
concentration profile does not vary in this direction. Second,
generally a three-dimensional (3D) model is computationally
more expensive as compared to a 2D model, and in this case
3D modeling becomes significantly time consuming since L

(40 mm) >> (0.4 mm). Moreover, our results show that the 2D
model is able to accurately predict the experimental conditions,
which is possibly because of the first reason. To proceed with
the modeling, we assume the red blood cells (RBCs) to be
spherical and monodisperse, but in reality RBCs are biconcave
and polydispersed (volume can vary from 80 fl to 96 fl) [17].
The average radius of RBCs = 2.8 μm used in our model was
obtained from the average volume of erythrocytes 90 fl (using
complete blood count test). The local concentration of RBCs
is described by the continuous field. The inlet concentration
of RBCs is varied from 0.1 to 0.425. Our model is completely
described by three parameters: concentration field, velocity
field, and pressure field. The acoustic energy density in our
model is varied from 30 J/m3 to 90 J/m3.

B. Mixture model

A suspension is a mixture of solid particles and a liquid.
Using the theory of interacting continua (mixture theory),
blood is modeled as a two-component mixture: plasma and
RBCs. The plasma is assumed to behave as a Newtonian fluid,
and the RBCs are modeled as a suspension of rigid spherical
particles with a viscosity dependence on the shear rate and the
hematocrit. The dynamics of a suspension can be modeled by
the momentum transport equation for the mixture, continuity
equation, and transport equation for the solid phase volume
fraction. The proposed shear-induced migration model is
formulated in terms of particle diffusion fluxes. The continuity
equation can be written as [7,17,18]

(ρf −ρs){∇ · [ϕ(1 − cs)us]} + ρf (∇ · u) = 0, (1)
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where ρf and ρs are the densities of fluid and solid particles
respectively, cs and us are the mass fraction and velocity
of the solid particles, and ϕ is the volume fraction. The
mixture velocity can be written in terms of the fluid and solid
velocities as

u = (1 − ϕ)ρf uf + ϕρsus

ρ
, (2)

where ρ is the density of the mixture given as

ρ = (1 − ϕ)ρf + ϕρs. (3)

The momentum equations reads [7,17,18]

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · {−pI + μ[∇u + (∇u)T ]}
−∇ · {[ρcs(1 − cs)]uslip · uslip

}
. (4)

The set of equations above were solved using COMSOL
Multiphysics software [18], which employs a numerical
formulation based on the slip velocity uslip between the fluid
and solid phases. In the laminar flow mixture model, the slip
velocity is modeled as a function of particle diffusive fluxes as

uslip = Js

ρsϕ(1 − cs)
, (5)

where Js,ρs,and csare diffusive flux, density, and mass fraction
of the suspended particles, respectively. In this case, the
diffusion flux due to SID competes with the diffusion flux
due to acoustophoresis (ACP). Thus the diffusion flux acting
on the particles is the sum of the fluxes due to SID (JSID) and
ACP (JACP), which is expressed as

Js= J SID + JACP. (6)

C. Modeling of shear-induced diffusion

We employ the diffusion model developed by Phillips [9]
based on the scaling arguments of Leighton and Acrivos [19].
The SID flux in terms of gradients in volume fraction and shear
rate can be written as [9,19–21]

JSID = Dϕ∇ϕ + Dγ̇ ∇γ̇ , (7)

where Dϕ and Dγ̇ are the diffusion coefficients due to
the gradient in volume fraction ϕ and shear rateγ̇ . In the
literature, various models are available for Dϕ and Dγ̇ .
Diffusion coefficients can be expressed as Dϕ = D∗

ϕγ̇ a2 and
Dγ̇ = D∗

γ̇ a2 where D∗
ϕ and D∗

γ̇ are functions of concentration,
shape, and deformability of particles suspended in the fluid
[14]. D∗

ϕ and D∗
γ̇ are well established for spherical and rigid

particles at dilute and high concentrations [14]. However,
since RBCs are deformable and nonspherical, D∗

ϕ for RBCs
is very different from that of hard spherical particles [14].
Recently, Grandchamp et al. [14] showed that at a moderate
hematocrit concentration (ϕ = 0.15), D∗

ϕ is equal to 1.7ϕ,
for RBCs, which is nearly one order of magnitude higher
as compared to D∗

ϕ = 0.2ϕ for rigid and smooth spheres. The
above observation is explained as follows. In a suspension
of rigid particles, the interaction between any two particles
does not lead to any modification of the structure of the
suspension because of the linearity and reversal symmetry
of the Stokes equation, and three- or more-body interactions

are necessary to break the symmetry of the problem. This is
the reason for negligible D∗

ϕ in the case of a dilute suspension
where two-particle interactions are dominant and significant
D∗

ϕ in case of a highly concentrated suspension where three-
or more-body interactions are dominant.

In suspensions of deformable particles such as drops,
vesicles, or cells, the deformation of objects under shear
breaks the symmetry of the problem, and there is repulsion
between two particles when their trajectories meet under shear
flow: the cross-streamwise distance between two objects is
larger after they have met each other in the shear flow [15].
This has been observed experimentally and numerically for
drops and vesicles. Various closures have been developed
for D∗

ϕ in case of rigid spheres at high concentration in a
suspension. The closure for D∗

ϕ established by Leighton and
Acrivos [19] is widely used in the literature, which is given
as D∗

ϕ = 0.33ϕ2(1 + 0.5e8.8ϕ). However, a closure for D∗
ϕ in

the case of RBCs at high concentrations is not established in
literature.

We attempted various closures for D∗
ϕ available in literature

for dilute blood cells as well as rigid spheres [9] in our
model, but these closures failed to predict the actual behavior
when compared with experimental results. Comparison of
these failed models with experimental results is discussed
in Sec. IV B. Here we propose a closure for D∗

ϕ that was
able to accurately represent the actual phenomena in case
of both dilute and undiluted blood. In the proposed closure,
the low-concentration diffusion term for RBCs, i.e., D∗

ϕ =
1.7ϕ is added to the high-concentration diffusion term for rigid
spheres D∗

ϕ = 0.33ϕ2(1 + 0.5e8.8ϕ). So we take D∗
ϕ = 1.7ϕ +

0.33ϕ2(1 + 0.5e8.8ϕ) and D∗
γ̇ is modeled as 0.42ϕ2a2 [21].

The justification for this particular approach can be given as
follows. At moderate concentrations (ϕ = 0.1–0.2), 1.7ϕ >>

0.33ϕ2(1 + 0.5e8.8ϕ) and at high concentrations (ϕ > 0.45),
1.7ϕ << 0.33ϕ2(1 + 0.5e8.8ϕ). So the addition of the two
terms in the model could provide meaningful predictions in
the corresponding regimes. The closure obtained by addition
of the terms predicted results that match well experimental
results as discussed in Sec. IV B.

Thus the diffusive flux due to SID is written as

JSID = [1.7ϕ + 0.33ϕ2(1 + 0.5e8.8ϕ)]γ̇ a2∇ϕ

+ 0.42ϕ2a2∇γ̇ . (8)

The diffusion coefficients are anisotropic; the diffusion
coefficients in the plane of shear is higher by approximately
a factor of 1.5–2 than that in the vorticity direction [14]. To
incorporate the diffusion coefficients in the shear and vorticity
directions into the rectangular channel flow model, shear rate
is defined as [22]

γ̇ =
(

∂u
∂z

)2 + 0.67
(

∂u
∂y

)2

√(
∂u
∂z

)2 + (
∂u
∂y

)2
. (9)

Here we assume that the diffusion coefficient in the plane
of shear is 1.5 times higher than that in the vorticity direction
(1/1.5 = 0.67), ∂u

∂z
is calculated from 2D simulations, and ∂u

∂y
is

taken as U 2
max

(H/2)2 where is the channel height and is assumed to
be 1.5 times of the average velocity.
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D. Modeling of acoustic radiation force diffusion flux

The acoustic radiation force FACP acting on a small spher-
ical particle subjected to acoustic standing wave, when the
particle radius a is much smaller than the acoustic wavelength
λ (i.e., a << λ), is governed by [23–25]

FACP = 4πa3Eack sin (2kz)φ, (10)

φ = ρp+ 2
3 (ρp−ρo)

2ρp+ρo
− 1

3
βp

βo
, βo = 1

ρoc2
o
, βp = 1

ρpc2
p
, Eac = Pa

4ρoco
2 ,

where Eac is acoustic energy density, k is wave number, z

is distance from the wall, φ is the contrast factor, ρp is the
density of the particle, ρo is the density of the medium, βp

is the compressibility of the particle,βo is compressibility of
the medium, cp is the velocity of sound in the particle,co is
the velocity of sound in the medium, and Pa is the acoustic
pressure amplitude.

The diffusive flux due to acoustic radiation force is taken
as [7,12]

JACP = fhuacϕ, (11)

where fh and uac are the hindrance function and single particle
mobility, respectively. The single particle mobility uac can be
obtained by equating drag force with the acoustic radiation
force given in Eq. (9) as

uac = 2a2Eac∅k sin(2kz)

3ηf

, (12)

where ηf is viscosity of the fluid in which the particle is
suspended. The viscosity of plasma (fluid medium for the
RBCs) is taken as 0.0012 in our model [17]. The hindrance
function fh can be written as [21]

fh = (1 − ϕ)2 ηf

ηs

, (13)

where is the viscosity of suspension. The viscosity of the blood
suspension in our fluid dynamic model is considered to be a
function of shear rate and hematocrit. The Quemada viscosity
model [17,26] was used to represent this dependency as

ηs = ηf

⎧⎪⎨
⎪⎩1 − ϕ

2

⎡
⎢⎣k∞ − k0 − k∞

1 +
(

γ̇

γ̇ c

)q

⎤
⎥⎦

⎫⎪⎬
⎪⎭

−2

. (14)

Here the values [17] of k0,k∞,γ̇ c, and q are taken
as (55ϕ0.7e−6ϕ + 1.9), [1.65(ϕ + 0.05)−0.3], 1.0, and 0.5.

III. EXPERIMENTS

A. Device fabrication

A microchannel of dimension 120μm (height)×400μm
(width)×40 mm (length) is etched in a < 100 > silicon wafer
of 0.5mm thickness using deep reactive ion etching. The inlet
and outlet holes (0.2 mm diameter) are drilled in the silicon
wafer. The silicon wafer containing the microchannel is sealed
with a planar glass slide using anodic bonding. Polyethylene
tubing was used for the fluidic connection between a syringe
pump (TSE Systems, Germany) and the inlet port and between
the outlet port and a waste reservoir. The standing acoustic
wave in the microchannel was established by applying an
RF signal to the lead zirconate titanate (transducer (Sparkler

Ceramics, India) attached to the bottom of the silicon substrate
using epoxy glue. A photograph of the assembled acoustic chip
is shown in Fig. 1(b). The RF signal was generated using a
function generator (SMB100A, Rohde & Schwarz, Germany)
and an amplifier (75A100A, Amplifier Research, USA). The
operating frequency was approximately 1.80 MHz, and the
power input ranged from 300 mW to 1.0 W. At different input
power, the acoustic energy densities in the microchannel were
measured using a particle-tracking method [24]. Sample blood
at different hematocrit concentrations in the range 10%–42.5%
was infused into the microchannel at different flow rates
in the range 5–50μl/min. The width of the focused band
of RBCs at different locations along the microchannel was
captured using a CCD camera (Edge, Dino-lite, Taiwan). From
the experimental measurements, the equilibrium-focused band
and the length of the microchannel required to attain the
equilibrium-focused band were obtained.

B. Measuring acoustic property of polystyrene beads

As mentioned in Sec. III A, the acoustic energy densities
in the microchannel can be measured at different input power
using the particle-tracking method [24]. However, to measure
the acoustic energy density, the acoustic properties of the
microparticles including density and the speed of sound
must be known. In our work, polystyrene beads (Invitrogen,
Thermo Fisher Scientific, USA) of 10 μm diameter and density
ρp = 1050 kg/m3 (available in the manufacturer’s data sheet)
were used. However, the speed of sound in polystyrene beads
had to be determined to evaluate acoustic energy density in
a continuous medium. In the literature, various values for the
speed of sound in polystyrene beads in the range 1700–2400
m/s have been reported [25,27,28]. So we had to precisely
determine the speed of sound in the polystyrene beads we
used from our own experiments, which was later utilized to
accurately predict the energy density.

The speed of sound in polystyrene beads can be determined
by matching the acoustic impedance of the beads with that of
the continuous medium in which the beads are suspended,
i.e., by making acoustic contrast factor (φ) of the beads with
respect to the continuous medium equal to zero [29]. So from
Eq. (10), we have

ρp + 2
3 (ρp − ρo)

2ρp + ρo

− 1

3

ρoc
2
o

ρpc2
p

= 0. (15)

In Eq. (15), all other terms except the speed of sound in
the polystyrene beads are known, which can be determined.
To match the acoustic impedance of polystyrene beads with
that of the continuous medium, the beads were suspended
in iodixanol solution (Opti-Perp, Sigma-Aldrich, USA) with
varying concentration of iodixanol mixed with DI water. The
bead suspension was infused into the microchannel device and
was subjected to standing acoustic waves. The migration of
beads towards the pressure node was observed for all iodixanol
concentrations less than 52%.

The migration of the beads towards the pressure nodes
indicated that the beads exhibited positive acoustic contrast
factor with respect to the continuous medium, i.e., iodixanol
of concentration less than 52%. It was observed that the
migration velocity of the beads towards the pressure node
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decreases with the increase in the iodixanol concentration in
the range 0%–52%. For 54% iodixanol concentration, there
was no significant migration of beads observed. Further, with
56% iodixanol concentration, the beads migrated towards the
pressure antinode, indicating that the beads exhibited negative
contrast factor with respect to the continuous medium. So
it was concluded that the polystyrene beads used in our
experiments exhibited zero acoustic contrast factor when
suspended in 54% iodixanol solution. The acoustic properties
of various concentration of iodixanol solutions were recently
reported by Augustsson et al. [29]. The properties of 54%
iodixanol solution are given as ρo = 1288 kg/m3 and co =
1498 kg/m3. By substituting the density of polystyrene beads,
we obtain the speed of sound in the polystyrene beads used in
our experiments to be 1789 ± 20 m/s.

C. Measuring acoustic energy density

The acoustic energy densities in the microchannel were
measured at different input powers using the particle-tracking
method. Polystyrene beads (10 μm diameter) were suspended
in DI water and infused into the microchannel and subjected
to standing acoustic waves. The positions of particles were
tracked frame by frame from video captured using a color
CCD camera (Edge). By equating the acoustic radiation force
given in Eq. (10) with drag force acting on the particles, the
expression for the acoustic energy density is obtained as [24]

Eac = 3μ

4φt(ka)2 ln

{
tan [kz(t)]

tan [kz(0)]

}
. (16)

In the above equation, on substituting the position of
polystyrene particles at different times z(t) obtained from
experiments, the properties of the polystyrene beads, and the
properties of the aqueous solution, the average values of Eac

at 300 mW and 1.0 W were found to be 40.6 ± 3.1 J/m3

and 81.2 ± 4.9 J/m3, respectively. The average and standard
deviation values of Eac were obtained by tracking 20 different
beads in the channel.

IV. RESULTS AND DISCUSSION

Experiments and numerical simulations were performed
to demonstrate acoustophoretic focusing of blood sample.
For Eac = 80 J/m3, ϕ = 0.425, and Q = 10 μl/min, the
width of the focused band at different locations along the
flow direction obtained from experiments and simulations is
depicted in Fig. 2. It is observed that the RBCs get focused
towards the center of the channel (i.e., node), and the width
of the focused band gradually decreases downstream. The
width of the focused band at x = 5 mm and x = 10 mm is,
respectively, 385 ± 3˜μm and 320 ± 3˜μm. The width of the
focused band does not change further downstream beyond
x = 20 mm, which is known as the equilibrium-focused
width weq. For x < 20 mm, the acoustic force is higher than
the SID force, thus the RBCs continue to come towards the
center of the channel, and thus the width of the focused
stream evolves dynamically. For x � 20 mm, due to higher
concentration of the focused band, the ACP force is balanced
by the SID force, thus giving rise to an equilibrium width
that remains unchanged downstream. The equilibrium-focused

width obtained from experiments and simulations was found to
be, respectively, 290 ± 3˜μm and 280 ± 3˜μm. The simulation
results match experimental data within 15%, which suggests
that the assumptions made in the model are reasonable. The
simulation results match experimental data within 15%, which
validates the theoretical model. The difference between the
simulation results and experimental data can be attributed to
the assumption in the model that the RBCs are spherical and
monodisperse.

We performed experiments and simulations to study
acoustophoretic focusing of blood samples at various concen-
trations, acoustic energy densities, and flow rates. Based on
the results, the equilibrium width of the focused band weq and
the channel length required to obtain the equilibrium-focused
width Leq were correlated with dimensionless parameters
(Péclet number Pe and Strouhal number St) that are discussed
below.

A. Dimensionless numbers

The physics of the system can be characterized using
the acoustophoretic time scaleτACP = W

2uac
, SID time scale

τSID = W 2

8D0
, and advection time scale τadv = W

2u0
, where W

is the channel width, and uac is average acoustic migration
velocity obtained by integrating the expression for acoustic
migration velocity given in Eq. (12) from 0 to W

2 , which
is given as uac = 4a2Eacγ /3Wηf . So the acoustophoretic
time scale τACP = 3W 2

8φa2Eac
. For the SID time scale, we take

the diffusion coefficient D0 = 1.7ϕinγ̇avga
2, where ϕin is the

hematocrit concentration at the inlet of the microchannel and
γ̇avgis the average shear rate, which can be expressed as

γ̇avg =
√

U 2
max

(H/2)2 + U 2
max

(W/2)2 , where H is the channel height and
Umax is the maximum velocity at the center of the channel,
and SoτSID = W 2

13.6ϕinγ̇avga2 . In the advection time scale, u0 is the
(pluglike) fluid velocity at the channel inlet.

The dynamics of the problem can be described by the ratio
of these three different time scales. The ratio of diffusion time
scale τSID relative to advection time scale τadv is characterized
by the Péclet number Pe. Similarly, the ratio of advection time
scale τadv relative to acoustic time scale τACP is characterized
by the transient Strouhal number St as

Pe = τSID

τadv
, St = τadv

τACP
. (17)

It is known that the larger is the time scale, the lesser is the
effect. A higher Pe corresponds to the decreasing effect of SID
compare to advection, and similarly, a higher St corresponds
to the decreasing effect of ACP compare to advection. For a
fixed advection time scale τadv, Pe is decreased by increasing
the concentration of the particles ϕin and St is decreased by
increasing the acoustic energy density Eac.

The dimensionless numbers (Pe and St) govern the
equilibrium-focused width weq and microchannel length re-
quired to attain the equilibrium-focused width Leq, which are
discussed in Secs. IV B and IV C, respectively.
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FIG. 2. The width of the focused band at different locations along the flow direction obtained from experiments and simulations for
Eac = 81.2 J/m3, ϕ = 0.425, and Q = 10 μl/min; the simulation contours are shown for half of the channel width due to symmetry about
the channel center line. At each location x, the simulation contours are shown below the experimental images. From experimental images the
width of the focused band was obtained using image analysis.

B. Width of the equilibrium-focused band

We attempted different closures for D∗
ϕ in predicting

the width of the equilibrium-focused band. The various
closures are D∗

f = [0.33ϕ2(1 + 0.5e8.8ϕ)] proposed by

Leighton et al. [19], D∗
ϕ = [0.42ϕ + 1.2ϕ2(1 − ϕ/ϕmax)−1]

proposed by Phillips et al. [9], and D∗
f = 1.7ϕ (low and

medium concentration closure for RBCs) proposed by Grand-
champ et al. [22]. We compared the results obtained using
the above closures for D∗

ϕ with that obtained by the closure
D∗

ϕ = [1.7ϕ + 0.33ϕ2(1 + 0.5e8.8ϕ)] proposed in this work.

The comparison of results for equilibrium-focused width weq

obtained using the various models with that from experiments
is shown in Fig. 3. As observed, compared to the other available
closures, the closure proposed in this work agrees very well
with experiments (within 15%). Also, from Fig. 3, it is seen
that only when the concentration of the suspension decreases
(ϕ = 0.215) does the closure proposed by Grandchamp et al.
approach the experimental results, as expected.

As discussed, the RBCs subjected to acoustophoretic force
migrate towards the center of the channel (node) and the
SID force opposes the migration. When the ACP and SID
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FIG. 3. Comparison of the equilibrium width of the focused band predicted using the different available models and the proposed model
with that obtained from our experiments: (a) Eac = 81.2 J/m3, ϕ = 0.425; (b) Eac = 81.2 J/m3, ϕ = 0.215; (c) Eac = 40.6 J/m3, ϕ = 0.425;
(d) Eac = 40.6 J/m3, ϕ = 0.425.

forces balance each other, the equilibrium-focused width
is attained. Figure 4 illustrates the fundamental difference

FIG. 4. Illustration of the fundamental difference between the
acoustic focusing of microparticles in dilute and dense suspensions
with and without the consideration of SID force. (a) Behavior of
dilute suspensions; (b) behaviour of dense suspensions.

between the acoustic focusing of microparticles in dilute and
dense suspensions. In dilute suspensions, focused width weq

tends to zero. In a dense suspension, we might expect weq to
approach wmin, which is the minimum possible focused width
when particles are packed to maximum concentration (with
maximum possible packing density). However, practically, the
SID in the suspension never allows the focused width weq to
attain wmin. Moreover, the equilibrium width of the focused
band weq varies with flow rate Q and acoustic energy density
Eac. We observed that at a fixed flow rate Q, the equilibrium
width of the focused band weq increases with a decrease in
the acoustic energy density Eac. Similarly, at a fixed energy
density Eac, the equilibrium width of the focused band weq

decreases with a reduction in the flow rate Q.
The above experimental observations are explained as

follows. SID is proportional to mainly the concentration
gradient ∇ϕ, local concentration ϕ, shear rate γ̇ , and gradient
of shear rate ∇γ̇ , as given by Eq. (8). A decrease in the acoustic
energy density Eac reduces the acoustic effect; thus to balance
ACP, SID has to decrease by reducing the local concentration
ϕ and concentration gradient ∇ϕ. A reduction in the local
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FIG. 5. The results obtained from our experiments and numerical
simulations are plotted with the product of the Péclet number and
the Strouhal number (Pe St), i.e., the ratio of the SID and ACP time
scales, for various acoustic energy density, flow rate, and volume
fraction. Eac is varied from 40.6 to 81.2 J/m3, Flow rate Q is varied
from 5 μl/min to 50 μl/min, and inlet hematocrit concentration ϕ is
varied from 10% to 42.5%.

concentration ϕ and concentration gradient ∇ϕ automatically
increases the equilibrium width of the focused stream weq. An
increase in flow rate Q gives rise to a higher shear rate γ̇ ;
thus to maintain the balance between SID and ACP, the local
concentration ϕ and concentration gradient ∇ϕ has to reduce
proportionally to the increase in shear rate γ̇ . A reduction
in the local concentration ϕ and concentration gradient ∇ϕ

automatically gives rise to a highe rweq

We define the dimensionless equilibrium width of the
focused band w∗ = weq−wmin

W−wmin
for scaling arguments. Here wmin

is the minimum theoretically possible width (at maximum
packing density) which can be obtained using volume con-
servation as follows: Umaxwminϕmax= UavWϕavg, Umax is the
maximum velocity, and ϕmax is the maximum random volume
fraction and it is taken [30] as 0.68, Uav is the average
velocity (which is same as the inlet velocity), and ϕavg is
the average particle concentration (which is the same as the
particle concentration at the inlet ϕin). Here Umax is taken as
1.5 times Uav . The dimensionless equilibrium width of the
focused band w∗ is governed by the ratio of the SID and ACP
time scales.

For various acoustic energy density Eac, flow rate Q,
and volume fraction ϕ, the w∗obtained from our experiments
and numerical simulations are plotted with the product of Pe
and St (Pe St), i.e., the ratio of the SID and ACP time scales, in
Fig. 5. The experimental data and the simulation results match
well within a maximum error of 15%. Interestingly, all the data
points from the experiments and simulations follow a single
curve, indicating that the irrespective of the experimental
conditions, w∗ is related to Pe and St. Using curve fitting (for
experimental data), the following relationship for w∗ versus
(Pe St) is obtained with a regression coefficient of 0.96:

w∗ = 1.4(Pe St)−0.5. (18)

FIG. 6. The results obtained from our experiments and numerical
simulations are plotted with the Strouhal number, i.e., the ratio of
the ACP and advection time scales, for various acoustic energy
density, flow rate, and volume fraction. Eac is varied from 40.6 to
81.2 J/m3. Flow rate Q is varied from 5 μl/min to 50 μl/min, and
inlet hematocrit concentration ϕ is varied from 10% to 42.5%.

Since Pe St represents the ratio of SID to ACP time scales,
Pe St >> 1 means the acoustic effect is more dominant
as compared to the SID effect, and similarly, Pe St << 1
indicates that SID is more dominant as compared to ACP.
When Pe St >> 1, w∗ tends to zero, which represents that
the equilibrium-focused width weq approaches wmin. On the
other hand, when Pe St ≈ 1 or < 1, this results in w∗ > 1,
which indicates that there is no focused band existing. This
clearly shows that there is a critical acoustic energy density
Eac for given concentration ϕ and shear rate γ̇ below which
the acoustic focusing is prevented. Equation (18) enables
determination of the equilibrium width of the focused band
under a given experimental condition, which would have
significant practical relevance in a range of LOC applications
including blood plasma separation, particle and cell sorting,
and microflow cytometry.

C. Length required to attain the equilibrium-focused band

As discussed, under the influence of an acoustic field, the
microparticles migrate towards the center due to the ACP
force which is opposed by the SID force. At some location
along the channel, the SID force balances the ACP force and
the equilibrium-focused width is attained. The variation in
the dimensionless length required to attain the equilibrium-
focused band is expressed as L∗

eq = Leq/wmin. For various
acoustic energy density Eac, flow rate Q, and volume fraction
ϕ, the L∗

eq obtained from our experiments and numerical
simulations are plotted with St, i.e., the ratio of the ACP and
advection time scales, in Fig. 6. The experimental data and
the simulation results match well within a maximum error of
15%. Interestingly, all the data points from the experiments
and simulations follow a single curve, indicating that the
irrespective of the experimental conditions L∗

eq is related to
St. Using curve fitting (for experimental data), the following
relationship for L∗

eq versus St is obtained with a regression
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coefficient of 0.96:

L∗
eq = 3.8/(St)0.6. (19)

It is observed that when St << 1 (effect of acoustophore-
sis is negligible compared to advection), L∗

eq approaches
∞ (Leq >> W ); when St ≈ 1 (effect of acoustophoresis is
in the same order of advection),L∗

eq approaches 1 (Leq = W );
when St >> 1 (effect of advection is negligible compared
to the acoustophoresis) L∗

eq approaches 0 (Leq << W ). The
disagreement between model and experiment is within 15%,
which may be due to assumptions like RBCs are monodisperse
and spherical used in acoustic force modeling.

V. CONCLUSIONS

In this work we reported improved understanding of
acoustophoretic focusing of a dense suspension in a mi-
crochannel subjected to an acoustic standing wave using a
proposed theoretical model and experiments. The model is
based on the mixture theory and employs the momentum
transport equation for the mixture, continuity equation, and
transport equation for the solid phase volume fraction. The
model demonstrated the interplay between acoustic radiation
force and shear-induced diffusion (SID) force, which is critical
in the acoustophoretic focusing of dense suspensions such
as undiluted blood. The SID model developed by Phillips
based on the scaling arguments of Leighton and Acrivos was
employed to simulate the continuum behavior of particles.
In the literature, various closures for the diffusion coefficient
D∗

ϕ are available for rigid spheres at high concentrations and
deformable particles (e.g., RBCs) at low concentrations. We
attempted different closures for D∗

ϕ proposed by Leighton
et al. [19], Phillips et al. [9], and Grandchamp et al. [22]
and compared the results with that obtained using the closure
D∗

ϕ = [1.7ϕ + 0.33ϕ2(1 + 0.5e8.8ϕ)] proposed in this work.
Modeling and simulations were performed at various acoustic

energy density Eac = 40.6 and 81.2 J/m3 and volume fraction
ϕ = 0.215 and 0.425. While the available closures for D∗

ϕ

failed to predict the acoustic focusing of a dense suspension
of deformable particles, the predictions of the proposed model
match experimental data within 15%. The interplay of the
acoustic focusing of dilute and dense suspensions with and
without consideration of the SID force was explained to
highlight the importance of the SID force in acoustic focusing
of a dense suspension. Both the model and experiments
revealed that there is a competition between acoustic radiation
and SID forces that determines equilibrium width w∗ of a
focused stream of particles at some location L∗

eq along the
flow direction. Using different shear rates γ̇ , acoustic energy
densities Eac, and particle concentrations ϕ, we show that
the equilibrium width is governed by Péclet number Pe and
Strouhal number St as w∗ = 1.4(Pe St)−0.5 while the length
required to obtain the equilibrium-focused width depends on St
as L∗

eq = 3.8/(St)0.6. The proposed model is computationally
much less intensive as compared to other computational
models such as complex direct numerical simulation models;
the entire simulations reported in this work can be performed
in less than a day on an ordinary personal computer. The
proposed model and correlations would find significance in
the design of microchannels for acoustic focusing of dense
suspensions such as undiluted blood.
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